Example

m lamps illuminating n (small, flat) patches

intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

how to solve?

- 1. use uniform power: $p_j = p$, vary p
- 2. use least-squares:

minimize
$$\sum_{k=1}^n (I_k - I_{\mathsf{des}})^2$$

round p_j if $p_j > p_{\max} \text{ or } p_j < 0$

3. use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j (p_j - p_{max}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\max}$

4. use linear programming:

minimize
$$\max_{k=1,...,n} |I_k - I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

which can be solved via linear programming

of course these are approximate (suboptimal) 'solutions'

5. use convex optimization: problem is equivalent to

minimize
$$f_0(p) = \max_{k=1,...,n} h(I_k/I_{des})$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

with $h(u) = \max\{u, 1/u\}$

 f_0 is convex because maximum of convex functions is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_j > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems