Linear Multistep Methods

Linear Multistep Methods (LMM)

A LMM has the form

$$
\sum_{j=0}^{k} \alpha_{j} x_{i+j}=h \sum_{j=0}^{k} \beta_{j} f_{i+j}, \quad \alpha_{k}=1 \quad i \geq 0
$$

for the approximate solution of the

$$
\text { IVP } \quad x^{\prime}=f(t, x), \quad x(a)=x_{a}
$$

We approximate $x(t)$ on $a \leq t \leq b$ at $t_{i}=a+i h, 0 \leq i \leq \frac{b-a}{h}$.
Here $x_{i} \approx x\left(t_{i}\right)$, with $f_{i+j}=f\left(t_{i+j}, x_{i+j}\right)$.
LMM is called a k-step LMM if at least one of the coefficients α_{0} and β_{0} is non-zero.
LMM is similar to a difference equation in that one is solving for x_{i+k} from $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$. We assume as usual that IVP is well-posed, i.e. f is continuous in (t, x) and uniformly Lipschitz in x.

Linear Multistep Methods (LMM)

A LMM has the form

$$
\sum_{j=0}^{k} \alpha_{j} x_{i+j}=h \sum_{j=0}^{k} \beta_{j} f_{i+j}, \quad \alpha_{k}=1 \quad i \geq 0
$$

for the approximate solution of the

$$
\text { IVP } \quad x^{\prime}=f(t, x), \quad x(a)=x_{a}
$$

We approximate $x(t)$ on $a \leq t \leq b$ at $t_{i}=a+i h, 0 \leq i \leq \frac{b-a}{h}$.
Here $x_{i} \approx x\left(t_{i}\right)$, with $f_{i+j}=f\left(t_{i+j}, x_{i+j}\right)$.
LMM is called a k-step LMM if at least one of the coefficients α_{0} and β_{0} is non-zero.
LMM is similar to a difference equation in that one is solving for x_{i+k} from $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$. We assume as usual that IVP is well-posed, i.e. f is continuous in (t, x) and uniformly Lipschitz in x.
For simplicity of notation, we will assume that $x(t)$ is real and scalar; the analysis that follows applies to $x(t) \in \mathbb{R}^{n}$ or $x(t) \in \mathbb{C}^{n}$ (viewed as $\mathbb{R}^{2 n}$ for differentiability) with minor adjustments.

LMM Examples

Midpoint Rule (explicit)

$$
x\left(t_{i+2}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+2}} x^{\prime}(s) d s \approx 2 h x^{\prime}\left(t_{i+1}\right)=2 h f\left(t_{i+1}, x\left(t_{i+1}\right)\right)
$$

This approximate relationship suggests the LMM
Midpoint rule: $\quad x_{i+2}-x_{i}=2 h f_{i+1}$.

LMM Examples

Midpoint Rule (explicit)

$$
x\left(t_{i+2}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+2}} x^{\prime}(s) d s \approx 2 h x^{\prime}\left(t_{i+1}\right)=2 h f\left(t_{i+1}, x\left(t_{i+1}\right)\right)
$$

This approximate relationship suggests the LMM

$$
\text { Midpoint rule: } \quad x_{i+2}-x_{i}=2 h f_{i+1}
$$

Trapezoid Rule (implicit)
The approximation

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} x^{\prime}(s) d s \approx \frac{h}{2}\left(x^{\prime}\left(t_{i+1}\right)+x^{\prime}\left(t_{i}\right)\right)
$$

suggests the LMM

$$
\text { Trapezoid rule: } \quad x_{i+1}-x_{i}=\frac{h}{2}\left(f_{i+1}+f_{i}\right) .
$$

Explicit vs Implicit

If $\beta_{k}=0$, the LMM is called explicit: once we know $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$, we compute immediately

$$
x_{i+k}=\sum_{j=0}^{k-1}\left(h \beta_{j} f_{i+j}-\alpha_{j} x_{i+j}\right)
$$

On the other hand, if $\beta_{k} \neq 0$, the LMM is called implicit: knowing $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$, we need to solve

$$
x_{i+k}=h \beta_{k} f\left(t_{i+k}, x_{i+k}\right)-\sum_{j=0}^{k-1}\left(\alpha_{j} x_{i+j}-h \beta_{j} f_{i+j}\right)
$$

for x_{i+k}.

