Linear Multistep Methods



Linear Multistep Methods (LMM)
A LMM has the form

k k
ZO‘J'XH-J' = hZﬁjf;_H-, a=1 i>0
j=0 j=0

for the approximate solution of the
IVP X' =f(t,x), x(a)=xa-

We approximate x(t)ona<t<batti=a+ih 0<i< b;a.

Here x; ~ X(t,'), with f;'+j = f(f;+j,X,'+j).
LMM is called a k-step LMM if at least one of the coefficients ag and By
is non-zero.

LMM is similar to a difference equation in that one is solving for x; |«
from x;, Xjy11,...,Xj+k—1. We assume as usual that IVP is well-posed, i.e.
f is continuous in (t,x) and uniformly Lipschitz in x.
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Here x; ~ X(t,'), with f;'+j = f(f;+j,X,'+j).
LMM is called a k-step LMM if at least one of the coefficients ag and By
is non-zero.

LMM is similar to a difference equation in that one is solving for x; |«
from x;, Xjy11,...,Xj+k—1. We assume as usual that IVP is well-posed, i.e.
f is continuous in (t,x) and uniformly Lipschitz in x.

For simplicity of notation, we will assume that x(t) is real and scalar; the
analysis that follows applies to x(t) € R" or x(t) € C" (viewed as R" for
differentiability) with minor adjustments.



LMM Examples
Midpoint Rule (explicit)

tit2
x(tia2) — x(t) = / W(5)ds ~ 2hx(t41) = 2hF(t501, x(t141)).
ti

This approximate relationship suggests the LMM

Midpoint rule: Xiyo — Xj = 2hfiy1 .



LMM Examples
Midpoint Rule (explicit)

tit2
x(tia2) — x(t) = / W(5)ds ~ 2hx(t41) = 2hF(t501, x(t141)).
ti

This approximate relationship suggests the LMM
Midpoint rule: Xir2 — Xj = 2hfiyq .

Trapezoid Rule (implicit)
The approximation

x(tie1) — x(t) = / " X(s)ds = (X (t40) + X (1)

i

suggests the LMM

h
Trapezoid rule: Xiy1— Xj = E(f;’+1 +fi).



Explicit vs Implicit

If Bx =0, the LMM is called explicit: once we know

Xiy Xi41y - - -5 Xitk—1, We compute immediately
k—1
Xivk = Y (hBjfirj — ajxis)) -
j=0

On the other hand, if B¢ # 0, the LMM is called implicit: knowing
Xiy Xi41, -« Xitk—1, We need to solve

k-1
Xipk = hBkf (tith, Xivk) Z ajxiyj — hBifiyj)
Jj=0

for Xitk-



Existence of Implicit Solutions: Contraction Mapping Theorem

If his sufficiently small, implicit LMM methods also have unique
solutions given h and xp, x1,...,Xx_1. To see this, let L be the
Lipschitz constant for f. Given Xx;, ..., Xj1k_1, the value for x; is
obtained by solving the equation

Xitk = hBrf (tivi, Xitk) + &i,

where
k—1

gi = Z(hﬁjﬁ-ﬂ- — ajXiyj) (constant)
j=0

That is, we are looking for a fixed point of

(D(X) = hﬁkf(t;+k,x) + & -



Existence of Implicit Solutions: Contraction Mapping Theorem

®(x) = hBkf (tirk,x) + &
Note that if h|Gk|L < 1, then ® is a contraction:

[(x) = (y)| < hlBil [F(tisk x) — F(tivi, y)| < hlBilLix — yl.
So by the Contraction Mapping Fixed Point Theorem, ® has a
unique fixed point. Any initial guess xi(_?_)k yields a convergent fixed
point iteration: 41 /

X,-(+k ) = hﬁkf(ti+k,x,-(+)k) +gi
which is initiated at some initial point XI-(E)k
method). In practice, one chooses either
(1) iterate to convergence, or (2) a fixed number of iterations.
A pairing of an explicit initializati ©

p g plicit initialization x;,"
called a Predictor-Corrector Method.

(from an explicit

with an implicit FPI is



Local Truncaton Error (LTE)

Initial Values. To start a k-step LMM, we need xg, x1, ..., Xk_1.
We usually take xg = x5, and approximate xi,...,Xxx_1 using a
one-step method (e.g., a Runge-Kutta method).

Local Truncation Error. For a true solution x(t) to x’ = f(t, x),
define the LTE to be



Local Truncaton Error (LTE)
I(h,t) = S5 g ayx(t + jh) — h 5o Bix'(t + jh)

(h)?

x(t+jh) = X(f)+jhxl(f)+~--—&-Tx(p)(t)—i—O(h”+1) and
jpflhp
hX'(t+jh) = hxX'(t) + jh°X"(8) + - + mx(p)(l‘) +O(h"*)

and so

I(h,t) = Cox(t) + Cihx'(t) + - - - + C,hPxP)(t) + O(hPHY),

where
G = ao+- -+ o
G = (a1+ 20+ -+ ko) — (Bo+ -+ Bx)
1 1 1 -1
Co = gilaatPazt ot ko) = gy (Bt 2775 4o AT5).



