Linear Multistep Methods

<□ > < @ > < E > < E > E のQ @

Linear Multistep Methods (LMM)

A LMM has the form

$$\sum_{j=0}^{k} \alpha_j x_{i+j} = h \sum_{j=0}^{k} \beta_j f_{i+j}, \quad \alpha_k = 1 \quad i \ge 0$$

for the approximate solution of the

 $\begin{aligned} \text{IVP} \quad x' &= f(t, x), \quad x(a) = x_a \text{ .} \\ \text{We approximate } x(t) \text{ on } a &\leq t \leq b \text{ at } t_i = a + ih, \ 0 \leq i \leq \frac{b-a}{h}. \\ \text{Here } x_i &\approx x(t_i), \text{ with } f_{i+j} = f(t_{i+j}, x_{i+j}). \end{aligned}$

LMM is called a *k-step LMM* if at least one of the coefficients α_0 and β_0 is non-zero.

LMM is similar to a difference equation in that one is solving for x_{i+k} from $x_i, x_{i+1}, \ldots, x_{i+k-1}$. We assume as usual that IVP is well-posed, i.e. f is continuous in (t, x) and uniformly Lipschitz in x.

Linear Multistep Methods (LMM)

A LMM has the form

$$\sum_{j=0}^{k} \alpha_j x_{i+j} = h \sum_{j=0}^{k} \beta_j f_{i+j}, \quad \alpha_k = 1 \quad i \ge 0$$

for the approximate solution of the

 $\begin{aligned} \text{IVP} \quad x' &= f(t, x), \quad x(a) = x_a \text{ .} \\ \text{We approximate } x(t) \text{ on } a &\leq t \leq b \text{ at } t_i = a + ih, \ 0 \leq i \leq \frac{b-a}{h}. \\ \text{Here } x_i &\approx x(t_i), \text{ with } f_{i+j} = f(t_{i+j}, x_{i+j}). \end{aligned}$

LMM is called a *k-step LMM* if at least one of the coefficients α_0 and β_0 is non-zero.

LMM is similar to a difference equation in that one is solving for x_{i+k} from $x_i, x_{i+1}, \ldots, x_{i+k-1}$. We assume as usual that IVP is well-posed, i.e. f is continuous in (t, x) and uniformly Lipschitz in x.

For simplicity of notation, we will assume that x(t) is real and scalar; the analysis that follows applies to $x(t) \in \mathbb{R}^n$ or $x(t) \in \mathbb{C}^n$ (viewed as \mathbb{R}^{2n} for differentiability) with minor adjustments.

LMM Examples

Midpoint Rule (explicit)

$$x(t_{i+2}) - x(t_i) = \int_{t_i}^{t_{i+2}} x'(s) ds \approx 2hx'(t_{i+1}) = 2hf(t_{i+1}, x(t_{i+1})).$$

This approximate relationship suggests the LMM

Midpoint rule: $x_{i+2} - x_i = 2hf_{i+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LMM Examples

Midpoint Rule (explicit)

$$x(t_{i+2}) - x(t_i) = \int_{t_i}^{t_{i+2}} x'(s) ds \approx 2hx'(t_{i+1}) = 2hf(t_{i+1}, x(t_{i+1})).$$

This approximate relationship suggests the LMM

Midpoint rule: $x_{i+2} - x_i = 2hf_{i+1}$.

Trapezoid Rule (implicit) The approximation

$$x(t_{i+1}) - x(t_i) = \int_{t_i}^{t_{i+1}} x'(s) ds \approx \frac{h}{2}(x'(t_{i+1}) + x'(t_i))$$

suggests the LMM

Trapezoid rule:
$$x_{i+1} - x_i = \frac{h}{2}(f_{i+1} + f_i)$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Explicit vs Implicit

If $\beta_k = 0$, the LMM is called *explicit*: once we know $x_i, x_{i+1}, \ldots, x_{i+k-1}$, we compute immediately

$$x_{i+k} = \sum_{j=0}^{k-1} (h\beta_j f_{i+j} - \alpha_j x_{i+j}) .$$

On the other hand, if $\beta_k \neq 0$, the LMM is called *implicit*: knowing $x_i, x_{i+1}, \ldots, x_{i+k-1}$, we need to solve

$$x_{i+k} = h\beta_k f(t_{i+k}, x_{i+k}) - \sum_{j=0}^{k-1} (\alpha_j x_{i+j} - h\beta_j f_{i+j})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for x_{i+k} .