Existence of Implicit Solutions: Contraction Mapping Theorem

If h is sufficiently small, implicit LMM methods also have unique solutions given h and $x_{0}, x_{1}, \ldots, x_{k-1}$. To see this, let L be the Lipschitz constant for f. Given x_{i}, \ldots, x_{i+k-1}, the value for x_{i+k} is obtained by solving the equation

$$
x_{i+k}=h \beta_{k} f\left(t_{i+k}, x_{i+k}\right)+g_{i}
$$

where

$$
g_{i}=\sum_{j=0}^{k-1}\left(h \beta_{j} f_{i+j}-\alpha_{j} x_{i+j}\right) \quad \text { (constant) }
$$

That is, we are looking for a fixed point of

$$
\Phi(x)=h \beta_{k} f\left(t_{i+k}, x\right)+g_{i} .
$$

Existence of Implicit Solutions: Contraction Mapping Theorem

$$
\Phi(x)=h \beta_{k} f\left(t_{i+k}, x\right)+g_{i}
$$

Note that if $h\left|\beta_{k}\right| L<1$, then Φ is a contraction:

$$
|\Phi(x)-\Phi(y)| \leq h\left|\beta_{k}\right|\left|f\left(t_{i+k}, x\right)-f\left(t_{i+k}, y\right)\right| \leq h\left|\beta_{k}\right| L|x-y|
$$

So by the Contraction Mapping Fixed Point Theorem, Φ has a unique fixed point. Any initial guess $x_{i+k}^{(0)}$ yields a convergent fixed point iteration:

$$
\text { FPI } \quad x_{i+k}^{(I+1)}=h \beta_{k} f\left(t_{i+k}, x_{i+k}^{(I)}\right)+g_{i}
$$

which is initiated at some initial point $x_{i+k}^{(0)}$ (from an explicit method). In practice, one chooses either
(1) iterate to convergence, or (2) a fixed number of iterations. A pairing of an explicit initialization $x_{i+k}^{(0)}$ with an implicit FPI is called a Predictor-Corrector Method.

Local Truncaton Error (LTE)

Initial Values. To start a k-step LMM, we need $x_{0}, x_{1}, \ldots, x_{k-1}$. We usually take $x_{0}=x_{a}$, and approximate x_{1}, \ldots, x_{k-1} using a one-step method (e.g., a Runge-Kutta method).

Local Truncation Error. For a true solution $x(t)$ to $x^{\prime}=f(t, x)$, define the LTE to be

$$
I(h, t)=\sum_{j=0}^{k} \alpha_{j} x(t+j h)-h \sum_{j=0}^{k} \beta_{j} x^{\prime}(t+j h) .
$$

Local Truncaton Error (LTE)

$$
\begin{gathered}
I(h, t)=\sum_{j=0}^{k} \alpha_{j} x(t+j h)-h \sum_{j=0}^{k} \beta_{j} x^{\prime}(t+j h) \\
x(t+j h)=x(t)+j h x^{\prime}(t)+\cdots+\frac{(j h)^{p}}{p!} x^{(p)}(t)+O\left(h^{p+1}\right) \quad \text { and } \\
h x^{\prime}(t+j h)=h x^{\prime}(t)+j h^{2} x^{\prime \prime}(t)+\cdots+\frac{j^{p-1} h^{p}}{(p-1)!} x^{(p)}(t)+O\left(h^{p+1}\right)
\end{gathered}
$$

and so

$$
I(h, t)=C_{0} x(t)+C_{1} h x^{\prime}(t)+\cdots+C_{p} h^{p} x^{(p)}(t)+O\left(h^{p+1}\right)
$$

where
$C_{0}=\alpha_{0}+\cdots+\alpha_{k}$
$C_{1}=\left(\alpha_{1}+2 \alpha_{2}+\cdots+k \alpha_{k}\right)-\left(\beta_{0}+\cdots+\beta_{k}\right)$
$C_{q}=\frac{1}{q!}\left(\alpha_{1}+2^{q} \alpha_{2}+\cdots+k^{q} \alpha_{k}\right)-\frac{1}{(q-1)!}\left(\beta_{1}+2^{q-1} \beta_{2}+\cdots+k^{q-1} \beta_{k}\right)$.