Accuracy of Order p

A LMM is called accurate of order p if I(h,t) = O(hP*1) for any
solution of x’ = f(t, x) which is CP+1.

Fact Since
I(h, t) = Cox(t) + CLhX'(t) + - - - + CohPxP)(t) + O(hPHY),
an LMM is accurate of order at least p iff

G=C=-=C=0.

Note: It is called accurate of order exactly p if Cp41 # 0.



LMM Consistency

(i) For the LTE of a method to be o(h) for all f's, we must have
Co = C; = 0. Indeed, for any f € C!, all solutions x(t) are
C?, so

I(h, t) = Gox(t)+Cihx'(t)+0(h?) = o(h) iff Go=C =0,
(ii) Note that Cp, Gy, ... depend only on ag, ..., axk, Bo, - - -, Bk

and not on f. So here, “minimal accuracy” is first order.

Definition A LMM is called consistent if Co = C; =0 (i.e., at
least first-order accurate).

If an LMM is consistent, then any solution x(t) has /(h, t) = o(h).



LMM Convergence
A k-step LMM

D apxis = hy_ Bifii;

is called convergent if for each
IVP X' =f(t,x), x(a) =x, on [a,b]
and for any choice of xg(h), ..., xxk_1(h) for which

lim |x(ti(h)) — xi(h)| =0 for i=0,... . k—1,

h—0
we have
li ti(h)) — x;(h)| =0 .
fim  max - [x(8(h) ~ x(h)
Remarks
(i) Convergence asks for uniform decrease of the error on the grid
as h—0.

(ii) By the continuity of x(t), the condition on the initial values is
equivalent to x;(h) — x, for i =0,1,... k— 1.



The Dahlquist Root Condition

Fact If an LMM is convergent, then the zeroes of the (first)
characteristic polynomial of the method

p(r) = k¥ + -+ ag

satisfy the Dahlquist root condition:
(a) all zeroes r satisfy |r| <1, and

(b) multiple zeroes r satisfy |r| < 1.



LMM Convergence: Example
Consider the IVP x’ =0, a< t < b, x(a) = 0. So f = 0. Consider

the LMM:
Zajxf‘f'j =0.

(1) Let r be any zero of p(r). Then the solution with initial
conditions '
xi=hr' for 0<i<k-1

x;:hri for 0§i§b_a.

Suppose h = b—;,a for some m € Z. If the LMM is convergent, then
Xm(h) — x(b) =0 as m — oco. But
b—a
m

rm.

Xm(h) = hr'™ =
So

b —
xm(h) — x(b)| = ma|rmy—>o as m— oo

iff [r] < 1.



LMM Convergence: Examples
Again consider the LMM > ajxiyj =0 .

(2) If r is a multiple zero of p(r), taking x;(h) = hir’ for
0<i<k-—1gives

b—
xi(h) = hir', 0<i< ha
Soif h= %, then
b—a
mh: m= b— m7
Xm(h) ——mr (b—a)r

S0 Xm(h) — 0 as h — 0 iff |r| < 1.



Zero-Stable LLMs

Definition A LMM is called zero-stable if it satisfies the Dahlquist
root condition.

Recall from our discussion of linear difference equations that
zero-stability is equivalent to requiring that all solutions of

k

(1) D ajxipj =0 for i >0
j=0

stay bounded as i — oo.

A consistent one-step LMM (i.e., k = 1) is always zero-stable.
Indeed, consistency implies that (o = C; = 0, which in turn
implies that p(1) = ag + a1 = Co = 0 and so r = 1 is the zero of
p(r). Therefore a; = 1,9 = —1, so the characteristic polynomial
is p(r) = r — 1, and the LMM is zero-stable.



The Key Convergence Theorem for LLMs

An LMM is convergent if and only if it is zero-stable and
consistent.

Moreover, for zero-stable methods, we get an error estimate of the
form

ti(h)) — x;(h)| <
e x(6(m) ()

max; |/(h, ti(h))]
K- ti(h)) — x;(h K:
1 max x(6(h) —xi(h)| +he T

initial error “growth of error”
controlled by
zero-stability



Dahlquist Condition implies Boundedness of (li)

Consider

k
() ) ajxiyj=bi for i>0  (where oy =1),
j=0

with the initial values xp, ..., xx_1 given, and suppose that the
characteristic polynomial p(r) = Zf:o ajr satisfies the Dahlquist

root condition. Then there is an M > 0 such that for i > 0,

Xisk| < M <max{|xo|, bl ) |b,,|> .
v=0



Proof

Let

_ao “ e _akfl

The Dahlquist condition implies that there is an M > 0 such that
| Ao < M for all i.



