
Linear Multistep Methods



Linear Multistep Methods (LMM)

A LMM has the form

k∑
j=0

αjxi+j = h
k∑

j=0

βj fi+j , αk = 1 i ≥ 0

for the approximate solution of the
IVP x ′ = f (t, x), x(a) = xa .

We approximate x(t) on a ≤ t ≤ b at ti = a + ih, 0 ≤ i ≤ b−a
h .

Here xi ≈ x(ti ), with fi+j = f (ti+j , xi+j).

LMM is called a k-step LMM if at least one of the coefficients α0 and β0
is non-zero.

LMM is similar to a difference equation in that one is solving for xi+k

from xi , xi+1, . . . , xi+k−1. We assume as usual that IVP is well-posed, i.e.
f is continuous in (t, x) and uniformly Lipschitz in x .

For simplicity of notation, we will assume that x(t) is real and scalar; the

analysis that follows applies to x(t) ∈ Rn or x(t) ∈ Cn (viewed as R2n for

differentiability) with minor adjustments.
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LMM Examples
Midpoint Rule (explicit)

x(ti+2)− x(ti ) =

∫ ti+2

ti

x ′(s)ds ≈ 2hx ′(ti+1) = 2hf (ti+1, x(ti+1)).

This approximate relationship suggests the LMM

Midpoint rule: xi+2 − xi = 2hfi+1 .

Trapezoid Rule (implicit)
The approximation

x(ti+1)− x(ti ) =

∫ ti+1

ti

x ′(s)ds ≈ h

2
(x ′(ti+1) + x ′(ti ))

suggests the LMM

Trapezoid rule: xi+1 − xi =
h

2
(fi+1 + fi ) .
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Explicit vs Implicit

If βk = 0, the LMM is called explicit: once we know
xi , xi+1, . . . , xi+k−1, we compute immediately

xi+k =
k−1∑
j=0

(hβj fi+j − αjxi+j) .

On the other hand, if βk 6= 0, the LMM is called implicit: knowing
xi , xi+1, . . . , xi+k−1, we need to solve

xi+k = hβk f (ti+k , xi+k)−
k−1∑
j=0

(αjxi+j − hβj fi+j)

for xi+k .



Existence of Implicit Solutions: Contraction Mapping Theorem

If h is sufficiently small, implicit LMM methods also have unique
solutions given h and x0, x1, . . . , xk−1. To see this, let L be the
Lipschitz constant for f . Given xi , . . . , xi+k−1, the value for xi+k is
obtained by solving the equation

xi+k = hβk f (ti+k , xi+k) + gi ,

where

gi =
k−1∑
j=0

(hβj fi+j − αjxi+j) (constant)

That is, we are looking for a fixed point of

Φ(x) = hβk f (ti+k , x) + gi .



Existence of Implicit Solutions: Contraction Mapping Theorem

Φ(x) = hβk f (ti+k , x) + gi
Note that if h|βk |L < 1, then Φ is a contraction:

|Φ(x)− Φ(y)| ≤ h|βk | |f (ti+k , x)− f (ti+k , y)| ≤ h|βk |L|x − y |.

So by the Contraction Mapping Fixed Point Theorem, Φ has a

unique fixed point. Any initial guess x
(0)
i+k yields a convergent fixed

point iteration:
FPI x

(l+1)
i+k = hβk f (ti+k , x

(l)
i+k) + gi

which is initiated at some initial point x
(0)
i+k (from an explicit

method). In practice, one chooses either
(1) iterate to convergence, or (2) a fixed number of iterations.

A pairing of an explicit initialization x
(0)
i+k with an implicit FPI is

called a Predictor-Corrector Method.



Local Truncaton Error (LTE)

Initial Values. To start a k-step LMM, we need x0, x1, . . . , xk−1.
We usually take x0 = xa, and approximate x1, . . . , xk−1 using a
one-step method (e.g., a Runge-Kutta method).

