Introduction to the Numerical Solution of IVPs for ODEs

Well-Posed Problems

IVP
$$x' = f(t, x)$$
, with $x(a) = x_a$

Assume f(t, x) is continuous in t, x and uniformly Lipschitz in x (with Lipschitz constant L) on $I \times \mathbb{R}^n$ with I = [a, b].

- (1) **Existence.** There exists a solution of the IVP on [a, b].
- (2) **Uniqueness.** The solution, for each given x_a , is unique.
- (3) **Continuous Dependence.** The solution depends continuously on the data.

The map $x_a \mapsto x(t, x_a)$ is continuous from \mathbb{R}^n into $(C([a, b]), \|\cdot\|_{\infty}).$

Grids

Choose a mesh width h (with $0 < h \le b - a$), and let $N = \begin{bmatrix} \frac{b-a}{h} \end{bmatrix}$ (greatest integer $\le (b-a)/h$). Let

$$t_i = a + ih \qquad (i = 0, 1, \dots, N)$$

be the grid points in t (note: $t_0 = a$), and let x_i denote the approximation to $x(t_i)$. Note that t_i and x_i depend on h, but we will usually suppress this dependence in our notation.

Explicit One-Step Methods

Start with $x_0 \approx x_a$.

Recursively compute x_1, \ldots, x_N by

$$x_{i+1} = x_i + h\psi(h, t_i, x_i), \qquad i = 0, \dots, N-1.$$

 $\psi(h, t, x)$ is a function defined for

$$0 \le h \le b - a$$
, $a \le t \le b$, $x \in \mathbb{R}^n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

which depends on f(t, x).

Euler's Method: $\psi(h, t, x) := f(t, x)$

$$x_{i+1} = x_i + hf(t_i, x_i)$$

(日)、

æ

Taylor Methods

Let p be an integer ≥ 1 and consider the pth-order Taylor expansion of a C^{p+1} solution x(t) of x' = f(t, x):

$$x(t+h) = x(t) + hx'(t) + \dots + \frac{h^p}{p!}x^{(p)}(t) + \underbrace{O(h^{p+1})}_{\text{remainder term}}$$

where $O(h^{p+1})$ is the Taylor's Theorem remainder term. Replace $x'(t), x''(t), \ldots$ by expressions involving f and its derivatives:

$$\begin{aligned} x'(t) &= f(t, x(t)) \\ x''(t) &= \left. \frac{d}{dt} (f(t, x(t))) = \left. \frac{(n \times 1)}{D_t f} \right|_{(t, x(t))} + \left. \frac{(n \times n)}{D_x f} \right|_{(t, x(t))} \frac{dx}{dt} \\ &= \left. \left(D_t f + (D_x f) f \right) \right|_{(t, x(t))} & \text{(for } n = 1, \text{ this is } f_t + f_x f \text{)}, \end{aligned}$$

and so forth.

Taylor Methods

This yields

$$p=1:$$
 $x_{i+1} = x_i + hf(t_i, x_i)$ (Euler's method, $\psi(h, t, x) = f(t, x)$)

$$p = 2$$
: $x_{i+1} = x_i + hf(t_i, x_i) + \frac{h^2}{2} (D_t f + (D_x f)f) \Big|_{(t_i, x_i)}$

For the case p = 2, we have

$$\psi(h,t,x) = T_2(h,t,x) \equiv \left(f + \frac{h}{2}\left(D_tf + (D_xf)f\right)\right)\Big|_{(t,x)}$$

We will use the notation $T_p(h, t, x)$ to denote the $\psi(h, t, x)$ function for the Taylor method of order p.

Modified Euler's Method

$$\begin{aligned} x_{i+1} &= x_i + hf\left(t_i + \frac{h}{2}, x_i + \frac{h}{2}f(t_i, x_i)\right) \\ (\text{so } \psi(h, t, x) &= f\left(t + \frac{h}{2}, x + \frac{h}{2}f(t, x)\right). \end{aligned}$$

Here $\psi(h, t, x)$ tries to approximate

$$x'\left(t+\frac{h}{2}\right) = f\left(t+\frac{h}{2}, x\left(t+\frac{h}{2}\right)\right),$$

using the Euler approximation to $x(t + \frac{h}{2}) (\approx x(t) + \frac{h}{2}f(t, x(t)))$.

