Introduction to the Numerical Solution of
IVPs for ODEs



Well-Posed Problems

IVP x'= f(t,x), with x(a) = x,

Assume f(t, x) is continuous in t, x and uniformly Lipschitz in x
(with Lipschitz constant L) on | x R"” with | = [a, b].

(1) Existence. There exists a solution of the IVP on [a, b].
(2) Uniqueness. The solution, for each given x,, is unique.

(3) Continuous Dependence. The solution depends
continuously on the data.

The map x; — x(t, x5) is continuous from R" into

(C([a, 1), I - lloo)-



Grids

Choose a mesh width h (with 0 < h < b— a), and let N = [232]
(greatest integer < (b — a)/h). Let

ti=a+ih (i=0,1,...,N)

be the grid points in t (note: ty = a), and let x; denote the
approximation to x(t;). Note that t; and x; depend on h, but we
will usually suppress this dependence in our notation.



Explicit One-Step Methods

Start with xg =~ xa.

Recursively compute xg, ..., xy by

X,'+1:X,'+h¢(h,t,',x,'), i=0,...,N—1.

Y(h, t,x) is a function defined for
0<h<b—a a<t<bh xeR"

which depends on f(t, x).



Euler's Method: ¥(h, t,x) := f(t, x)

Xit1 = xi + hf(t;, x;)

Xi 4

tangent line

solution through (t;,x;)




Taylor Methods

Let p be an integer > 1 and consider the pth-order Taylor
expansion of a CP*! solution x(t) of X' = f(t, x):

x(t+ h) = x(t) + h(t) + - -+ —xP)(t) +  O(hP*Y)
remainder term
where O(hP*t1) is the Taylor's Theorem remainder term.

Replace x'(t),x”(t),... by expressions involving f and its
derivatives:

X(t) = f(t,x(1))

(nx1) (nxn) (nx1)
d dx
X"(t) = —(f(t,x(t))) = D:f + Dif -
dt (£.x(1)) (ex(r) 9t
= (D:f + (Dxf)f) (for n =1, this is f; + £f),
(t.x(t))

and so forth.



Taylor Methods

This yields
p=1: x11 = x;+ hf(ti,x;) (Euler's method,(h,t,x) = f(t,x))

h2
p=2: X1 = X,'—i-hf(t,',X,')—i-?(th—l—(DXf)f)

(tixi)
For the case p = 2, we have

Y(h, t,x) = Ta(h, t,x) = <f + g (D:f + (Dxf)f)>

(t)

We will use the notation T,(h, t,x) to denote the 9 (h, t, x)
function for the Taylor method of order p.



Modified Euler's Method

Xi+1 = X+ hf (i‘,‘ + g7X,' + gf(t,-,x,-))

(sob(h,t,x) = f(t+4,x+2f(t,x))).

Here ¢ (h, t, x) tries to approximate
X(t+D) =f(t+2x(t+ 1),

using the Euler approximation to x (t + ) (= x(t) + 2£(t, x(t))).



Improved Euler's Method (or Heun's Method)

X1 = X+ 8 (F(txi) + f (tiv1, xi + hf (i, x7)))

(so (h,t,x) = 5 (F(t,x)+f(t+ hx+ hf(t,x)))).
Here again ¢(h, t, x) tries to approximate
X (t+8) =~ 3(X(t) + X (t + h)).

Or ¢(h, t,x) can be viewed as an approximation to the trapezoid
rule applied to

> =

t+h
(x(t+ h) — x(t)) = 1 /f X'~ 3xX'(t) + 3X(t + h).



Consistency

Modified Euler and Improved Euler are examples of 2" order
two-stage Runge-Kutta methods. Notice that no derivatives of f
need be evaluated, but f needs to be evaluated twice in each step
(from x; to Xj11).

It is evident from the above discussion that ¢ (h, t, x(t)) should
approximate x'(t) as h — 0 if x(t) is a solution of the differential
equation. Since x’ = f(t, x) for a solution, one expects that any
useful method will satisfy the following condition.

Definition. A one-step method is called consistent if

¥(0, t,x) = f(t,x).

All the methods described above are consistent.



Local Truncation Error

Let xj11 = x; + hp(h, t;, x;) be a one-step method, and let x(t) be
a solution of the DE x’ = f(t, x). The local truncation error (LTE)
for x(t) is defined to be

I(h,t) = x(t + h) — (x(t) + ho(h, t,x(t))) = actual — predicted.