Accuracy of Order p

A LMM is called accurate of order p if $I(h, t)=O\left(h^{p+1}\right)$ for any solution of $x^{\prime}=f(t, x)$ which is C^{p+1}.

Fact Since

$$
I(h, t)=C_{0} x(t)+C_{1} h x^{\prime}(t)+\cdots+C_{p} h^{p} x^{(p)}(t)+O\left(h^{p+1}\right)
$$

an LMM is accurate of order at least p iff

$$
C_{0}=C_{1}=\cdots=C_{p}=0
$$

Note: It is called accurate of order exactly p if $C_{p+1} \neq 0$.

LMM Consistency

(i) For the LTE of a method to be $o(h)$ for all f 's, we must have $C_{0}=C_{1}=0$. Indeed, for any $f \in C^{1}$, all solutions $x(t)$ are C^{2}, so

$$
I(h, t)=C_{0} x(t)+C_{1} h x^{\prime}(t)+O\left(h^{2}\right)=o(h) \quad \text { iff } \quad C_{0}=C_{1}=0
$$

(ii) Note that C_{0}, C_{1}, \ldots depend only on $\alpha_{0}, \ldots, \alpha_{k}, \beta_{0}, \ldots, \beta_{k}$ and not on f. So here, "minimal accuracy" is first order.

Definition A LMM is called consistent if $C_{0}=C_{1}=0$ (i.e., at least first-order accurate).

If an LMM is consistent, then any solution $x(t)$ has $I(h, t)=o(h)$.

LMM Convergence

A k-step LMM

$$
\sum \alpha_{j} x_{i+j}=h \sum \beta_{j} f_{i+j}
$$

is called convergent if for each

$$
\text { IVP } \quad x^{\prime}=f(t, x), x(a)=x_{a} \text { on }[a, b]
$$

and for any choice of $x_{0}(h), \ldots, x_{k-1}(h)$ for which

$$
\lim _{h \rightarrow 0}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|=0 \quad \text { for } \quad i=0, \ldots, k-1
$$

we have

$$
\lim _{h \rightarrow 0} \max _{\left\{i: a \leq t_{i}(h) \leq b\right\}}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|=0 .
$$

Remarks

(i) Convergence asks for uniform decrease of the error on the grid as $h \rightarrow 0$.
(ii) By the continuity of $x(t)$, the condition on the initial values is equivalent to $x_{i}(h) \rightarrow x_{a}$ for $i=0,1, \ldots, k-1$.

The Dahlquist Root Condition

Fact If an LMM is convergent, then the zeroes of the (first) characteristic polynomial of the method

$$
p(r)=\alpha_{k} r^{k}+\cdots+\alpha_{0}
$$

satisfy the Dahlquist root condition:
(a) all zeroes r satisfy $|r| \leq 1$, and
(b) multiple zeroes r satisfy $|r|<1$.

LMM Convergence: Example

Consider the IVP $x^{\prime}=0, a \leq t \leq b, x(a)=0$. So $f \equiv 0$. Consider the LMM:

$$
\sum \alpha_{j} x_{i+j}=0
$$

(1) Let r be any zero of $p(r)$. Then the solution with initial conditions

$$
x_{i}=h r^{i} \quad \text { for } \quad 0 \leq i \leq k-1
$$

is

$$
x_{i}=h r^{i} \quad \text { for } \quad 0 \leq i \leq \frac{b-a}{h}
$$

Suppose $h=\frac{b-a}{m}$ for some $m \in \mathbb{Z}$. If the LMM is convergent, then $x_{m}(h) \rightarrow x(b)=0$ as $m \rightarrow \infty$. But

$$
x_{m}(h)=h r^{m}=\frac{b-a}{m} r^{m} .
$$

So

$$
\left|x_{m}(h)-x(b)\right|=\frac{b-a}{m}\left|r^{m}\right| \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty
$$

iff $|r| \leq 1$.