Local Truncation Error. For a true solution x(t) to x ′ = f (t, x),
define the LTE to be

l(h, t) =
k∑

j=0

αjx(t + jh)− h
k∑

j=0

βjx
′(t + jh).



Local Truncaton Error (LTE)
l(h, t) =

∑k
j=0 αjx(t + jh)− h

∑k
j=0 βjx

′(t + jh)

x(t + jh) = x(t) + jhx ′(t) + · · ·+ (jh)p

p!
x (p)(t) + O(hp+1) and

hx ′(t + jh) = hx ′(t) + jh2x ′′(t) + · · ·+ jp−1hp

(p − 1)!
x (p)(t) + O(hp+1)

and so

l(h, t) = C0x(t) + C1hx ′(t) + · · ·+ Cphpx (p)(t) + O(hp+1),

where

C0 = α0 + · · ·+ αk

C1 = (α1 + 2α2 + · · ·+ kαk)− (β0 + · · ·+ βk)

...

Cq =
1

q!
(α1 + 2qα2 + · · ·+ kqαk)− 1

(q − 1)!
(β1 + 2q−1β2 + · · ·+ kq−1βk).



Accuracy of Order p

A LMM is called accurate of order p if l(h, t) = O(hp+1) for any
solution of x ′ = f (t, x) which is Cp+1.

Fact Since

l(h, t) = C0x(t) + C1hx ′(t) + · · ·+ Cphpx (p)(t) + O(hp+1),

an LMM is accurate of order at least p iff

C0 = C1 = · · · = Cp = 0.

Note: It is called accurate of order exactly p if Cp+1 6= 0.



LMM Consistency

(i) For the LTE of a method to be o(h) for all f ’s, we must have
C0 = C1 = 0. Indeed, for any f ∈ C 1, all solutions x(t) are
C 2, so

l(h, t) = C0x(t)+C1hx ′(t)+O(h2) = o(h) iff C0 = C1 = 0 .

(ii) Note that C0,C1, . . . depend only on α0, . . . , αk , β0, . . . , βk
and not on f . So here, “minimal accuracy” is first order.

Definition A LMM is called consistent if C0 = C1 = 0 (i.e., at
least first-order accurate).

If an LMM is consistent, then any solution x(t) has l(h, t) = o(h).



LMM Convergence
A k-step LMM ∑

αjxi+j = h
∑

βj fi+j

is called convergent if for each

IVP x ′ = f (t, x), x(a) = xa on [a, b]

and for any choice of x0(h), . . . , xk−1(h) for which

lim
h→0
|x(ti (h))− xi (h)| = 0 for i = 0, . . . , k − 1,

we have
lim
h→0

max
{i :a≤ti (h)≤b}

|x(ti (h))− xi (h)| = 0 .

Remarks
(i) Convergence asks for uniform decrease of the error on the grid
as h→ 0.
(ii) By the continuity of x(t), the condition on the initial values is
equivalent to xi (h)→ xa for i = 0, 1, . . . , k − 1.



The Dahlquist Root Condition

Fact If an LMM is convergent, then the zeroes of the (first)
characteristic polynomial of the method

p(r) = αk rk + · · ·+ α0

satisfy the Dahlquist root condition:

(a) all zeroes r satisfy |r | ≤ 1, and

(b) multiple zeroes r satisfy |r | < 1.



LMM Convergence: Example
Consider the IVP x ′ = 0, a ≤ t ≤ b, x(a) = 0. So f ≡ 0. Consider
the LMM: ∑

αjxi+j = 0 .

(1) Let r be any zero of p(r). Then the solution with initial
conditions

xi = hr i for 0 ≤ i ≤ k − 1

is

xi = hr i for 0 ≤ i ≤ b − a

h
.

Suppose h = b−a
m for some m ∈ Z. If the LMM is convergent, then

xm(h)→ x(b) = 0 as m→∞. But

xm(h) = hrm =
b − a

m
rm.

So

|xm(h)− x(b)| =
b − a

m
|rm| → 0 as m→∞

iff |r | ≤ 1.