Improved Euler's Method (or Heun's Method)

$$x_{i+1} = x_i + \frac{h}{2} (f(t_i, x_i) + f(t_{i+1}, x_i + hf(t_i, x_i)))$$

$$(\text{so }\psi(h,t,x) = \frac{1}{2}(f(t,x)+f(t+h,x+hf(t,x)))).$$

Here again $\psi(h, t, x)$ tries to approximate

$$x'\left(t+\frac{h}{2}\right)\approx \frac{1}{2}(x'(t)+x'(t+h)).$$

Or $\psi(h, t, x)$ can be viewed as an approximation to the trapezoid rule applied to

$$rac{1}{h} \left(x(t+h) - x(t)
ight) = rac{1}{h} \int_t^{t+h} x' pprox rac{1}{2} x'(t) + rac{1}{2} x'(t+h).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consistency

Modified Euler and Improved Euler are examples of 2^{nd} order two-stage Runge-Kutta methods. Notice that no derivatives of fneed be evaluated, but f needs to be evaluated *twice* in each step (from x_i to x_{i+1}).

It is evident from the above discussion that $\psi(h, t, x(t))$ should approximate x'(t) as $h \to 0$ if x(t) is a solution of the differential equation. Since x' = f(t, x) for a solution, one expects that any useful method will satisfy the following condition.

Definition. A one-step method is called consistent if

$$\psi(0,t,x)=f(t,x).$$

All the methods described above are consistent.

Local Truncation Error

Let $x_{i+1} = x_i + h\psi(h, t_i, x_i)$ be a one-step method, and let x(t) be a solution of the DE x' = f(t, x). The *local truncation error* (LTE) for x(t) is defined to be

 $I(h, t) \equiv x(t + h) - (x(t) + h\psi(h, t, x(t))) = \text{actual} - \text{predicted}.$

I(h, t) is defined for $0 < h \le b - a$ and $a \le t \le b - h$.

Define

$$\tau(h,t) = \frac{l(h,t)}{h} \text{ and } \tau(h) = \max_{a \le t \le b-h} |\tau(h,t)|.$$

Set $\tau_i(h) = \tau(h,t_i).$

Characterizing Consistency

Proposition. Consider the one-step method

$$x_{i+1} = x_i + h\psi(h, t_i, x_i),$$

where $\psi(h, t, x)$ is continuous for $0 \le h \le h_0$, $a \le t \le b$, $x \in \mathbb{R}^n$ for some $h_0 \in (0, b - a]$.

This method is consistent with the DE x' = f(t, x) if and only if

$$au(h)
ightarrow 0$$
 as $h
ightarrow 0^+$ for all C^1 solutions $x(t)$,

or, equivalently,

l(h, t) = o(h) as $h \to 0^+$ for all C^1 solutions x(t).

Proof

$$\Rightarrow: \text{ Fix a solution } x(t). \text{ For } 0 < h \le h_0, \text{ let}$$
$$Z(h) = \max_{\substack{a \le s, t \le b, |s-t| \le h}} |\psi(0, s, x(s)) - \psi(h, t, x(t))|.$$

By uniform continuity, Z(h)
ightarrow 0 as $h
ightarrow 0^+$. Now

$$\begin{split} l(h,t) &= x(t+h) - x(t) - h\psi(h,t,x(t)) \\ &= \int_{t}^{t+h} \left[x'(s) - \psi(h,t,x(t)) \right] ds \\ &= \int_{t}^{t+h} \left[f(s,x(s)) - \psi(h,t,x(t)) \right] ds \\ &= \int_{t}^{t+h} \left[\psi(0,s,x(s)) - \psi(h,t,x(t)) \right] ds, \end{split}$$

so $|I(h,t)| \le hZ(h)$. Therefore $\tau(h) \le Z(h) \to 0$.

Proof

 $\Leftarrow: \text{ Conversely, suppose } \tau(h) \to 0. \text{ For any } t \in [a,b) \text{ and any } h \in (0,b-t],$

$$\frac{x(t+h)-x(t)}{h}=\psi(h,t,x(t))+\tau(h,t).$$

Taking the limit as $h \downarrow 0$ gives $f(t, x(t)) = x'(t) = \psi(0, t, x(t))$.

Accurate of Order p

The Proposition states that consistency is equivalent to the condition that l(h, t) = o(h) as $h \to 0^+$. For most useful methods, l(h, t) actually goes to zero much more rapidly.

Definition. A one-step method is called *accurate of order p* (for a positive integer *p*) if for any solution x(t) of the DE x' = f(t, x), where *f* is C^p , we have $l(h, t) = O(h^{p+1})$.

Consistency is a minimal version of accuracy. It can be thought of as the correct notion of accuracy of order 0.

