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My final application is a look at norm optimization problems of the form

minimize ‖Ax− b‖ , A ∈ <m×n (1)

and comes from problems in the text [1] problems 4.11 and 6.4.

4.11: Problems of the form minimize ‖Ax− b‖
First, consider the general case of the norm of an affine mapping as stated in the section heading.
This is certainly a convex problem because norms are convex and the application of an affine
mapping function to the domain does not affect convexity. So, begin with the stated problem
(1) for any norm of the form ‖·‖n where n is a non-negative integer. Let r = Ax − b, where
r is commonly referred to as the residual and is of interest in the case when b /∈ range(A). A
Lagrangian may be defined as:

L(x, r, λ) = ‖r‖+ λ>(r + b− Ax) (2)

= ‖r‖+ λ>r − λ>Ax+ λ>b

x, r, λ ∈ <m.

From here, the dual equation can be found as:

g(λ) = inf
r,x∈<m

L(x, r, λ) = λ>b+ δ{0}(λ
>A) + inf

r
(‖r‖+ λ>r)

= λ>b+ δ{0}(λ
>A) + δB∗(λ) (3)

then

sup
λ
g(λ) = λ>b

λ>A = ~0 , ‖λ‖∗ ≤ 1,

(4)

where δ is the indicator function and B∗ is the unit ball on the dual (or polar) of the norm
stated in (1).

At this point it is worth commenting the dual of the unit ball. By Holder’s inequality,
|〈x, y〉| ≤ ‖x‖p ‖y‖q, where 1

p
+ 1

q
= 1. In these problems the focus is on the L1 and L∞ norms,

and thus it is useful to note that ‖·‖∞ = (‖·‖1)∗, and ‖·‖1 = (‖·‖∞)∗.
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4.11 a

Problem:
minimize ‖Ax− b‖∞ (5)

Let’s define r to be the residual, r = Ax − b. This norm effectively minimizes the maximum
residual value, max ri, and thus, it can be rewritten as a linear program to minimize t such
that −t~1 � Ax− b � t~1, where t ∈ <+, and ~1 is a vector of ones of dimension m× 1. It can be
seen by inspection of this problem and (4) that the dual equation for (5) is:

g(λ) = λ> + δ{0}(λ
>A) + δB1(λ). (6)

λ ∈ <m

Another interesting result for the dual equation is found when one instead considers applying
two dual variables to the equalities surrounding Ax− b.

L(x, t, λ, ν) = t~1 + λ>(b− t~1− Ax) + ν>(Ax− b−~1t) (7)

= t(~1 + [λ+ ν]>~1) + (ν − λ)>Ax+ (λ− ν)>b

λ, ν ∈ <+

g(λ, ν) = (λ− ν)>b+ δ{0}[(λ− ν)>A] + δ{1}([λ+ ν]>~1). (8)

λ, ν ∈ <m+
It is not surprising that the two dual equations, (6) and (8) have very similar forms. Probably
the most curious and notable difference is that the indicator on the L1 unit ball in (6) is replaced
by the indicator of the L1 norm of the sum of the dual variables in (8).

4.11 b

Problem:

minimize ‖Ax− b‖1 (9)

λ ∈ <m

This problem is similar to the previous, except that the L1 norm results in the minimization
of the sum of the absolute value of the residuals, ‖r‖1. So, a linear program may be defined to

minimize
m∑
i=1

ti such that −t � Ax− b � t, where t ∈ <m+ . It can be seen by inspection of this

problem and (4) that the dual equation for (9) is:

g(λ) = λ> + δ{0}(λ
>A) + δB∞(λ). (10)

Similar to problem 4.11a, an interesting result for the dual equation is found when one assignes
two dual variables to the inequalities in the linear program.

L(x, t, λ, ν) = t>~1 + λ>(b− t− Ax) + ν>(Ax− b− t) (11)

= (~1− λ− ν)>t+ (λ− ν)>b+ (ν − λ)>Ax

g(λ, ν) = (λ− ν)>b+ δ{0}
[
(λ− ν)>A

]
+ δ{~1} [λ+ ν] (12)

λ, ν ∈ <m+
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Again, there is an apparent duality between the norm in the problem definition and the result-
ing constraint on the dual variables. Also, there is similarity between the constraint that the
dual variable λ is in the L∞ dual ball in (10), while in (12) the sum of the dual variables, λ+ν,
is constrained to be equal to ~1.

In the the following three problems from 4.11, the linear program will be stated, followed
by the dual equations found two ways as in 4.11 a and b.

4.11 c

Problem:

minimize ‖Ax− b‖1 (13)

s.t. ‖x‖∞ ≤ 1

A dual function may be found by a similar method as (4), where an additional dual variable,
γ is needed to incorporate the L∞ constraint on x.

L(x, r, λ, γ) = ‖r‖1 + γ(‖x‖∞ − 1) + λ>(b− ax+ r) (14)

γ ∈ R r, x, λ ∈ <m

g(λ, ν) = λ>b− γ + inf
x

(−γ ‖x‖∞ − λ
>Ax) + inf

r
(‖r‖1 + λ>r)

= λ>b− γ − sup
x

[
γ

(
1

γ
λ>Ax− ‖x‖∞

)]
+ sup

r
(λ>r − ‖r‖1)

g(λ, ν) = λ>b− γ + δB∞(λ)− δB1

(
1

γ
λ>A

)
(15)

An equivalent linear program is to add to the linear program defined in 4.11b the constraint:
−~1 � x � ~1. Then, an alternative Lagrangian and Dual function may be found as follows.

L(x, t, λ, ν, γ, θ) = (~1− λ− ν)>t+ (λ− ν)>b+ (ν − λ)>Ax− γ(x+~1) + θ(x−~1) (16)

= (~1− λ− ν)>t+ (λ− ν)>b+ [(ν − λ)>A+ (θ − γ)>]x− (θ + γ)>~1

g(λ, ν, γ, θ) = (λ− ν)>b− (γ + θ)>~1 (17)

+δ{~1}(λ+ ν) + δ{0}[(γ − θ)>~1 + (λ− ν)>A]

λ, ν, γ, θ ∈ <m+

4.11 d

Problem:

minimize ‖x‖1 (18)

s.t. ‖Ax− b‖∞ ≤ 1
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A dual function may be found by a similar method as (4), which resembles (15).

L(x, r, λ, ν) = ‖x‖1 + γ(‖r‖∞ − 1) + λ>(b− Ax+ r) (19)

= (‖x‖1 − λ
>Ax) + (γ ‖r‖∞ + λ>r)− γ + λ>b

g(λ, γ) = λ>b+ δB∞(−λ>A) + δB1

(
1

γ
λ

)
(20)

λ, γ ∈ <m+
An alternate formulation of the Lagrangina and dual function may be found by assigning a
dual variable to each inequality that results from expanding the norms in the objective and
constraint. The problem can be stated:
minimize t>~1 such that −t ≤ x ≤ t and −~1 ≤ Ax− b ≤ ~1, where t ∈ <m+ .

L(x, t, λ, ν, γ, θ) = t>~1− λ>(b− Ax−~1) + ν>(Ax− b−~1)− γ>(t+ x) + θ>(x− t) (21)

= [θ> − γ> + (ν − λ)>A]x+ (~1− γ − θ)>t+ (λ− ν)>b− (λ+ ν)>~1

g(λ, ν, γ, θ) = (λ− ν)>b− (λ+ ν)>~1 (22)

+δ{0}[γ
> − θ> + (λ− ν)>A] + δ{~1}(γ + θ)

λ, ν, γ, θ ∈ <m+

4.11 e

Problem:

minimize ‖Ax− b‖1 + ‖x‖∞ (23)

(24)

Following (4) Lagrangian and Dual equations can be found by introducing a residual variable,
r.

L(x, r, ν) = ‖r‖1 + ‖x‖∞ + λ>(b− Ax+ r) (25)

= (‖r‖1 + λ>r) + (‖x‖∞ + λ>Ax) + λ>b

λ ∈ <m

g(ν) = λ>b+ δB∞(λ) + δB1(−λ>A) (26)

An alternative approach to finding Lagrangian and Dual equations would be to expand the
norms as inequalities and assign an dual variable to each. minimize r>~1 + t, where −r ≤
Ax− b ≤ r and −t~1 ≤ x ≤ t~1 for r ∈ <m+ , t ∈ <+.