Proof

Let x; = [X,', Xit1y «oes X;+k_1]T and E,' = [0, ..., 0, b,']T. Then
’)?H-l = AX; + b;, so by induction

i
Xj11 = Ai+1}0 + Z Ai_ygl,.

v=0
Thus
Xtk < IXitalloo
i
< A solFolloo + > 1A [loo1By oo
v=0
<

M(||%olloo + > |bu])-
v=0



Proof of LMM Convergence Theorem

The fact that convergence implies zero-stability and consistency is
left as an exercise. Suppose a LMM is zero-stable and consistent.

Let x(t) be the true solution of the IVP x’ = f(t, x), x(a) = x5 on
[a, b], let L be the Lipschitz constant for f, and set

k
B=> 18l
j=0
Hold h fixed, and set

ei(h) = x(ti(h)) — xi(h), E(h) = max{leo(h)], - - ., ex—1(h)I},
li(h) = I(h, t;i(h)), A(h) = rpeaIX\lf(h)L

where Z={i>0:i+ k< %} (the remaining steps to b from k).



Proof: Step 1

The first step is to derive a “difference inequality” for |e;|. This
difference inequality is a discrete form of the integral inequality
leading to Gronwall's inequality. For i € Z, we have

k k
D apx(tiyy) = hY Bif(tinj x(tisf)) + I
j=0

Jj=0
K K
doapxis = h)y_ Bifiy;.
=0 =0

Subtraction gives Zjl'(:() ajeirj = bj, where

k

bi = hY_ B (F(tivj, x(ti17)) = F(tisj, xi5)) + I
=0

Then

k
|bi| < hY " 1Bj|LIeit| + |1
j=0



Proof: Step 1

By the preceeding Lemma with x;4 replaced by ejyx, we obtain

foriel
leik| <
<
<
<

E+Z|byl
E+hLZZ|ﬁ_] ’eu+1|+Z“ ‘

v=0 j=0

E+ hLZ 18;] Z levil + Z ||
j=0 v=0 v=0

i+k—1

E+hL|5k\|el+k|+h/—Z|5j| > |e,,\+Z|l|

Jj=0 v=0



i+k—1
leivkl < M |E+ hL|Billeik| + hLB Z reu|+2/ur]
v=0
k+l—1 b_ 2
< M |E + hLB|eirk| + hLp Z; o] + = A],

From here on, assume h is small enough that
1
MhL|Bi| < 3.

Since {h <b—a:MhL|Bk| > %} is a compact subset of (0, b — a], the
estimate in the Key Theorem is clearly true for those values of h.



Proof: Step 1

i+k—1

b—a
H < MI|E hL i hL 14 L
leivk] < + hL| Bl eivk| + hLG ;) e+ ——A
1 itk—1 b 4
< 5’6i+k’ + ME + MhLp3 Z;) lev| + M A
since  MhL|Bk| < 3.
Moving 3|ejy«| to the LHS gives
i+k—1
ekl < hMy > le|+ MoE + M3\ /h
v=0

for i € Z, where My =2MLB, My = 2M, and M3 =2M(b — a).

(Note: For explicit methods, 8¢ = 0, so the restriction MhL|Sx| < % is
unnecessary, and the factors of 2 in My, My, M3 can be dropped.)



Proof: Step 2

i+k—1
leivk| < hMy Z lev| + M2E + M3A/h
v=0

We now use a discrete “comparison” argument to bound |ej].
Let y; be the solution of

i+k—1

Yiek =hMy Yy, + (MpE + MsA/h) forie I,  (x)
v=0

with initial values y; = |ej| for 0 < j < k — 1. Then clearly by
induction |ej1 k| < yjik for i € Z. Now

Vi < hMLkE + (M2E+ M )\/h) < MRE + M3)\/h,

where My = (b — a)M1k + M,. Subtracting (x) for i from () for
i+ 1 gives

Yitk+1 — Yiek = hMyyiri, and so  yipuq1 = (1 4+ hMy)yiqk.



Proof: Step 2

Therefore, by induction we obtain for j € Z:

(]. + hM]_)iyk
(1 + hMy)b=a)/hy,
eMI(bia)yk

KiE + KQA/h,

Yitk

ININ A

where Ky = eM (=3 M, and K, = eMl(b_a)Mg. Thus, for i € Z,
leirk| < KiE + Ko /h;

since K1 > My > My > M > 1, also |ej| < E < KiE + Ko\ /h for
0 <j < k — 1. Since consistency implies A = o(h), we are done.