LMM Convergence: Examples

Again consider the LMM $\sum \alpha_{j} x_{i+j}=0$.
(2) If r is a multiple zero of $p(r)$, taking $x_{i}(h)=h_{i r^{i}}$ for $0 \leq i \leq k-1$ gives

$$
x_{i}(h)=h i r^{i}, \quad 0 \leq i \leq \frac{b-a}{h}
$$

So if $h=\frac{b-a}{m}$, then

$$
x_{m}(h)=\frac{b-a}{m} m r^{m}=(b-a) r^{m}
$$

so $x_{m}(h) \rightarrow 0$ as $h \rightarrow 0$ iff $|r|<1$.

Zero-Stable LLMs

Definition A LMM is called zero-stable if it satisfies the Dahlquist root condition.

Recall from our discussion of linear difference equations that zero-stability is equivalent to requiring that all solutions of

$$
\text { (lh) } \sum_{j=0}^{k} \alpha_{j} x_{i+j}=0 \text { for } i \geq 0
$$

stay bounded as $i \rightarrow \infty$.
A consistent one-step LMM (i.e., $k=1$) is always zero-stable. Indeed, consistency implies that $C_{0}=C_{1}=0$, which in turn implies that $p(1)=\alpha_{0}+\alpha_{1}=C_{0}=0$ and so $r=1$ is the zero of $p(r)$. Therefore $\alpha_{1}=1, \alpha_{0}=-1$, so the characteristic polynomial is $p(r)=r-1$, and the LMM is zero-stable.

The Key Convergence Theorem for LLMs

An LMM is convergent if and only if it is zero-stable and consistent.

Moreover, for zero-stable methods, we get an error estimate of the form

$$
\begin{gathered}
\max _{a \leq t_{i}(h) \leq b}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right| \leq \\
K_{1} \underbrace{\max _{0 \leq i \leq k-1}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|}_{\text {initial error }}+K_{2} \underbrace{\max _{i}\left|/\left(h, t_{i}(h)\right)\right|}_{\begin{array}{c}
\text { "growth of error" } \\
\text { controlled by } \\
\text { zero-stability }
\end{array}}{ }^{h}
\end{gathered}
$$

Dahlquist Condition implies Boundedness of (li)

Consider

$$
\text { (li) } \quad \sum_{j=0}^{k} \alpha_{j} x_{i+j}=b_{i} \quad \text { for } \quad i \geq 0 \quad\left(\text { where } \alpha_{k}=1\right)
$$

with the initial values x_{0}, \ldots, x_{k-1} given, and suppose that the characteristic polynomial $p(r)=\sum_{j=0}^{k} \alpha_{j} r^{j}$ satisfies the Dahlquist root condition. Then there is an $M>0$ such that for $i \geq 0$,

$$
\left|x_{i+k}\right| \leq M\left(\max \left\{\left|x_{0}\right|, \ldots,\left|x_{k-1}\right|\right\}+\sum_{\nu=0}^{i}\left|b_{\nu}\right|\right)
$$

Proof

Let

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
-\alpha_{0} & & \cdots & -\alpha_{k-1}
\end{array}\right]
$$

The Dahlquist condition implies that there is an $M>0$ such that $\left\|A^{i}\right\|_{\infty}<M$ for all i.

Proof

Let $\widetilde{x}_{i}=\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]^{T}$ and $\widetilde{b}_{i}=\left[0, \ldots, 0, b_{i}\right]^{T}$. Then $\widetilde{x}_{i+1}=A \widetilde{x}_{i}+\widetilde{b}_{i}$, so by induction

$$
\widetilde{x}_{i+1}=A^{i+1} \widetilde{x}_{0}+\sum_{\nu=0}^{i} A^{i-\nu} \widetilde{b}_{\nu}
$$