LMM Convergence: Examples

Again consider the LMM
∑
αjxi+j = 0 .

(2) If r is a multiple zero of p(r), taking xi (h) = hir i for
0 ≤ i ≤ k − 1 gives

xi (h) = hir i , 0 ≤ i ≤ b − a

h
.

So if h = b−a
m , then

xm(h) =
b − a

m
mrm = (b − a)rm,

so xm(h)→ 0 as h→ 0 iff |r | < 1.



Zero-Stable LLMs

Definition A LMM is called zero-stable if it satisfies the Dahlquist
root condition.

Recall from our discussion of linear difference equations that
zero-stability is equivalent to requiring that all solutions of

(lh)
k∑

j=0

αjxi+j = 0 for i ≥ 0

stay bounded as i →∞.

A consistent one-step LMM (i.e., k = 1) is always zero-stable.
Indeed, consistency implies that C0 = C1 = 0, which in turn
implies that p(1) = α0 + α1 = C0 = 0 and so r = 1 is the zero of
p(r). Therefore α1 = 1, α0 = −1, so the characteristic polynomial
is p(r) = r − 1, and the LMM is zero-stable.



The Key Convergence Theorem for LLMs

An LMM is convergent if and only if it is zero-stable and
consistent.

Moreover, for zero-stable methods, we get an error estimate of the
form

max
a≤ti (h)≤b

|x(ti (h))− xi (h)| ≤

K1 max
0≤i≤k−1

|x(ti (h))− xi (h)|︸ ︷︷ ︸
initial error

+K2
maxi |l(h, ti (h))|

h︸ ︷︷ ︸
“growth of error”

controlled by
zero-stability



Dahlquist Condition implies Boundedness of (li)

Consider

(li)
k∑

j=0

αjxi+j = bi for i ≥ 0 (where αk = 1),

with the initial values x0, . . . , xk−1 given, and suppose that the
characteristic polynomial p(r) =

∑k
j=0 αj r

j satisfies the Dahlquist
root condition. Then there is an M > 0 such that for i ≥ 0,

|xi+k | ≤ M

(
max{|x0|, . . . , |xk−1|}+

i∑
ν=0

|bν |

)
.



Proof

Let

A =


0 1

. . .
. . .

0 1
−α0 · · · −αk−1

 .

The Dahlquist condition implies that there is an M > 0 such that
‖Ai‖∞ < M for all i .



Proof

Let x̃i = [xi , xi+1, . . . , xi+k−1]T and b̃i = [0, . . . , 0, bi ]
T . Then

x̃i+1 = Ax̃i + b̃i , so by induction

x̃i+1 = Ai+1x̃0 +
i∑

ν=0

Ai−ν b̃ν .

Thus

|xi+k | ≤ ‖x̃i+1‖∞

≤ ‖Ai+1‖∞‖x̃0‖∞ +
i∑

ν=0

‖Ai−ν‖∞‖b̃ν‖∞

≤ M(‖x̃0‖∞ +
i∑

ν=0

|bν |).



Proof of LMM Convergence Theorem

The fact that convergence implies zero-stability and consistency is
left as an exercise. Suppose a LMM is zero-stable and consistent.
Let x(t) be the true solution of the IVP x ′ = f (t, x), x(a) = xa on
[a, b], let L be the Lipschitz constant for f , and set

β =
k∑

j=0

|βj |.

Hold h fixed, and set

ei (h) = x(ti (h))− xi (h), E (h) = max{|e0(h)|, . . . , |ek−1(h)|},
li (h) = l(h, ti (h)), λ(h) = max

i∈I
|li (h)|,

where I = {i ≥ 0 : i + k ≤ b−a
h } (the remaining steps to b from k).



Proof: Step 1
The first step is to derive a “difference inequality” for |ei |. This
difference inequality is a discrete form of the integral inequality
leading to Gronwall’s inequality. For i ∈ I, we have

k∑
j=0

αjx(ti+j) = h
k∑

j=0

βj f (ti+j , x(ti+j)) + li

k∑
j=0

αjxi+j = h
k∑

j=0

βj fi+j .

