(1) Let \(\lambda \in \mathbb{C} \). Show that if there is a non-zero solution to \(v'' = -\lambda v \) that is \(2\pi \) periodic, then \(\lambda = n^2 \) for some \(n \in \{1, 2, \ldots \} \).

(2) Apply Parseval’s relation to the function \(f(x) = x \) on \((-\pi, \pi) \) to evaluate \(\sum_{n=1}^{\infty} \frac{1}{n^2} \).

(3) This problem analyzes the Fourier series solution to the vibrating string problem:

\[
\begin{align*}
(\text{DE}) & \quad u_{tt} = u_{xx} & & 0 \leq x \leq \pi, \ 0 \leq t \\
(\text{IC}) & \quad u(x, 0) = f(x), \quad u_t(x, 0) = 0 & & 0 \leq x \leq \pi \\
(\text{BC}) & \quad u(0, t) = u(\pi, t) = 0 & & 0 \leq t .
\end{align*}
\]

(a) Show that

\[
\left\{ \sqrt{\frac{2}{\pi}} \sin(nx) \mid n = 1, 2, \ldots \right\}
\]

is a complete orthonormal system in \(L^2(0, \pi) \).

(b) Show that if \(f \in C^1[0, \pi] \) satisfies \(f(0) = f(\pi) = 0 \), then the expansion of \(f \) in terms of the orthonormal basis in a) converges uniformly to \(f \) on \([0, \pi] \) (called the Fourier sine series).

(c) Show directly that if \(f \in C^2[0, \pi] \), then the series for \(u \) obtained by superposing fundamental modes converges uniformly on \([0, \pi] \times \mathbb{R} \) to a continuous function \(u(x, t) \) that satisfies \(u(x, 0) = f(x) \).

(d) Show that the function \(u \) from part c) agrees with d’Alembert’s solution to this IBVP, and hence show that \(u \in C^2([0, \pi] \times \mathbb{R}) \), and that \(u \) satisfies the wave equation.

Note: Observe that there are difficulties in trying to justify term-by-term differentiation of the series for \(u \) to check that \(u \) satisfies the wave equation. Find conditions of \(f \) (e.g. smoothness, values of \(f, f' \), etc. at \(0, \pi \) which would justify this approach.)

(4) Consider a rod insulated so that no heat flows out of either end of the rod.

(a) Convince yourself that this physical situation gives rise to the following problem:

\[
\begin{align*}
(\text{DE}) & \quad u_t = u_{xx} & & 0 \leq x \leq \pi, \ 0 \leq t \\
(\text{IC}) & \quad u(x, 0) = f(x) & & 0 \leq x \leq \pi \\
(\text{BC}) & \quad u_x(0, t) = u_x(\pi, t) = 0 & & 0 \leq t .
\end{align*}
\]

(b) Separate variables to find the fundamental modes \(u(x, t) \).

(c) Show that the resulting initial states form a complete orthonormal system in \(L^2(0, \pi) \). The associates series are Fourier cosine series.

(5) Consider the Dirichlet problem for the Laplacian \(\Delta = \partial_x^2 + \partial_y^2 \) on the unit disk \(D = \{ (x, y) \mid x^2 + y^2 \leq 1 \} \), i.e., given \(f \) on \(\partial D = S^1 \), find \(u \) on \(D \) satisfying

\[
(\text{DE}) \quad \Delta u = 0, \quad (BC) \quad u|_{\partial D} = f .
\]

(a) Write \(\Delta \) in polar coordinates \((r, \theta)\) and separate variables to find solutions of the form \(u(r, \theta) = v(r)w(\theta) \).

Note: The function \(u \) should be bounded near the origin. To solve the equation for \(v \), look up Euler’s equation in an ODE book.
(b) Suppose $f \in L^2(S^1)$. Write f in a Fourier series and derive a series for u. Show that this series converges for $r < 1$ to a C^2 solution of $\Delta u = 0$ satisfying the (BC) in the sense that

$$\|u(r, \cdot) - f(\cdot)\|_{L^2(S^1)} \to 0 \quad \text{as} \ r \to 1.$$