
Introduction to the Numerical Solution of
IVPs for ODEs



Well-Posed Problems

IVP x ′ = f (t, x), with x(a) = xa

Assume f (t, x) is continuous in t, x and uniformly Lipschitz in x
(with Lipschitz constant L) on I × Rn with I = [a, b].

(1) Existence. There exists a solution of the IVP on [a, b].

(2) Uniqueness. The solution, for each given xa, is unique.

(3) Continuous Dependence. The solution depends
continuously on the data.

The map xa 7→ x(t, xa) is continuous from Rn into
(C ([a, b]) , ‖ · ‖∞).



Grids
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Choose a mesh width h (with 0 < h ≤ b − a), and let N =
[
b−a
h

]
(greatest integer ≤ (b − a)/h). Let

ti = a + ih (i = 0, 1, . . . ,N)

be the grid points in t (note: t0 = a), and let xi denote the
approximation to x(ti ). Note that ti and xi depend on h, but we
will usually suppress this dependence in our notation.



Explicit One-Step Methods

Start with x0 ≈ xa.

Recursively compute x1, . . . , xN by

xi+1 = xi + hψ(h, ti , xi ), i = 0, . . . ,N − 1.

ψ(h, t, x) is a function defined for

0 ≤ h ≤ b − a, a ≤ t ≤ b, x ∈ Rn

which depends on f (t, x).



Euler’s Method: ψ(h, t, x) := f (t, x)

xi+1 = xi + hf (ti , xi )
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Taylor Methods
Let p be an integer ≥ 1 and consider the pth-order Taylor
expansion of a Cp+1 solution x(t) of x ′ = f (t, x):

x(t + h) = x(t) + hx ′(t) + · · ·+ hp

p!
x (p)(t) + O(hp+1)︸ ︷︷ ︸

remainder term

where O(hp+1) is the Taylor’s Theorem remainder term.
Replace x ′(t), x ′′(t), . . . by expressions involving f and its
derivatives:

x ′(t) = f (t, x(t))

x ′′(t) =
d

dt
(f (t, x(t))) =

(n×1)

Dt f

∣∣∣∣
(t,x(t))

+

(n×n)

Dx f

∣∣∣∣
(t,x(t))

(n×1)
dx

dt

= (Dt f + (Dx f )f )

∣∣∣∣
(t,x(t))

(for n = 1, this is ft + fx f ),

and so forth.



Taylor Methods

This yields

p = 1 : xi+1 = xi + hf (ti , xi ) (Euler’s method, ψ(h, t, x) = f (t, x))

p = 2 : xi+1 = xi + hf (ti , xi ) +
h2

2
(Dt f + (Dx f )f )

∣∣∣∣
(ti ,xi )

For the case p = 2, we have

ψ(h, t, x) = T2(h, t, x) ≡
(
f +

h

2
(Dt f + (Dx f )f )

)∣∣∣∣
(t,x)

.

We will use the notation Tp(h, t, x) to denote the ψ(h, t, x)
function for the Taylor method of order p.



Modified Euler’s Method

xi+1 = xi + hf
(
ti + h

2 , xi + h
2 f (ti , xi )

)
(so ψ(h, t, x) = f

(
t + h

2 , x + h
2 f (t, x)

)
).

Here ψ(h, t, x) tries to approximate

x ′
(
t + h

2

)
= f

(
t + h

2 , x
(
t + h

2

))
,

using the Euler approximation to x
(
t + h

2

) (
≈ x(t) + h

2 f (t, x(t))
)
.



Improved Euler’s Method (or Heun’s Method)

xi+1 = xi + h
2 (f (ti , xi ) + f (ti+1, xi + hf (ti , xi )))

(so ψ(h, t, x) = 1
2 (f (t, x) + f (t + h, x + hf (t, x)))).

Here again ψ(h, t, x) tries to approximate

x ′
(
t + h

2

)
≈ 1

2(x ′(t) + x ′(t + h)).

Or ψ(h, t, x) can be viewed as an approximation to the trapezoid
rule applied to

1

h
(x(t + h)− x(t)) =

1

h

∫ t+h

t
x ′ ≈ 1

2x
′(t) + 1

2x
′(t + h).



Consistency

Modified Euler and Improved Euler are examples of 2nd order
two-stage Runge-Kutta methods. Notice that no derivatives of f
need be evaluated, but f needs to be evaluated twice in each step
(from xi to xi+1).

It is evident from the above discussion that ψ(h, t, x(t)) should
approximate x ′(t) as h→ 0 if x(t) is a solution of the differential
equation. Since x ′ = f (t, x) for a solution, one expects that any
useful method will satisfy the following condition.

Definition. A one-step method is called consistent if

ψ(0, t, x) = f (t, x).

All the methods described above are consistent.



Local Truncation Error

Let xi+1 = xi + hψ(h, ti , xi ) be a one-step method, and let x(t) be
a solution of the DE x ′ = f (t, x). The local truncation error (LTE)
for x(t) is defined to be

l(h, t) ≡ x(t + h)− (x(t) + hψ(h, t, x(t))) = actual − predicted.

l(h, t) is defined for 0 < h ≤ b − a and a ≤ t ≤ b − h.

