Linear Difference Equations

Constant Coefficient LDEs

Let x_{i} be a (scalar) sequence defined for $i \geq 0$.

A k-step linear difference equation is an equation of the form
(LDE) $\quad x_{i+k}+\alpha_{k-1} x_{i+k-1}+\cdots+\alpha_{0} x_{i}=b_{i} \quad(i \geq 0)$.

If $b_{i} \equiv 0$, the linear difference equation (LDE) is said to be homogeneous, in which case we will refer to it as (lh).

If $b_{i} \neq 0$ for some $i \geq 0$, the linear difference equation (LDE) is said to be inhomogeneous, in which case we refer to it as (li).

Initial Value Problem (IVP)

Given x_{i} for $i=0, \ldots, k-1$, determine x_{i} satisfying (LDE) for $i \geq 0$.

Theorem: There exists a unique solution of (IVP) for (Ih) or (li).

Theorem: The solution set of (Ih) is a k-dimensional vector space (a subspace of the set of all sequences $\left\{x_{i}\right\}_{i \geq 0}$).

Characteristic Polynomial for LDEs

Define the characteristic polynomial of (lh) to be

$$
p(r)=r^{k}+\alpha_{k-1} r^{k-1}+\cdots+\alpha_{0}
$$

Assume that $\alpha_{0} \neq 0$. (If $\alpha_{0}=0$, (LDE) isn't really a k-step difference equation since we can shift indices and treat it as a \widetilde{k}-step difference equation for a $\widetilde{k}<k$, namely $\widetilde{k}=k-\nu$, where ν is the smallest index with $\alpha_{\nu} \neq 0$.)

Let r_{1}, \ldots, r_{s} be the distinct zeroes of p, with multiplicities m_{1}, \ldots, m_{s}. Note that each $r_{j} \neq 0$ since $\alpha_{0} \neq 0$, and $m_{1}+\cdots+m_{s}=k$. Then a basis of solutions of $(l h)$ is:

$$
\left\{\left\{i^{\prime} r_{j}^{i}\right\}_{i=0}^{\infty}: 1 \leq j \leq s, 0 \leq 1 \leq m_{j}-1\right\} .
$$

Example: Fibonacci Sequence

$$
F_{i+2}-F_{i+1}-F_{i}=0, \quad F_{0}=0, \quad F_{1}=1
$$

The associated characteristic polynomial $r^{2}-r-1=0$ has roots $r_{ \pm}=\frac{1 \pm \sqrt{5}}{2}\left(r_{+} \approx 1.6, r_{-} \approx-0.6\right)$. The general solution of $(l h)$ is

$$
F_{i}=C_{+}\left(\frac{1+\sqrt{5}}{2}\right)^{i}+C_{-}\left(\frac{1-\sqrt{5}}{2}\right)^{i}
$$

The initial conditions $F_{0}=0$ and $F_{1}=1$ imply that $C_{+}=\frac{1}{\sqrt{5}}$ and $C_{-}=-\frac{1}{\sqrt{5}}$. Hence

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}\right)
$$

Since $\left|r_{-}\right|<1$, we have $\left(\frac{1-\sqrt{5}}{2}\right)^{i} \rightarrow 0$ as $i \rightarrow \infty$. Hence, the sequence behaves asymptotically like $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}$.

Conversion to 1-Step Vector LDE

Define $\widetilde{x}_{i}=\left[\begin{array}{c}x_{i} \\ x_{i+1} \\ \vdots \\ x_{i+k-1}\end{array}\right]$. Then $\widetilde{x}_{i+1}=A \widetilde{x}_{i}$ for $i \geq 0$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
-\alpha_{0} & \cdots & & -\alpha_{k-1}
\end{array}\right]
$$

and $\widetilde{x}_{0}=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)^{T}$ is given by the I.C. So ($/ h$) is equivalent to the one-step vector difference equation

$$
\widetilde{x}_{i+1}=A \widetilde{x}_{i}, \quad i \geq 0,
$$

whose solution is $\widetilde{x}_{i}=A^{i} \widetilde{x}_{0}$.

Solutions to 1-Step Vector LDEs

The characteristic polynomial of $(I h)$ is the characteristic polynomial of A.

Because A is a companion matrix, it is nonderogatory.

If $A=P J P^{-1}$ is the Jordan decomposition of A, then

$$
\widetilde{x}_{i}=P J^{i} P^{-1} \widetilde{x}_{0},
$$

or, equivalently,

$$
\widetilde{y}_{i}=J^{i} \widetilde{y}_{0} \text { where } \widetilde{y}_{i}=P^{-1} \widetilde{x}_{i}
$$

Solutions to 1-Step Vector LDEs

Let J_{j} be the $m_{j} \times m_{j}$ block corresponding to r_{j} (for $1 \leq j \leq s$), so $J_{j}=r_{j} l+N_{j}$, where N_{j} denotes the $m_{j} \times m_{j}$ shift matrix:

$$
N_{j}=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
& & & 0
\end{array}\right]
$$

Then

$$
J_{j}^{j}=\left(r_{j} I+N_{j}\right)^{i}=\sum_{\ell=0}^{i}\binom{i}{\ell} r_{j}^{i-\ell} N_{j}^{\ell}
$$

Since $\binom{i}{\ell}$ is a polynomial in i of degree ℓ and $N_{j}^{m_{j}}=0$, we see entries in \widetilde{y}_{i} are of the form

$$
\text { (constant) } i^{\prime} r_{j}^{i} \text { for } 0 \leq 1 \leq m_{j}-1
$$

which implies the same is true for the entries of \widetilde{x}_{i} if $x_{0}=P y_{0}$ for some y_{0}.

Stability of LDEs

All solutions $\left\{x_{i}\right\}_{i \geq 0}$ of (Ih) stay bounded (i.e. are elements of I^{∞})
\Leftrightarrow the matrix A is power bounded (i.e., $\exists M$ so that $\left\|A^{i}\right\| \leq M$ for all $i \geq 0$)
\Leftrightarrow the Jordan blocks J_{1}, \ldots, J_{s} are all power bounded
$\Leftrightarrow\left\{\begin{array}{lll} & \text { (a) } & \text { each }\left|r_{j}\right| \leq 1 \\ \text { and } & \text { (b) } & \text { for any } j \text { with } m_{j}>1 \text { (multiple roots), }\end{array} \quad\right.$ (for $\left.1 \leq j \leq s\right)$

If (a) and (b) are satisfied, then the map $\widetilde{x}_{0} \mapsto\left\{x_{i}\right\}_{i \geq 0}$ is a bounded linear operator from \mathbb{R}^{k} (or \mathbb{C}^{k}) into I^{∞}. Spectral Radius: $\quad \rho(A):=\max \{|\lambda|: \operatorname{det}(A-\lambda I)=0\}$.