Example: Taylor method of order *p*

If $f \in C^p$, then $x \in C^{p+1}$, and

$$I(h,t) = x(t+h) - \left(x(t) + hx'(t) + \dots + \frac{h^{p}}{p!}x^{(p)}(t)\right)$$

= $\frac{1}{p!}\int_{t}^{t+h} (t+h-s)^{p}x^{(p+1)}(s)ds.$

So

$$|I(h,t)| \leq M_{p+1} rac{h^{p+1}}{(p+1)!}$$
 where $M_{p+1} = \max_{a \leq t \leq b} |x^{(p+1)}(t)|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Characterization of p Order Accuracy

A one-step method $x_{i+1} = x_i + h\psi(h, t_i, x_i)$ is accurate of order p if and only if

$$\psi(h,t,x)=T_p(h,t,x)+O(h^p),$$

where T_p is the " ψ " for the Taylor method of order p.

Proof.

Since $x(t+h) - x(t) = hT_p(h, t, x(t)) + O(h^{p+1})$, we have for any given one-step method that

$$\begin{split} l(h,t) &= x(t+h) - x(t) - h\psi(h,t,x(t)) \\ &= hT_p(h,t,x(t)) + O(h^{p+1}) - h\psi(h,t,x(t)) \\ &= h(T_p(h,t,x(t)) - \psi(h,t,x(t))) + O(h^{p+1}). \end{split}$$

So $l(h, t) = O(h^{p+1})$ iff $h(T_p - \psi) = O(h^{p+1})$ iff $\psi = T_p + O(h^p)$.

Convergence of One-Step Methods

Theorem Suppose f(t, x) is continuous in t, x and uniformly Lipschitz in x on $[a, b] \times \mathbb{R}^n$. Suppose that satisfies

- 1. (Stability) $\psi(h, t, x)$ is continuous in h, t, x and uniformly Lipschitz in x (with Lipschitz constant K) on $0 \le h \le h_0$, $a \le t \le b$, $x \in \mathbb{R}^n$ for some $h_0 > 0$ with $h_0 \le b - a$, and
- 2. (Consistency) $\psi(0, t, x) = f(t, x)$.

Let x(t) be the solution of the IVP x' = f(t, x), $x(a) = x_a$ on [a, b]. Let $e_i(h) = x(t_i(h)) - x_i(h)$, where $x_i(h)$ is obtained from the one-step method $x_{i+1}(h) = x_i(h) + h\psi(h, t_i(h), x_i(h))$, and set $e_0(h) = x_a - x_0(h)$ (the error in the initial value $x_0(h)$). Then

$$|e_i(h)| \le e^{K(t_i(h)-a)}|e_0(h)| + \tau(h)\left(rac{e^{K(t_i(h)-a)}-1}{K}
ight)$$
, so

$$|e_i(h)| \leq e^{K(b-a)}|e_0(h)| + rac{e^{K(b-a)}-1}{K} au(h).$$

Moreover, $\tau(h) \to 0$ as $h \to 0$. Therefore, if $e_0(h) \to 0$ as $h \to 0$, then $\max \{|e_i(h)| : 0 \le i \le h^{-1}(b-a)\} \to 0$ as $h \to 0$, that is, the approximations converge uniformly on the grid to the solution.

Proof

Hold h > 0 fixed, and ignore rounding error. Subtracting

$$x_{i+1} = x_i + h\psi(h, t_i, x_i)$$

from

$$x(t_{i+1}) = x(t_i) + h\psi(h, t_i, x(t_i)) + h\tau_i, \qquad (\tau_i := \tau(h, t_i))$$
gives

$$\begin{aligned} |e_{i+1}| &\leq |e_i| + h |\psi(h, t_i, x(t_i)) - \psi(h, t_i, x_i)| + h |\tau_i| \\ &\leq |e_i| + h K |e_i| + h \tau(h) \\ &= (1 + h K) |e_i| + h \tau(h). \end{aligned}$$

So

$$\begin{aligned} |e_1| &\leq (1+hK)|e_0| + h\tau(h), \text{ and} \\ |e_2| &\leq (1+hK)|e_1| + h\tau(h) \\ &\leq (1+hK)^2|e_0| + h\tau(h)(1+(1+hK)). \end{aligned}$$

Proof

By induction,

$$\begin{aligned} |e_i| &\leq (1+hK)^i |e_0| + h\tau(h)(1 + (1+hK) + (1+hK)^2 + \dots + (1+hK)^{i-1}) \\ &= (1+hK)^i |e_0| + h\tau(h) \frac{(1+hK)^i - 1}{(1+hK) - 1} \\ &= (1+hK)^i |e_0| + \tau(h) \frac{(1+hK)^i - 1}{K} \end{aligned}$$

Since $(1 + hK)^{\frac{1}{h}} \uparrow e^{K}$ as $h \to 0^+$ (for K > 0), and $i = \frac{t_i - a}{h}$, we have

$$(1+h\mathcal{K})^i=(1+h\mathcal{K})^{rac{t_i-a}{h}}\leq e^{\mathcal{K}(t_i-a)}.$$

Thus

$$|e_i|\leq e^{K(t_i-a)}|e_0|+ au(h)rac{e^{K(t_i-a)}-1}{K}.$$

The preceding proposition shows au(h)
ightarrow 0, and the theorem follows.

pth order convergence

If $f \in C^p$, then $x(t) \in C^{p+1}$, so the theorem implies that if a one-step method is accurate of order p and stable [i.e. ψ is Lipschitz in x], then

 $I(h,t) = O(h^{p+1})$ and thus $\tau(h) = O(h^p).$

If, in addition, $e_0(h) = O(h^p)$, then

$$\max_i |e_i(h)| = O(h^p),$$

i.e. we have p^{th} order convergence of the numerical approximations to the solution uniformly on [a, b].