Define

τ(h, t) =
l(h, t)

h
and τ(h) = max

a≤t≤b−h
|τ(h, t)|.

Set τi (h) = τ(h, ti ).



Characterizing Consistency

Proposition. Consider the one-step method

xi+1 = xi + hψ(h, ti , xi ),

where ψ(h, t, x) is continuous for 0 ≤ h ≤ h0, a ≤ t ≤ b, x ∈ Rn

for some h0 ∈ (0, b − a].

This method is consistent with the DE x ′ = f (t, x) if and only if

τ(h)→ 0 as h→ 0+ for all C 1 solutions x(t),

or, equivalently,

l(h, t) = o(h) as h→ 0+ for all C 1 solutions x(t).



Proof

⇒: Fix a solution x(t). For 0 < h ≤ h0, let

Z (h) = max
a≤s,t≤b, |s−t|≤h

|ψ(0, s, x(s))− ψ(h, t, x(t))|.

By uniform continuity, Z (h)→ 0 as h→ 0+. Now

l(h, t) = x(t + h)− x(t)− hψ(h, t, x(t))

=

∫ t+h

t

[
x ′(s)− ψ(h, t, x(t))

]
ds

=

∫ t+h

t
[f (s, x(s))− ψ(h, t, x(t))] ds

=

∫ t+h

t
[ψ(0, s, x(s))− ψ(h, t, x(t))] ds,

so |l(h, t)| ≤ hZ (h). Therefore τ(h) ≤ Z (h)→ 0.



Proof

⇐: Conversely, suppose τ(h)→ 0. For any t ∈ [a, b) and any
h ∈ (0, b − t],

x(t + h)− x(t)

h
= ψ(h, t, x(t)) + τ(h, t).

Taking the limit as h ↓ 0 gives f (t, x(t)) = x ′(t) = ψ(0, t, x(t)).



Accurate of Order p

The Proposition states that consistency is equivalent to the
condition that l(h, t) = o(h) as h→ 0+. For most useful methods,
l(h, t) actually goes to zero much more rapidly.

Definition. A one-step method is called accurate of order p (for a
positive integer p) if for any solution x(t) of the DE x ′ = f (t, x),
where f is Cp, we have l(h, t) = O(hp+1).

Consistency is a minimal version of accuracy. It can be thought of
as the correct notion of accuracy of order 0.



Example: Taylor method of order p

If f ∈ Cp, then x ∈ Cp+1, and

l(h, t) = x(t + h)−
(
x(t) + hx ′(t) + · · ·+ hp

p!
x (p)(t)

)
=

1

p!

∫ t+h

t
(t + h − s)px (p+1)(s)ds.

So

|l(h, t)| ≤ Mp+1
hp+1

(p + 1)!
where Mp+1 = max

a≤t≤b
|x (p+1)(t)|.



Characterization of p Order Accuracy

A one-step method xi+1 = xi + hψ(h, ti , xi ) is accurate of order p
if and only if

ψ(h, t, x) = Tp(h, t, x) + O(hp),

where Tp is the “ψ” for the Taylor method of order p.

Proof.
Since x(t + h)− x(t) = hTp(h, t, x(t)) + O(hp+1),
we have for any given one-step method that

l(h, t) = x(t + h)− x(t)− hψ(h, t, x(t))

= hTp(h, t, x(t)) + O(hp+1)− hψ(h, t, x(t))

= h(Tp(h, t, x(t))− ψ(h, t, x(t))) + O(hp+1).

So l(h, t) = O(hp+1) iff h(Tp − ψ) = O(hp+1) iff
ψ = Tp + O(hp).



Convergence of One-Step Methods
Theorem Suppose f (t, x) is continuous in t, x and uniformly Lipschitz in
x on [a, b]× Rn. Suppose that satisfies

1. (Stability) ψ(h, t, x) is continuous in h, t, x and uniformly Lipschitz
in x (with Lipschitz constant K ) on 0 ≤ h ≤ h0, a ≤ t ≤ b, x ∈ Rn

for some h0 > 0 with h0 ≤ b − a, and

2. (Consistency) ψ(0, t, x) = f (t, x).

Let x(t) be the solution of the IVP x ′ = f (t, x), x(a) = xa on [a, b]. Let
ei (h) = x(ti (h))− xi (h), where xi (h) is obtained from the one-step
method xi+1(h) = xi (h) + hψ(h, ti (h), xi (h)), and set e0(h) = xa − x0(h)
(the error in the initial value x0(h)). Then

|ei (h)| ≤ eK(ti (h)−a)|e0(h)|+ τ(h)

(
eK(ti (h)−a) − 1

K

)
, so

|ei (h)| ≤ eK(b−a)|e0(h)|+ eK(b−a) − 1

K
τ(h).

Moreover, τ(h)→ 0 as h→ 0. Therefore, if e0(h)→ 0 as h→ 0, then

max
{
|ei (h)| : 0 ≤ i ≤ h−1(b − a)

}
→ 0 as h→ 0,

that is, the approximations converge uniformly on the grid to the

solution.