Existence of Implicit Solutions: Contraction Mapping Theorem

If *h* is sufficiently small, implicit LMM methods also have unique solutions given *h* and $x_0, x_1, \ldots, x_{k-1}$. To see this, let *L* be the Lipschitz constant for *f*. Given x_i, \ldots, x_{i+k-1} , the value for x_{i+k} is obtained by solving the equation

$$x_{i+k} = h\beta_k f(t_{i+k}, x_{i+k}) + g_i,$$

where

$$g_i = \sum_{j=0}^{k-1} (h \beta_j f_{i+j} - \alpha_j x_{i+j})$$
 (constant)

That is, we are looking for a fixed point of

$$\Phi(x) = h\beta_k f(t_{i+k}, x) + g_i$$

Existence of Implicit Solutions: Contraction Mapping Theorem

$$\Phi(x) = h\beta_k f(t_{i+k}, x) + g_i$$

Note that if $h|\beta_k|L < 1$, then Φ is a contraction:

$$|\Phi(x)-\Phi(y)|\leq h|eta_k|\left|f(t_{i+k},x)-f(t_{i+k},y)
ight|\leq h|eta_k|L|x-y|.$$

So by the Contraction Mapping Fixed Point Theorem, Φ has a unique fixed point. Any initial guess $x_{i+k}^{(0)}$ yields a convergent fixed point iteration:

point iteration: FPI $x_{i+k}^{(l+1)} = h\beta_k f(t_{i+k}, x_{i+k}^{(l)}) + g_i$ which is initiated at some initial point $x_{i+k}^{(0)}$ (from an explicit method). In practice, one chooses either (1) iterate to convergence, or (2) a fixed number of iterations. A pairing of an explicit initialization $x_{i+k}^{(0)}$ with an implicit FPI is called a Predictor-Corrector Method.

うっつ 川 山 マ マ マ マ マ マ マ マ マ

Local Truncaton Error (LTE)

Initial Values. To start a *k*-step LMM, we need $x_0, x_1, \ldots, x_{k-1}$. We usually take $x_0 = x_a$, and approximate x_1, \ldots, x_{k-1} using a one-step method (e.g., a Runge-Kutta method).

Local Truncation Error. For a true solution x(t) to x' = f(t, x), define the LTE to be

$$I(h,t) = \sum_{j=0}^{k} \alpha_j x(t+jh) - h \sum_{j=0}^{k} \beta_j x'(t+jh).$$

Local Truncaton Error (LTE)
$$I(h,t) = \sum_{j=0}^{k} \alpha_j x(t+jh) - h \sum_{j=0}^{k} \beta_j x'(t+jh)$$

$$x(t+jh) = x(t) + jhx'(t) + \dots + \frac{(jh)^{p}}{p!}x^{(p)}(t) + O(h^{p+1}) \text{ and}$$

$$hx'(t+jh) = hx'(t) + jh^{2}x''(t) + \dots + \frac{j^{p-1}h^{p}}{(p-1)!}x^{(p)}(t) + O(h^{p+1})$$

and so

$$I(h,t) = C_0 x(t) + C_1 h x'(t) + \dots + C_p h^p x^{(p)}(t) + O(h^{p+1}),$$

where

$$C_{0} = \alpha_{0} + \dots + \alpha_{k}$$

$$C_{1} = (\alpha_{1} + 2\alpha_{2} + \dots + k\alpha_{k}) - (\beta_{0} + \dots + \beta_{k})$$

$$\vdots$$

$$C_{q} = \frac{1}{q!}(\alpha_{1} + 2^{q}\alpha_{2} + \dots + k^{q}\alpha_{k}) - \frac{1}{(q-1)!}(\beta_{1} + 2^{q-1}\beta_{2} + \dots + k^{q-1}\beta_{k}).$$

Accuracy of Order p

A LMM is called *accurate of order p* if $I(h, t) = O(h^{p+1})$ for any solution of x' = f(t, x) which is C^{p+1} .

Fact Since

$$I(h,t) = C_0 x(t) + C_1 h x'(t) + \dots + C_p h^p x^{(p)}(t) + O(h^{p+1}),$$

an LMM is accurate of order at least p iff

$$C_0=C_1=\cdots=C_p=0.$$

Note: It is called accurate of order **exactly** p if $C_{p+1} \neq 0$.

LMM Consistency

(i) For the LTE of a method to be o(h) for all f's, we must have $C_0 = C_1 = 0$. Indeed, for any $f \in C^1$, all solutions x(t) are C^2 , so

$$I(h,t) = C_0 x(t) + C_1 h x'(t) + O(h^2) = o(h)$$
 iff $C_0 = C_1 = 0$.

(ii) Note that C₀, C₁,... depend only on α₀,..., α_k, β₀,..., β_k and not on f. So here, "minimal accuracy" is first order.

Definition A LMM is called consistent if $C_0 = C_1 = 0$ (i.e., at least first-order accurate).

If an LMM is consistent, then any solution x(t) has l(h, t) = o(h).

LMM Convergence

A k-step LMM

$$\sum \alpha_j x_{i+j} = h \sum \beta_j f_{i+j}$$

is called *convergent* if for each

IVP
$$x' = f(t, x), x(a) = x_a$$
 on $[a, b]$

and for any choice of $x_0(h), \ldots, x_{k-1}(h)$ for which

$$\lim_{h \to 0} |x(t_i(h)) - x_i(h)| = 0 \quad \text{for} \quad i = 0, \dots, k - 1,$$

we have

$$\lim_{h\to 0} \max_{\{i:a \le t_i(h) \le b\}} |x(t_i(h)) - x_i(h)| = 0 .$$

Remarks

(i) Convergence asks for *uniform* decrease of the error on the grid as $h \rightarrow 0$.

(ii) By the continuity of x(t), the condition on the initial values is equivalent to $x_i(h) \to x_a$ for i = 0, 1, ..., k - 1.

The Dahlquist Root Condition

Fact If an LMM is convergent, then the zeroes of the (first) characteristic polynomial of the method

$$p(r) = \alpha_k r^k + \dots + \alpha_0$$

satisfy the Dahlquist root condition: (a) all zeroes r satisfy $|r| \le 1$, and (b) multiple zeroes r satisfy |r| < 1.

LMM Convergence: Example

Consider the IVP x' = 0, $a \le t \le b$, x(a) = 0. So $f \equiv 0$. Consider the LMM:

$$\sum \alpha_j x_{i+j} = \mathbf{0} \; .$$

(1) Let r be any zero of p(r). Then the solution with initial conditions

$$x_i = hr^i$$
 for $0 \le i \le k-1$

is

$$x_i = hr^i$$
 for $0 \le i \le rac{b-a}{h}$.

Suppose $h = \frac{b-a}{m}$ for some $m \in \mathbb{Z}$. If the LMM is convergent, then $x_m(h) \to x(b) = 0$ as $m \to \infty$. But

$$x_m(h) = hr^m = \frac{b-a}{m}r^m$$

So

$$|x_m(h)-x(b)|=rac{b-a}{m}|r^m| o 0$$
 as $m o\infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

iff $|r| \leq 1$.

LMM Convergence: Examples

Again consider the LMM $\sum \alpha_j x_{i+j} = 0$.

(2) If r is a multiple zero of p(r), taking $x_i(h) = hir^i$ for $0 \le i \le k - 1$ gives

$$x_i(h) = hir^i, \quad 0 \leq i \leq rac{b-a}{h}.$$

So if $h = \frac{b-a}{m}$, then

$$x_m(h)=\frac{b-a}{m}mr^m=(b-a)r^m,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

so $x_m(h)
ightarrow 0$ as h
ightarrow 0 iff |r| < 1.

Zero-Stable LLMs

Definition A LMM is called zero-stable if it satisfies the Dahlquist root condition.

Recall from our discussion of linear difference equations that zero-stability is equivalent to requiring that all solutions of

(1h)
$$\sum_{j=0}^k lpha_j x_{i+j} = 0$$
 for $i \ge 0$

stay bounded as $i \to \infty$.

A consistent one-step LMM (i.e., k = 1) is always zero-stable. Indeed, consistency implies that $C_0 = C_1 = 0$, which in turn implies that $p(1) = \alpha_0 + \alpha_1 = C_0 = 0$ and so r = 1 is the zero of p(r). Therefore $\alpha_1 = 1, \alpha_0 = -1$, so the characteristic polynomial is p(r) = r - 1, and the LMM is zero-stable.

The Key Convergence Theorem for LLMs

An LMM is convergent if and only if it is zero-stable and consistent.