Subtraction gives
∑k

j=0 αjei+j = bi , where

bi ≡ h
k∑

j=0

βj (f (ti+j , x(ti+j))− f (ti+j , xi+j)) + li .

Then

|bi | ≤ h
k∑

j=0

|βj |L|ei+j |+ |li |



Proof: Step 1

By the preceeding Lemma with xi+k replaced by ei+k , we obtain
for i ∈ I

|ei+k | ≤ M

[
E +

i∑
ν=0

|bν |

]

≤ M

E + hL
i∑

ν=0

k∑
j=0

|βj ||eν+j |+
i∑

ν=0

|lν |


≤ M

E + hL
k∑

j=0

|βj |
i∑

ν=0

|eν+j |+
i∑

ν=0

|lν |


≤ M

E + hL|βk ||ei+k |+ hL
k∑

j=0

|βj |
i+k−1∑
ν=0

|eν |+
i∑

ν=0

|lν |





|ei+k | ≤ M

[
E + hL|βk ||ei+k |+ hLβ

i+k−1∑
ν=0

|eν |+
i∑

ν=0

|lν |

]

≤ M

[
E + hLβ|ei+k |+ hLβ

k+i−1∑
ν=0

|eν |+
b − a

h
λ

]
,

From here on, assume h is small enough that

MhL|βk | ≤
1

2
.

Since
{

h ≤ b − a : MhL|βk | ≥ 1
2

}
is a compact subset of (0, b − a], the

estimate in the Key Theorem is clearly true for those values of h.



Proof: Step 1

|ei+k | ≤ M

[
E + hL|βk ||ei+k |+ hLβ

i+k−1∑
ν=0

|eν |+
b − a

h
λ

]

≤ 1

2
|ei+k |+ ME + MhLβ

i+k−1∑
ν=0

|eν |+ M
b − a

h
λ

since MhL|βk | ≤ 1
2 .

Moving 1
2 |ei+k | to the LHS gives

|ei+k | ≤ hM1

i+k−1∑
ν=0

|eν |+ M2E + M3λ/h

for i ∈ I, where M1 = 2MLβ, M2 = 2M, and M3 = 2M(b − a).

(Note: For explicit methods, βk = 0, so the restriction MhL|βk | ≤ 1
2 is

unnecessary, and the factors of 2 in M1, M2, M3 can be dropped.)



Proof: Step 2

|ei+k | ≤ hM1

i+k−1∑
ν=0

|eν |+ M2E + M3λ/h

We now use a discrete “comparison” argument to bound |ei |.
Let yi be the solution of

yi+k = hM1

i+k−1∑
ν=0

yν + (M2E + M3λ/h) for i ∈ I, (∗)

with initial values yj = |ej | for 0 ≤ j ≤ k − 1. Then clearly by
induction |ei+k | ≤ yi+k for i ∈ I. Now

yk ≤ hM1kE + (M2E + M3 λ/h) ≤ M4E + M3λ/h,

where M4 = (b − a)M1k + M2. Subtracting (∗) for i from (∗) for
i + 1 gives

yi+k+1 − yi+k = hM1yi+k , and so yi+k+1 = (1 + hM1)yi+k .



Proof: Step 2

Therefore, by induction we obtain for i ∈ I:

yi+k = (1 + hM1)iyk

≤ (1 + hM1)(b−a)/hyk

≤ eM1(b−a)yk

≤ K1E + K2λ/h,

where K1 = eM1(b−a)M4 and K2 = eM1(b−a)M3. Thus, for i ∈ I,

|ei+k | ≤ K1E + K2λ/h;

since K1 ≥ M4 ≥ M2 ≥ M ≥ 1, also |ej | ≤ E ≤ K1E + K2λ/h for
0 ≤ j ≤ k − 1. Since consistency implies λ = o(h), we are done.