Thus

$$
\begin{aligned}
\left|x_{i+k}\right| & \leq\left\|\widetilde{x}_{i+1}\right\|_{\infty} \\
& \leq\left\|A^{i+1}\right\|_{\infty}\left\|\widetilde{x}_{0}\right\|_{\infty}+\sum_{\nu=0}^{i}\left\|A^{i-\nu}\right\|_{\infty}\left\|\widetilde{b}_{\nu}\right\|_{\infty} \\
& \leq M\left(\left\|\widetilde{x}_{0}\right\|_{\infty}+\sum_{\nu=0}^{i}\left|b_{\nu}\right|\right)
\end{aligned}
$$

Proof of LMM Convergence Theorem

The fact that convergence implies zero-stability and consistency is left as an exercise. Suppose a LMM is zero-stable and consistent. Let $x(t)$ be the true solution of the IVP $x^{\prime}=f(t, x), x(a)=x_{a}$ on $[a, b]$, let L be the Lipschitz constant for f, and set

$$
\beta=\sum_{j=0}^{k}\left|\beta_{j}\right| .
$$

Hold h fixed, and set

$$
\begin{aligned}
& e_{i}(h)=x\left(t_{i}(h)\right)-x_{i}(h), \quad E(h)=\max \left\{\left|e_{0}(h)\right|, \ldots,\left|e_{k-1}(h)\right|\right\}, \\
& l_{i}(h)=I\left(h, t_{i}(h)\right), \quad \lambda(h)=\max _{i \in \mathcal{I}}\left|l_{i}(h)\right|,
\end{aligned}
$$

where $\mathcal{I}=\left\{i \geq 0: i+k \leq \frac{b-a}{h}\right\}$ (the remaining steps to b from k).

Proof: Step 1

The first step is to derive a "difference inequality" for $\left|e_{i}\right|$. This difference inequality is a discrete form of the integral inequality leading to Gronwall's inequality. For $i \in \mathcal{I}$, we have

$$
\begin{aligned}
\sum_{j=0}^{k} \alpha_{j} x\left(t_{i+j}\right) & =h \sum_{j=0}^{k} \beta_{j} f\left(t_{i+j}, x\left(t_{i+j}\right)\right)+l_{i} \\
\sum_{j=0}^{k} \alpha_{j} x_{i+j} & =h \sum_{j=0}^{k} \beta_{j} f_{i+j}
\end{aligned}
$$

Subtraction gives $\sum_{j=0}^{k} \alpha_{j} e_{i+j}=b_{i}, \quad$ where

$$
b_{i} \equiv h \sum_{j=0}^{k} \beta_{j}\left(f\left(t_{i+j}, x\left(t_{i+j}\right)\right)-f\left(t_{i+j}, x_{i+j}\right)\right)+l_{i}
$$

Then

$$
\left|b_{i}\right| \leq h \sum_{j=0}^{k}\left|\beta_{j}\right| L\left|e_{i+j}\right|+\left|I_{i}\right|
$$

Proof: Step 1

By the preceeding Lemma with x_{i+k} replaced by e_{i+k}, we obtain for $i \in \mathcal{I}$

$$
\begin{aligned}
\left|e_{i+k}\right| & \leq M\left[E+\sum_{\nu=0}^{i}\left|b_{\nu}\right|\right] \\
& \leq M\left[E+h L \sum_{\nu=0}^{i} \sum_{j=0}^{k}\left|\beta_{j}\right|\left|e_{\nu+j}\right|+\sum_{\nu=0}^{i}\left|I_{\nu}\right|\right] \\
& \leq M\left[E+h L \sum_{j=0}^{k}\left|\beta_{j}\right| \sum_{\nu=0}^{i}\left|e_{\nu+j}\right|+\sum_{\nu=0}^{i}\left|I_{\nu}\right|\right] \\
& \leq M\left[E+h L\left|\beta_{k}\right|\left|e_{i+k}\right|+h L \sum_{j=0}^{k}\left|\beta_{j}\right| \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+\sum_{\nu=0}^{i}\left|I_{\nu}\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
\left|e_{i+k}\right| & \leq M\left[E+h L\left|\beta_{k}\right|\left|e_{i+k}\right|+h L \beta \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+\sum_{\nu=0}^{i}\left|I_{\nu}\right|\right] \\
& \leq M\left[E+h L \beta\left|e_{i+k}\right|+h L \beta \sum_{\nu=0}^{k+i-1}\left|e_{\nu}\right|+\frac{b-a}{h} \lambda\right]
\end{aligned}
$$