Moreover, for zero-stable methods, we get an error estimate of the form

$$\max_{\mathsf{a} \leq t_i(h) \leq b} |x(t_i(h)) - x_i(h)| \leq$$

Dahlquist Condition implies Boundedness of (li)

Consider

(*li*)
$$\sum_{j=0}^{k} \alpha_j x_{i+j} = b_i$$
 for $i \ge 0$ (where $\alpha_k = 1$),

with the initial values x_0, \ldots, x_{k-1} given, and suppose that the characteristic polynomial $p(r) = \sum_{j=0}^k \alpha_j r^j$ satisfies the Dahlquist root condition. Then there is an M > 0 such that for $i \ge 0$,

$$|x_{i+k}| \le M\left(\max\{|x_0|,\ldots,|x_{k-1}|\} + \sum_{\nu=0}^{i} |b_{\nu}|\right)$$

Proof

The Dahlquist condition implies that there is an M > 0 such that $||A^i||_{\infty} < M$ for all *i*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof

Let $\widetilde{x}_i = [x_i, x_{i+1}, \dots, x_{i+k-1}]^T$ and $\widetilde{b}_i = [0, \dots, 0, b_i]^T$. Then $\widetilde{x}_{i+1} = A\widetilde{x}_i + \widetilde{b}_i$, so by induction

$$\widetilde{x}_{i+1} = A^{i+1}\widetilde{x}_0 + \sum_{\nu=0}^i A^{i-\nu}\widetilde{b}_{\nu}.$$

Thus

$$\begin{array}{lll} x_{i+k} | & \leq & \|\widetilde{x}_{i+1}\|_{\infty} \\ & \leq & \|A^{i+1}\|_{\infty}\|\widetilde{x}_{0}\|_{\infty} + \sum_{\nu=0}^{i} \|A^{i-\nu}\|_{\infty}\|\widetilde{b}_{\nu}\|_{\infty} \\ & \leq & M(\|\widetilde{x}_{0}\|_{\infty} + \sum_{\nu=0}^{i} |b_{\nu}|). \end{array}$$

Proof of LMM Convergence Theorem

The fact that convergence implies zero-stability and consistency is left as an exercise. Suppose a LMM is zero-stable and consistent. Let x(t) be the true solution of the IVP x' = f(t, x), $x(a) = x_a$ on [a, b], let L be the Lipschitz constant for f, and set

$$\beta = \sum_{j=0}^{k} |\beta_j|.$$

Hold h fixed, and set

 $e_i(h) = x(t_i(h)) - x_i(h), \qquad E(h) = \max\{|e_0(h)|, \dots, |e_{k-1}(h)|\},\\ l_i(h) = l(h, t_i(h)), \qquad \lambda(h) = \max_{i \in \mathcal{I}} |l_i(h)|,$

where $\mathcal{I} = \{i \ge 0 : i + k \le \frac{b-a}{h}\}$ (the remaining steps to *b* from *k*).

The first step is to derive a "difference inequality" for $|e_i|$. This difference inequality is a discrete form of the integral inequality leading to Gronwall's inequality. For $i \in \mathcal{I}$, we have

$$\sum_{j=0}^{k} \alpha_{j} x(t_{i+j}) = h \sum_{j=0}^{k} \beta_{j} f(t_{i+j}, x(t_{i+j})) + l_{i}$$
$$\sum_{j=0}^{k} \alpha_{j} x_{i+j} = h \sum_{j=0}^{k} \beta_{j} f_{i+j}.$$

Subtraction gives $\sum_{j=0}^{k} \alpha_j e_{i+j} = b_i$, where

$$b_i \equiv h \sum_{j=0}^k \beta_j \left(f(t_{i+j}, x(t_{i+j})) - f(t_{i+j}, x_{i+j}) \right) + l_i.$$

Then

$$|b_i| \leq h \sum_{j=0}^{\kappa} |\beta_j| L|e_{i+j}| + |I_i|$$

By the preceeding Lemma with x_{i+k} replaced by e_{i+k} , we obtain for $i \in \mathcal{I}$

