Math 555 Homework Set 7

- (1) Recall that $L^p(\mathbb{R}^n)$ consists of equivalence classes of functions equal a.e.
 - (a) Show that any such equivalence class can contain at most one continuous function (so it makes sense to say that an element of $L^p(\mathbb{R}^n)$ is continuous).
 - (b) Show that if $f \in L^{\infty}(\mathbb{R}^n)$ and f is continuous, then

$$||f||_{\infty} = \sup_{x \in \mathbb{R}^n} |f(x)| .$$

- (2) Find a continuous function f on \mathbb{R} so that $f \in L^1(\mathbb{R})$ but $f \notin L^{\infty}(\mathbb{R})$.
- (3) True or False: Give a proof, or provide a counterexample.
 Suppose {x_n}, {y_n} are sequences in a Hilbert space H, and x, y ∈ H.
 (a) If x_n → x weakly and y_n → y strongly, then ⟨x_n, y_n⟩ → ⟨x, y⟩.
 (b) If x_n → x weakly and y_n → y weakly, then ⟨x_n, y_n⟩ → ⟨x, y⟩.
- (4) (a) Let $(V, \|\cdot\|)$ be a finite-dimensional normed vector space, let $C \subset V$ be closed and non-empty, and let $x \in V$. Show that there is a closest point in C to x. Show, however, that the closest point need not be unique even if C is convex.
- (5) (a) Let $\{p_n(x)\}$ be obtained from $\{x^n : n = 0, 1, 2, ...\}$ by Gram-Schmidt in $L^2([-1, 1])$. The polynomials

$$\left\{\sqrt{\frac{2}{2n+1}} \ p_n\right\}$$

are called the Legendre polynomials. Show that $\{p_n\}$ is a complete orthonormal set. (Hint: Use the Weierstrass Approximation Theorem.)

- (b) Compute p_0 , p_1 , p_2 .
- (c) Use (a),(b), and Hilbert space theory to find $a, b, c \in \mathbb{R}$ for which

$$\int_{-1}^{1} |x^3 - (a + bx + cx^2)|^2 dx$$

is minimized.

- (6) Consider **The Projection Theorem** for nonempty closed subspaces of a Hilbert space given on page 86 of the class notes. State and prove an analogue of this result for nonempty closed convex cones in a Hilbert space. (Hint: use your results from last term)
- (7) Consider the Hilbert space $L^2(\mathbb{R}^n)$ and the set

$$K := \left\{ f \in L^{2}(\mathbb{R}^{n}) \mid f(x) \ge 0 \ a.e. \right\}.$$

- (a) Show that K is a closed convex cone.
- (b) Show that K has empty interior.
- (c) Given $f \in L^2(\mathbb{R}^n)$, what is $P_K(f)$, i.e., the projection of f onto K.
- (d) Given $f \in L^2(\mathbb{R}^n) \setminus K$, is it possible to properly separate f from K? If so, provide a properly separating hyperplane, if not, provide a counter-example.