Linear Difference Equations

Constant Coefficient LDEs

Let x_i be a (scalar) sequence defined for $i \ge 0$.

A k-step linear difference equation is an equation of the form

(LDE)
$$x_{i+k} + \alpha_{k-1}x_{i+k-1} + \dots + \alpha_0 x_i = b_i$$
 $(i \ge 0).$

If $b_i \equiv 0$, the linear difference equation (LDE) is said to be homogeneous, in which case we will refer to it as (*lh*).

If $b_i \neq 0$ for some $i \ge 0$, the linear difference equation (LDE) is said to be inhomogeneous , in which case we refer to it as (*li*).

Initial Value Problem (IVP)

Given x_i for i = 0, ..., k - 1, determine x_i satisfying (LDE) for $i \ge 0$.

Theorem: There exists a unique solution of (IVP) for (Ih) or (Ii).

Theorem: The solution set of (*lh*) is a *k*-dimensional vector space (a subspace of the set of all sequences $\{x_i\}_{i\geq 0}$).

Characteristic Polynomial for LDEs

Define the *characteristic polynomial* of (*Ih*) to be

$$p(r) = r^k + \alpha_{k-1}r^{k-1} + \cdots + \alpha_0.$$

Assume that $\alpha_0 \neq 0$. (If $\alpha_0 = 0$, (LDE) isn't really a *k*-step difference equation since we can shift indices and treat it as a \tilde{k} -step difference equation for a $\tilde{k} < k$, namely $\tilde{k} = k - \nu$, where ν is the smallest index with $\alpha_{\nu} \neq 0$.)

Let r_1, \ldots, r_s be the distinct zeroes of p, with multiplicities m_1, \ldots, m_s . Note that each $r_j \neq 0$ since $\alpha_0 \neq 0$, and $m_1 + \cdots + m_s = k$. Then a basis of solutions of (*Ih*) is:

$$\left\{\{i^{I}r_{j}^{i}\}_{i=0}^{\infty} : 1 \leq j \leq s, \ 0 \leq I \leq m_{j}-1\right\}.$$

Example: Fibonacci Sequence

$$F_{i+2} - F_{i+1} - F_i = 0, \quad F_0 = 0, \quad F_1 = 1.$$

The associated characteristic polynomial $r^2 - r - 1 = 0$ has roots $r_{\pm} = \frac{1 \pm \sqrt{5}}{2}$ ($r_+ \approx 1.6, r_- \approx -0.6$). The general solution of (*Ih*) is

$$F_i = C_+ \left(\frac{1+\sqrt{5}}{2}\right)^i + C_- \left(\frac{1-\sqrt{5}}{2}\right)^i$$

The initial conditions $F_0 = 0$ and $F_1 = 1$ imply that $C_+ = \frac{1}{\sqrt{5}}$ and $C_- = -\frac{1}{\sqrt{5}}$. Hence

$$F_i = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^i - \left(\frac{1-\sqrt{5}}{2} \right)^i \right)$$

Since $|r_{-}| < 1$, we have $\left(\frac{1-\sqrt{5}}{2}\right)^{i} \to 0$ as $i \to \infty$. Hence, the sequence behaves asymptotically like $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{i}$.

Conversion to 1-Step Vector LDE

Define
$$\widetilde{x}_i = \begin{bmatrix} x_i \\ x_{i+1} \\ \vdots \\ x_{i+k-1} \end{bmatrix}$$
. Then $\widetilde{x}_{i+1} = A\widetilde{x}_i$ for $i \ge 0$, where
$$A = \begin{bmatrix} 0 & 1 \\ & \ddots & \ddots \\ & & 0 & 1 \\ & -\alpha_0 & \cdots & -\alpha_{k-1} \end{bmatrix}$$
,

and $\tilde{x}_0 = (x_0, x_1, \dots, x_{k-1})^T$ is given by the I.C. So (*Ih*) is equivalent to the one-step vector difference equation

$$\widetilde{x}_{i+1} = A\widetilde{x}_i, \quad i \ge 0,$$

whose solution is $\widetilde{x}_i = A^i \widetilde{x}_0$.

Solutions to 1-Step Vector LDEs

The characteristic polynomial of (Ih) is the characteristic polynomial of A.

Because A is a companion matrix, it is nonderogatory.

If $A = PJP^{-1}$ is the Jordan decomposition of A, then

$$\widetilde{x}_i = P J^i P^{-1} \widetilde{x}_0,$$

or, equivalently,

$$\widetilde{y}_i = J^i \widetilde{y}_0$$
 where $\widetilde{y}_i = P^{-1} \widetilde{x}_i$.

Solutions to 1-Step Vector LDEs

Let J_i be the $m_i \times m_i$ block corresponding to r_i (for $1 \le j \le s$), so $J_i = r_i I + N_i$, where N_i denotes the $m_i \times m_i$ shift matrix:

$$N_{j} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & & 0 \end{bmatrix}$$

Then

$$J_j^i = (r_j I + N_j)^i = \sum_{\ell=0}^i \binom{i}{\ell} r_j^{i-\ell} N_j^{\ell}.$$

Since $\begin{pmatrix} i \\ \ell \end{pmatrix}$ is a polynomial in *i* of degree ℓ and $N_j^{m_j} = 0$, we see entries in \tilde{y}_i are of the form $(\text{constant})i^{l}r_{i}^{i}$ for $0 \leq l \leq m_{j}-1$, which implies the same is true for the entries of \tilde{x}_i if $x_0 = Py_0$ for some y_0 .

Stability of LDEs

All solutions $\{x_i\}_{i\geq 0}$ of (*Ih*) stay bounded (i.e. are elements of I^{∞}) \Leftrightarrow the matrix A is power bounded (i.e., $\exists M$ so that $||A^i|| \leq M$ for all $i \geq 0$)

 \Leftrightarrow the Jordan blocks J_1, \ldots, J_s are all power bounded

$$\begin{cases} (a) & \text{each } |r_j| \leq 1 & (\text{for } 1 \leq j \leq s) \\ \text{and} & (b) & \text{for any } j \text{ with } m_j > 1 \text{ (multiple roots)}, \quad |r_j| < 1 \end{cases}$$

If (a) and (b) are satisfied, then the map $\widetilde{x}_0 \mapsto \{x_i\}_{i \ge 0}$ is a bounded linear operator from \mathbb{R}^k (or \mathbb{C}^k) into I^∞ . Spectral Radius: $\rho(A) := \max\{|\lambda| : \det(A - \lambda I) = 0\}$.