Proof
Hold h > 0 fixed, and ignore rounding error. Subtracting

xi+1 = xi + hψ(h, ti , xi )

from

x(ti+1) = x(ti ) + hψ(h, ti , x(ti )) + hτi , (τi := τ(h, ti ))

gives

|ei+1| ≤ |ei |+ h|ψ(h, ti , x(ti ))− ψ(h, ti , xi )|+ h|τi |
≤ |ei |+ hK |ei |+ hτ(h)

= (1 + hK )|ei |+ hτ(h).

So

|e1| ≤ (1 + hK )|e0|+ hτ(h), and

|e2| ≤ (1 + hK )|e1|+ hτ(h)

≤ (1 + hK )2|e0|+ hτ(h)(1 + (1 + hK )).



Proof

By induction,

|ei | ≤ (1 + hK )i |e0|+hτ(h)(1+(1+hK )+(1+hK )2+· · ·+(1+hK )i−1)

= (1 + hK )i |e0|+ hτ(h)
(1 + hK )i − 1

(1 + hK )− 1

= (1 + hK )i |e0|+ τ(h)
(1 + hK )i − 1

K

Since (1 + hK )
1
h ↑ eK as h→ 0+ (for K > 0), and i = ti−a

h , we have

(1 + hK )i = (1 + hK )
ti−a

h ≤ eK(ti−a).

Thus

|ei | ≤ eK(ti−a)|e0|+ τ(h)
eK(ti−a) − 1

K
.

The preceding proposition shows τ(h)→ 0, and the theorem follows.



pth order convergence

If f ∈ Cp, then x(t) ∈ Cp+1, so the theorem implies that if a
one-step method is accurate of order p and stable [i.e. ψ is
Lipschitz in x ], then

l(h, t) = O(hp+1) and thus τ(h) = O(hp).

If, in addition, e0(h) = O(hp), then

max
i
|ei (h)| = O(hp),

i.e. we have pth order convergence of the numerical
approximations to the solution uniformly on [a, b].



Explicit Runge-Kutta Methods

A problem with Taylor methods is the need to evaluate higher
derivatives of f . Runge-Kutta (RK) methods only require the
evaluation of f when going from xi to xi+1.

An m-stage (explicit) RK method is of the form

xi+1 = xi + hψ(h, ti , xi ),
with

ψ(h, t, x) =
m∑
j=1

ajkj(h, t, x),

where a1, . . . , am are given, k1(h, t, x) = f (t, x), and for
2 ≤ j ≤ m,

kj(h, t, x) = f (t + αjh, x + h

j−1∑
r=1

βjrkr (h, t, x))

with α2, . . . , αm and βjr (1 ≤ r < j ≤ m) given constants.



Explicit Runge-Kutta Methods

Since kj(0, t, x) = f (t, x), the method is consistent if and only if∑m
j=1 aj = 1, so this condition will always be imposed.

We usually choose 0 < αj ≤ 1, and for accuracy reasons we choose

αj =

j−1∑
r=1

βjr (2 ≤ j ≤ m). (*)



Examples: m = 2

xi+1 = xi + h(a1k1(h, ti , xi ) + a2k2(h, ti , xi ))

where

k1(h, ti , xi ) = f (ti , xi )

k2(h, ti , xi ) = f (ti + α2h, xi + hβ21k1(h, ti , xi )).

For simplicity, write α for α2 and β for β21. Expanding in h,

k2(h, t, x) = f (t + αh, x + hβf (t, x))

= f (t, x) + αhDt f (t, x) + (Dx f (t, x))(hβf (t, x)) + O(h2)

= [f + h(αDt f + β(Dx f )f )] (t, x) + O(h2).

So

ψ(h, t, x) = (a1 + a2)f + h(a2αDt f + a2β(Dx f )f ) + O(h2).



Examples: m = 2
Recalling that

T2 = f +
h

2
(Dt f + (Dx f )f ),

and that the method is accurate of order two if and only if

ψ = T2 + O(h2),

we obtain the following necessary and sufficient conditions on a
two-stage (explicit) RK method to be accurate of order two:

a1 + a2 = 1, a2α = 1
2 , and a2β = 1

2 .

We require α = β as in (*) (we now see why this condition needs
to be imposed), whereupon these conditions become:

a1 + a2 = 1, a2α = 1
2 .

Therefore, there is a one-parameter family (e.g., parameterized by
α) of 2nd order, two-stage (m = 2) explicit RK methods.



Examples: m = 2

Two instances of this one parameter family are α = 1
2 , 1.

(1) Setting α = 1
2 gives a2 = 1, a1 = 0, yielding the Modified

Euler method.

(2) Choosing α = 1 gives a2 = 1
2 , a1 = 1

2 , yielding the Improved
Euler method, or Heun’s method.



The Popular 4th Order Four-Stage RK Method

xi+1 = xi +
h

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = f (ti , xi )

k2 = f
(
ti + h

2 , xi + h
2k1
)

k3 = f
(
ti + h

2 , xi + h
2k2
)

k4 = f (ti + h, xi + hk3).