L((x, r, t, λ, ν, γ, θ) = rt~1 + t+ λ>(b− Ax− r) + ν>(Ax− b− r) (27)

−γ>(x+ t~1) + θ>(x− t~1)

= (λ+ ν)>b+ (~t− λ− ν)>r + t(1− γ>~1− θ>~1)

+[θ> − γ> − (λ− ν)>A]x

g(λ, ν, γ, θ) = (λ− ν)>b (28)

+δ{~1}(λ+ ν) + δ{1}[(γ + θ)>~1] + δ{0}[A
>(λ− ν) + γ − θ]

λ, ν, γ, θ ∈ <m+
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6.4 Differential Approximation of ‖Ax− b‖1

It is natural to want to find extrema by differentiation when approaching a minimization prob-
lem. This problem considers a differentiable approximation to (9) which is often used in practice,
29.

|u| ≈ Φ(u) =
(
u2 + ε

) 1
2 , (29)

where ε > 0. Let the residual be r = Ax − b where ri = a>i − bi, where ri and bi are the ith

components of r and b and a>i is the ith row of A. Then, the solution of (9) may be approximated
as

minimize
m∑
i=1

Φ(ri). (30)

It is assumed that A ∈ <m×n and rank(A) = n. Let the optimal value of (9) be p? and the
optimal solution to (30) be x̂, for which the residual is r̂ = Ax̂− b.

6.4 a

Find a lower bound for p?. Show:

p? ≥
m∑
i=1

r̂i
2(

r̂i
2 + ε

) 1
2

. (31)

Consider a lower bound or a best under-estimator of a function, f . This may be written as:
g(s) = f ′(x)(s− x). Since L1 is not differentiable at 0, consider using instead (29). Then, one
could approximate a best under-estimator to ‖ri‖1,

g(ri) =
∂ [Φ(r̂i)]

∂r̂i
(ri − r̂i)

g(ri) =
r̂i(

r̂i
2 + ε

) 1
2

(ri − r̂i) (32)

Without loss of generality, one can let r̂i = 0 since (29) and ‖·‖ both equal 0 at 0. Then, the
best-underestimator of (9) using our differentiable approximation to L1 is given by

g(ri) =
r̂i

2(
r̂i

2 + ε
) 1

2

(33)

if one can show that the magnitude of the derivative in (32) is less than or equal to the derivative
of L1 at all points other than zero (recall, that we already showed that L1 and its approximation

are equal at zero). This is easy since

∣∣∣∣ ∂∂rr
∣∣∣∣ = 1:∣∣∣∣∣∣ r̂i(

r̂i
2 + ε

) 1
2

∣∣∣∣∣∣ < 1,

∀ri 6= 0,

ε > 0.
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This result may be more intuitively when inspected graphically. Figure 1 plots the L1 norm
and its approximation.

Figure 1: Plots of the L1 norm, the approximation (29).

6.4 b

The next interesting result may be show by rearranging (31) and adding |ri|’s to each side and

noting that: ‖Ax̂− b‖1 =
m∑
i=1

|r̂i|.

m∑
i=1

|r̂i| ≤ p? +
m∑
i=1

|r̂i| −
m∑
i=1

r̂i
2(

r̂i
2 + ε

) 1
2

‖Ax̂− b‖1 ≤ p? +
m∑
i=1

|r̂i| − |r̂i||r̂i|(
r̂i

2 + ε
) 1

2


‖Ax̂− b‖1 ≤ p? +

m∑
i=1

|r̂i|

1− |r̂i|(
r̂i

2 + ε
) 1

2

 (34)
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Once x̂ and r̂ are ocmputed, then on can use (34) to examine a bound on how sub-optimal x̂
is for the L1 norm approximation problem. The form of (34) is interesting, because the result
in the parenthesis on the right hand side may be thought of as the error of the approximation
(29).
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