I(h, t) is defined for 0O < h<b—aanda<t<b-—h.

Define

I(h, t
T(h,t) = (h ) and 7(h) = a<rp<ag<_h\7'(h, t)].



Characterizing Consistency

Proposition. Consider the one-step method
Xi+1 = X + h¢(ha tl'vxl')a

where 1(h, t, x) is continuous for 0 < h < hg, a<t < b, x € R"
for some hy € (0, b — aJ.

This method is consistent with the DE x” = f(t, x) if and only if
7(h) =0 as h— 0" forall C* solutions x(t),

or, equivalently,

I(h,t) = o(h) as h— 0" for all C! solutions x(t).



Proof

= Fix a solution x(t). For 0 < h < hg, let

Z(h) = max |1(0, s, x(s)) — ¥ (h, t,x(t))].

a<s,t<b, |s—t|<h
By uniform continuity, Z(h) — 0 as h — 0. Now
I(h,t) = x(t+h)=x(t) = hi(ht,x(t))
t+h
= [ ) - vt ) o
t

t+h
_ /t [£(s,x(5)) — ¥(h, t, x(£))] ds

t+h
= [ W0 x(s) ~ ulhtx()] s

so |I(h, t)| < hZ(h). Therefore 7(h) < Z(h) — 0.



Proof

«: Conversely, suppose 7(h) — 0. For any t € [a, b) and any
€ (0,b—t],

x(t+ h) — x(t)
h

Taking the limit as h | 0 gives f(t,x(t)) = x'(t) = (0, t, x(t)).

= (h, t,x(t)) + 7(h, t).



Accurate of Order p

The Proposition states that consistency is equivalent to the
condition that /(h, t) = o(h) as h — 0*. For most useful methods,
I(h, t) actually goes to zero much more rapidly.

Definition. A one-step method is called accurate of order p (for a
positive integer p) if for any solution x(t) of the DE x’ = f(t, x),
where f is CP, we have I(h, t) = O(hP1).

Consistency is a minimal version of accuracy. It can be thought of
as the correct notion of accuracy of order 0.



Example: Taylor method of order p

If f € CP, then x € CP*L, and

I(h,t) = x(t—l—h)—(X(t)+hx'(t)+'-'—|—l:!)x(”)(t)>

1 t+h
= 3 / (t + h—s)Px(PH)(s)ds.
s Jt

So

hpH1
— (p+1)
[I(h,t)] < Mpiq (p+1) where M, = argtagxb |x (t)].



Characterization of p Order Accuracy

A one-step method x;11 = x; + h(h, t;, x;) is accurate of order p

if and only if
P(h, t,x) = Tp(h, t,x) + O(h"),

where T, is the “))" for the Taylor method of order p.
Proof.

Since x(t 4+ h) — x(t) = hTy(h, t,x(t)) + O(hPF1),
we have for any given one-step method that

I(h,t) = x(t+ h)—x(t) — h(h, t,x(t))
= hTy(h, t,x(t)) + O(hPTY) — hp(h, t, x(t))

= h(Tp(h, t,x(t)) = (h, t,x(t))) + O(h"*).

So I(h, t) = O(KP*+Y) iff h(T, — 1) = O(hP*1) iff
b =T, + O(hP).

O



Convergence of One-Step Methods
Theorem Suppose f(t, x) is continuous in t,x and uniformly Lipschitz in
x on [a, b] x R". Suppose that satisfies
1. (Stability) ¢(h, t,x) is continuous in h, t, x and uniformly Lipschitz
in x (with Lipschitz constant K) on 0 < h< hg, a<t < b, x eR"
for some hg > 0 with hg < b — a, and
2. (Consistency) (0, t, x) = f(t, x).
Let x(t) be the solution of the IVP x’ = f(t, x), x(a) = x, on [a, b]. Let
ei(h) = x(t;(h)) — x;(h), where x;(h) is obtained from the one-step
method x;y1(h) = x;(h) + hp(h, t;(h), x;(h)), and set eg(h) = x5 — xo(h)
(the error in the initial value xg(h)). Then

K(t(h)-a) _ 1
)] < O]+ r(h) () o

eK(bfa) -1
K
Moreover, 7(h) — 0 as h — 0. Therefore, if eg(h) — 0 as h — 0, then

max {|ej(h)| : 0<i<h '(b—a)} -0 as h—0,
that is, the approximations converge uniformly on the grid to the

lei(h)] < e~ jeg(h)| + 7(h).

solution.