From here on, assume h is small enough that

$$
M h L\left|\beta_{k}\right| \leq \frac{1}{2}
$$

Since $\left\{h \leq b-a: M h L\left|\beta_{k}\right| \geq \frac{1}{2}\right\}$ is a compact subset of $(0, b-a]$, the estimate in the Key Theorem is clearly true for those values of h.

Proof: Step 1

$$
\begin{aligned}
\left|e_{i+k}\right| & \leq M\left[E+h L\left|\beta_{k}\right|\left|e_{i+k}\right|+h L \beta \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+\frac{b-a}{h} \lambda\right] \\
& \leq \frac{1}{2}\left|e_{i+k}\right|+M E+M h L \beta \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+M \frac{b-a}{h} \lambda
\end{aligned}
$$

since $\quad M h L\left|\beta_{k}\right| \leq \frac{1}{2}$.
Moving $\frac{1}{2}\left|e_{i+k}\right|$ to the LHS gives

$$
\left|e_{i+k}\right| \leq h M_{1} \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+M_{2} E+M_{3} \lambda / h
$$

for $i \in \mathcal{I}$, where $M_{1}=2 M L \beta, M_{2}=2 M$, and $M_{3}=2 M(b-a)$.
(Note: For explicit methods, $\beta_{k}=0$, so the restriction $M h L\left|\beta_{k}\right| \leq \frac{1}{2}$ is unnecessary, and the factors of 2 in M_{1}, M_{2}, M_{3} can be dropped.)

Proof: Step 2

$$
\left|e_{i+k}\right| \leq h M_{1} \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+M_{2} E+M_{3} \lambda / h
$$

We now use a discrete "comparison" argument to bound $\left|e_{i}\right|$. Let y_{i} be the solution of

$$
\begin{equation*}
y_{i+k}=h M_{1} \sum_{\nu=0}^{i+k-1} y_{\nu}+\left(M_{2} E+M_{3} \lambda / h\right) \quad \text { for } i \in \mathcal{I} \tag{*}
\end{equation*}
$$

with initial values $y_{j}=\left|e_{j}\right|$ for $0 \leq j \leq k-1$. Then clearly by induction $\left|e_{i+k}\right| \leq y_{i+k}$ for $i \in \mathcal{I}$. Now

$$
y_{k} \leq h M_{1} k E+\left(M_{2} E+M_{3} \lambda / h\right) \leq M_{4} E+M_{3} \lambda / h
$$

where $M_{4}=(b-a) M_{1} k+M_{2}$. Subtracting (*) for i from $(*)$ for $i+1$ gives

$$
y_{i+k+1}-y_{i+k}=h M_{1} y_{i+k}, \quad \text { and so } \quad y_{i+k+1}=\left(1+h M_{1}\right) y_{i+k}
$$

Proof: Step 2

Therefore, by induction we obtain for $i \in \mathcal{I}$:

$$
\begin{aligned}
y_{i+k} & =\left(1+h M_{1}\right)^{i} y_{k} \\
& \leq\left(1+h M_{1}\right)^{(b-a) / h} y_{k} \\
& \leq e^{M_{1}(b-a)} y_{k} \\
& \leq K_{1} E+K_{2} \lambda / h
\end{aligned}
$$

where $K_{1}=e^{M_{1}(b-a)} M_{4}$ and $K_{2}=e^{M_{1}(b-a)} M_{3}$. Thus, for $i \in \mathcal{I}$,

$$
\left|e_{i+k}\right| \leq K_{1} E+K_{2} \lambda / h ;
$$

since $K_{1} \geq M_{4} \geq M_{2} \geq M \geq 1$, also $\left|e_{j}\right| \leq E \leq K_{1} E+K_{2} \lambda / h$ for $0 \leq j \leq k-1$. Since consistency implies $\lambda=o(h)$, we are done.