$$\begin{aligned} |e_{i+k}| &\leq M\left[E + \sum_{\nu=0}^{i} |b_{\nu}|\right] \\ &\leq M\left[E + hL\sum_{\nu=0}^{i} \sum_{j=0}^{k} |\beta_{j}| |e_{\nu+j}| + \sum_{\nu=0}^{i} |I_{\nu}|\right] \\ &\leq M\left[E + hL\sum_{j=0}^{k} |\beta_{j}| \sum_{\nu=0}^{i} |e_{\nu+j}| + \sum_{\nu=0}^{i} |I_{\nu}|\right] \\ &\leq M\left[E + hL|\beta_{k}| |e_{i+k}| + hL\sum_{j=0}^{k} |\beta_{j}| \sum_{\nu=0}^{i+k-1} |e_{\nu}| + \sum_{\nu=0}^{i} |I_{\nu}|\right] \end{aligned}$$

$$\begin{aligned} |e_{i+k}| &\leq M \left[E + hL|\beta_k||e_{i+k}| + hL\beta \sum_{\nu=0}^{i+k-1} |e_{\nu}| + \sum_{\nu=0}^{i} |I_{\nu}| \right] \\ &\leq M \left[E + hL\beta|e_{i+k}| + hL\beta \sum_{\nu=0}^{k+i-1} |e_{\nu}| + \frac{b-a}{h}\lambda \right], \end{aligned}$$

From here on, assume h is small enough that

$$MhL|\beta_k| \leq \frac{1}{2}$$

Since $\{h \le b - a : MhL|\beta_k| \ge \frac{1}{2}\}$ is a compact subset of (0, b - a], the estimate in the Key Theorem is clearly true for those values of h.

$$\begin{aligned} |e_{i+k}| &\leq M \left[E + hL|\beta_k||e_{i+k}| + hL\beta \sum_{\nu=0}^{i+k-1} |e_{\nu}| + \frac{b-a}{h}\lambda \right] \\ &\leq \frac{1}{2}|e_{i+k}| + ME + MhL\beta \sum_{\nu=0}^{i+k-1} |e_{\nu}| + M\frac{b-a}{h}\lambda \end{aligned}$$

since $MhL|\beta_k| \leq \frac{1}{2}$. Moving $\frac{1}{2}|e_{i+k}|$ to the LHS gives

$$|e_{i+k}| \le hM_1 \sum_{\nu=0}^{i+k-1} |e_{\nu}| + M_2 E + M_3 \lambda/h$$

for $i \in \mathcal{I}$, where $M_1 = 2ML\beta$, $M_2 = 2M$, and $M_3 = 2M(b - a)$. (Note: For explicit methods, $\beta_k = 0$, so the restriction $MhL|\beta_k| \leq \frac{1}{2}$ is unnecessary, and the factors of 2 in M_1 , M_2 , M_3 can be dropped.)

$$|e_{i+k}| \le hM_1 \sum_{\nu=0}^{i+k-1} |e_{\nu}| + M_2 E + M_3 \lambda/h$$

We now use a discrete "comparison" argument to bound $|e_i|$. Let y_i be the solution of

$$y_{i+k} = hM_1 \sum_{\nu=0}^{i+k-1} y_{\nu} + (M_2E + M_3\lambda/h) \text{ for } i \in \mathcal{I},$$
 (*)

with initial values $y_j = |e_j|$ for $0 \le j \le k - 1$. Then clearly by induction $|e_{i+k}| \le y_{i+k}$ for $i \in \mathcal{I}$. Now

$$y_k \leq hM_1kE + (M_2E + M_3 \lambda/h) \leq M_4E + M_3\lambda/h,$$

where $M_4 = (b - a)M_1k + M_2$. Subtracting (*) for *i* from (*) for i + 1 gives

$$y_{i+k+1} - y_{i+k} = hM_1y_{i+k}$$
, and so $y_{i+k+1} = (1 + hM_1)y_{i+k}$.

Therefore, by induction we obtain for $i \in \mathcal{I}$:

$$egin{array}{rcl} y_{i+k} &=& (1+hM_1)^i y_k \ &\leq& (1+hM_1)^{(b-a)/h} y_k \ &\leq& e^{M_1(b-a)} y_k \ &\leq& K_1 E + K_2 \lambda/h, \end{array}$$

where $K_1 = e^{M_1(b-a)}M_4$ and $K_2 = e^{M_1(b-a)}M_3$. Thus, for $i \in \mathcal{I}$,

$$|e_{i+k}| \leq K_1 E + K_2 \lambda/h;$$

since $K_1 \ge M_4 \ge M_2 \ge M \ge 1$, also $|e_j| \le E \le K_1E + K_2\lambda/h$ for $0 \le j \le k - 1$. Since consistency implies $\lambda = o(h)$, we are done.