Explicit Runge-Kutta Methods

A problem with Taylor methods is the need to evaluate higher derivatives of f. Runge-Kutta (RK) methods only require the evaluation of f when going from x_i to x_{i+1} .

An m-stage (explicit) RK method is of the form

$$x_{i+1} = x_i + h\psi(h, t_i, x_i),$$

with

$$\psi(h, t, x) = \sum_{j=1}^{m} a_j k_j(h, t, x),$$

where a_1, \ldots, a_m are given, $k_1(h, t, x) = f(t, x)$, and for $2 \le j \le m$,

$$k_j(h, t, x) = f(t + \alpha_j h, x + h \sum_{r=1}^{j-1} \beta_{jr} k_r(h, t, x))$$

with $\alpha_2, \dots, \alpha_m$ and β_{jr} $(1 \le r < j \le m)$ given constants.

Explicit Runge-Kutta Methods

Since $k_j(0, t, x) = f(t, x)$, the method is consistent if and only if $\sum_{i=1}^{m} a_i = 1$, so this condition will always be imposed.

We usually choose $0 < \alpha_j \leq 1$, and for accuracy reasons we choose

$$\alpha_j = \sum_{r=1}^{j-1} \beta_{jr} \qquad (2 \le j \le m). \tag{*}$$

Examples: m = 2

$$x_{i+1} = x_i + h(a_1k_1(h, t_i, x_i) + a_2k_2(h, t_i, x_i))$$

where

$$\begin{aligned} &k_1(h, t_i, x_i) &= f(t_i, x_i) \\ &k_2(h, t_i, x_i) &= f(t_i + \alpha_2 h, x_i + h\beta_{21} k_1(h, t_i, x_i)). \end{aligned}$$

For simplicity, write α for α_2 and β for β_{21} . Expanding in *h*,

$$k_{2}(h, t, x) = f(t + \alpha h, x + h\beta f(t, x))$$

= $f(t, x) + \alpha h D_{t} f(t, x) + (D_{x} f(t, x))(h\beta f(t, x)) + O(h^{2})$
= $[f + h(\alpha D_{t} f + \beta (D_{x} f) f)](t, x) + O(h^{2}).$

So

$$\psi(h,t,x)=(a_1+a_2)f+h(a_2\alpha D_tf+a_2\beta(D_xf)f)+O(h^2).$$

Examples: m = 2

Recalling that

$$T_2=f+\frac{h}{2}(D_tf+(D_xf)f),$$

and that the method is accurate of order two if and only if

$$\psi=T_2+O(h^2),$$

we obtain the following necessary and sufficient conditions on a two-stage (explicit) RK method to be accurate of order two:

$$a_1 + a_2 = 1$$
, $a_2 \alpha = \frac{1}{2}$, and $a_2 \beta = \frac{1}{2}$.

We require $\alpha = \beta$ as in (*) (we now see why this condition needs to be imposed), whereupon these conditions become:

$$a_1+a_2=1, \qquad a_2\alpha=rac{1}{2}$$

Therefore, there is a one-parameter family (e.g., parameterized by α) of 2nd order, two-stage (m = 2) explicit RK methods.

Examples: m = 2

Two instances of this one parameter family are $\alpha = \frac{1}{2}, 1$.

(1) Setting
$$\alpha = \frac{1}{2}$$
 gives $a_2 = 1$, $a_1 = 0$, yielding the Modified Euler method.

(2) Choosing $\alpha = 1$ gives $a_2 = \frac{1}{2}$, $a_1 = \frac{1}{2}$, yielding the Improved Euler method, or Heun's method.

The Popular $4^{\rm th}$ Order Four-Stage RK Method

$$x_{i+1} = x_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$\begin{array}{rcl} k_1 &=& f(t_i, x_i) \\ k_2 &=& f\left(t_i + \frac{h}{2}, x_i + \frac{h}{2}k_1\right) \\ k_3 &=& f\left(t_i + \frac{h}{2}, x_i + \frac{h}{2}k_2\right) \\ k_4 &=& f(t_i + h, x_i + hk_3). \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