Proof

Hold h > 0 fixed, and ignore rounding error. Subtracting
Xiy1 = X; + hp(h, t;, x;)
from

x(tit1) = x(t;) + hp(h, ti, x(t;)) + hi, (i :==7(h, t;))

gives
leiv1] < el + hlo(h, ti, x(8;)) — Y (h, ti, xi)| + hl7i|
< el + hK|e] + hr(h)
= (14 hK)|ei| + h7(h).
So
lei] < (1+ hK)|eo| + hr(h), and
lea] < (14 hK)|er| + hr(h)
< (14 hK)?|eo| + hr(h)(1 + (1 + hK)).



Proof

By induction,

leil < (14 hK) |eo|+hm(h)(1+14+hK)+(1+hK)2+- - -+ (1+hK)1)

— (14 hK)]eo + hT(h)((111’;7’;))'__]:_l
= (1+hK)'|eo| + T(h)%

Since (1+ hK)# 1 eX as h— 0 (for K > 0), and i = L2 we have

ti—a

(1+hK) = (1+ hK)7 < eKtim2),

Thus
eK(t,-fa) -1

K
The preceding proposition shows 7(h) — 0, and the theorem follows.

|e,~\ < eK(ti_a)|eo| —|—T(h)



pth order convergence

If f € CP, then x(t) € CPTL, so the theorem implies that if a
one-step method is accurate of order p and stable [i.e. ¥ is
Lipschitz in x|, then

I(h,t) = O(hP™Y) and thus 7(h) = O(hP).
If, in addition, eg(h) = O(hP), then

mlax\e,-(h)] = O(hP),

i.e. we have p'" order convergence of the numerical
approximations to the solution uniformly on [a, b].



Explicit Runge-Kutta Methods

A problem with Taylor methods is the need to evaluate higher
derivatives of f. Runge-Kutta (RK) methods only require the
evaluation of f when going from x; to xj41.

An m-stage (explicit) RK method is of the form
Xit1 = X + mp(h, t;, x;),

with
Y(h,t, x) ZQJ (h,t,x)
where a1, ..., an, are given, kl(h t ,x) = f(t,x), and for
2<<m,
j-1
ki(h, t,x) = f(t+ ash,x+ h>_ Birke(h, t, x))
r=1

with az,...,am and Bj, (1 < r < j < m) given constants.



Explicit Runge-Kutta Methods

Since k;(0, t,x) = f(t,x), the method is consistent if and only if

ij:l a; = 1, so this condition will always be imposed.

We usually choose 0 < «j < 1, and for accuracy reasons we choose



Examples: m = 2

Xiy+1 = X; + h(alkl(h, ti, X,') + 32k2(h, ti, X,'))

where

kl(h,t,’,X,’) — f(t,',X,‘)
ko(h,ti,x;) = f(ti + a2h,x; + hPBorki(h, ti, x;)).

For simplicity, write « for aip and 8 for B21. Expanding in h,

kao(h,t,x) = f(t+ ah,x+ hpf(t,x))
= f(t,x) + ahD:f(t,x) + (Dxf(t,x))(hBf(t,x)) + O(h?)
[f + h(aD:f + B(Dif)F)] (t,x) + O(h?).

So

Y(h, t,x) = (a1 + a2)f + h(agaDif + a2 B8(Dxf)f) + O(h?).



Examples: m = 2
Recalling that
h
To=1f+ E(th+ (Dxf)f),

and that the method is accurate of order two if and only if
) = Ta+ O(h?),

we obtain the following necessary and sufficient conditions on a
two-stage (explicit) RK method to be accurate of order two:

ata=1, azoz:%, and 325:%.

We require « = /3 as in (*) (we now see why this condition needs
to be imposed), whereupon these conditions become:

a1 +a =1, 32042%.

Therefore, there is a one-parameter family (e.g., parameterized by
) of 274 order, two-stage (m = 2) explicit RK methods.



Examples: m = 2

Two instances of this one parameter family are o = %, 1.

(1) Setting v = 1 gives a, = 1, a1 = 0, yielding the Modified
Euler method.

(2) Choosing o =1 gives a, = % a; = % yielding the Improved
Euler method, or Heun's method.



The Popular 4™ Order Four-Stage RK Method

where

h
Xiy1 = X + g(kl + 2kp + 2k + ky)

k1
ko

ky

f(t,',X,')

f (t,' + g,x,' + gkl)
f(ti+ 5, x + bk)
f(ti + h,x; + hk3).



