
582: PROBLEM 4.16

SASHA ARAVKIN

Minimum Fuel Optimal Control. We consider a linear dynamical
system with state x(t) ∈ Rn, t = 0, . . . , N , and actuator or input signal
u(t) ∈ R, for t = 0, . . . , N − 1. The dynamics of the system is given by
the linear recurrence

x(t + 1) = Ax(t) + bu(t), t = 0, . . . , N − 1

where ARn×n and b ∈ Rn are given. We assume that the initial state
is zero, i.e, x(0) = 0.

The minimum fuel optimal control problem is to choose the inputs
u(0), . . . , u(N − 1) so as to minimize the total fuel consumed, which is
given by

F =
N−1∑
t=0

f(u(t))

subject to the constraint that x(N) = xdes, where N is the given time
horizon, and xdes ∈ Rn is the given desired target state. The function
f : R −→ R is the fuel use map for the actuator, and gives the amount
of fuel as a function of the actuator signal amplitude. In this problem,
we use

f(a) =

{
|a| |a| ≤ 1

2|a| − 1 |a| > 1

Formulate the minimum fuel optimal control problem as an LP.

Solution:

We have specified x(0) = 0 and x(N) = xdes. Combining these condi-
tions with the specified system dynamics, we get
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x(1) = bu(0)

x(2) = Abu(0) + bu(1)

x(3) = A2bu(0) + Abu(1) + bu(2)

...

x(N) = AN−1bu(0) + AN−2bu(1) + · · ·+ Abu(N − 1) + bu(N − 1) = xdes

We now define the controllability matrix:

C =
[
An−1b AN−2b · · · Ab b

]
If we let uT =

[
u(0) . . . u(N − 1)

]
, we can write our initial and target

conditions for the problem as follows:

Cu = xdes

We now turn our attention back to f(a). We can add new variables
and inequalities in order to turn f into a linear objective. There are
several ways to do this.

First, we may add a single variable t, together with the constraints

|a| ≤ t

2|a| − 1 ≤ t

To see that this works, note only that for |a| ≤ 1, we have |a| ≥ 2|a|−1,
while for |a| > 1, |a| ≤ 2|a| − 1. Then for |a| ≤ 1, the second condition
is redundant, while for |a| > 1, the first is redundant, which gives us
exactly what we want.

Rewriting above, we have the inequalities

−t ≤ a ≤ t

−t + 1

2
≤ a ≤ t + 1
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Following this methodology, we have added one new variable and four
new inequality constraints for each u(i).

We can now introduce a vector t = [t0, . . . , tN−1], one ti for each u(i).
Our linear program is then

P =


minimize 1

¯
T t

subject to −t ≤ u ≤ t

− t+1
¯2 ≤ u ≤ t+1

¯2
Cu = xdes

We form the Lagrangian

L(t, u,α, β, γ, ∆, θ) = 1
¯

T t− αT (u + t) + βT (u− t)− γT (2u + 1 + t)

+ ∆T (2u− 1− t) + θT (Cu− xdes) + δR4N
+

(


α
β
γ
∆

)

= (−α + β − 2γ + 2∆ + CT θ)T u + (1
¯
− α− β − γ −∆)T t

− (γT 1
¯

+ ∆T 1
¯

+ θT xdes) + δR4N
+

(


α
β
γ
∆

)

Now we find the dual objective function:

g(α,β, γ, ∆, θ) = inf
u,t

L = inf
u

(−α + β − 2γ + 2∆ + CT θ)T u

+ inf
t

[1
¯
− (α + β + γ + ∆)]T t− (γT 1

¯
+ ∆T 1

¯
+ θT xdes) + δR4N

+
(


α
β
γ
∆

)

Looking at the t part of the expression, it is clear that we must have
α + β + γ + ∆ ≤ 1

¯
in order for g to be finite, since t ≥ 0. With this

condition, the infimum over t is zero.
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By similar logic, looking at the u part gives us −α+β−2γ+2∆+CT θ =
0, in order to ensure that g is finite. In this case the infimum again is
0. Then under the conditions just derived, we have

g(α, β, γ, ∆, θ) = −(γT 1
¯

+ ∆T 1
¯

+ θT xdes) + δR4N
+

(


α
β
γ
∆

)

Then our dual problem is

D =


maximize −γT 1

¯
−∆T 1

¯
− θT xdes

subject to 0 ≤ α, β, γ, ∆

CT θ = α− β + 2γ − 2∆

α + β + γ + ∆ ≤ 1
¯


