(1) A collection A_{1}, A_{2}, \ldots of measurable subset of \mathbb{R}^{n} is said to be almost disjoint if

$$
\lambda\left(A_{j} \cap A_{k}\right)=0 \quad \text { for } \quad j \neq k .
$$

(a) Prove that if A_{1}, A_{2}, \ldots are almost disjoint, then

$$
\lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right) .
$$

(b) Conversely, suppose that the measurable sets A_{1}, A_{2}, \ldots satisfy

$$
\lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)<\infty .
$$

Show that the sets A_{1}, A_{2}, \ldots are almost disjoint. Does this remain true if the " $<$ ∞ " is replaced by the weaker hypothesis that $\lambda\left(A_{k}\right)<\infty$ for each $k=1,2, \ldots$?
(c) Suppose A_{1}, A_{2}, \ldots are measurable sets, and suppose that there is a positive integer d such that each point $x \in \mathbb{R}^{n}$ belongs to no more than d of the A_{k} 's. Prove that

$$
\sum_{k=1}^{\infty} \lambda\left(A_{k}\right) \leq d \lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right)
$$

(2) Define the function on $(0,1)$ as follows: given $x \in(0,1)$, let x have decimal expansion $0 . a_{1} a_{2} a_{3} \ldots$ where each $a_{i} \in\{0,1, \ldots, 9\}$ and the expansion is non-repeating whenever possible (i.e. $0.5=0.49999 \ldots$) to ensure uniqueness, then set

$$
f\left(0 . a_{1} a_{2} a_{3} \ldots\right)= \begin{cases}\frac{1}{n}, & \text { if } n \text { is the smallest integer for which } a_{n}=7, \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

Show that f is measurable. What is $\left.\int_{0}^{1}\right) f(x) d x$?
Hint: The Taylor series for $\ln (1-x)$ can be useful here.
(3) (a) Show that the function $\frac{\sin x}{x}$ is not integrable on $(0, \infty)$.
(b) Show that $\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sin x}{x} d x$ exists.
(c) Show that if $f \geq 0$ is measurable on $(0, \infty)$, then

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x<\infty \quad \Longleftrightarrow \quad f \text { is integrable on }(0, \infty)
$$

(4) For the function

$$
f(x, y)=\frac{x-y}{(x+y)^{3}}
$$

show that the iterated integrals

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x \text { and } \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y
$$

both exist, but are not equal. Show that this does not violate Fubini's Theorem by showing that

$$
\int_{[0,1] \times[0,1]}|f(x, y)| d x d y=\infty
$$

(5) Let $f:[0,1] \mapsto \mathbb{R}$ be a non-negative, continuous, and strictly increasing function on $[0,1]$. The the inverse function f^{-1} exists and is continuous on $[f(0), f(1)]$. Define

$$
\mathcal{R} \int_{0}^{1} f(x) d x=\lim _{N \rightarrow \infty} 2^{-N} \sum_{k=1}^{2^{N}} f\left(k 2^{-N}\right) \quad \text { (the Riemann integral) }
$$

and
$\mathcal{L} \int_{0}^{1} f(x) d x=\lim _{N \rightarrow \infty} \sum_{k=1}^{2^{N}} y_{k}\left(f^{-1}\left(y_{k}\right)-f^{-1}\left(y_{k-1}\right)\right) \quad$ (the Lebesgue integral)
where

$$
y_{k}=f(0)+k 2^{-N}(f(1)-f(0)) .
$$

(a) Prove directly that both limits exist.
(b) Prove that

$$
\mathcal{R} \int_{0}^{1} f(x) d x=\mathcal{L} \int_{0}^{1} f(x) d x
$$

For this you may quote a theorem from the theory of Riemann integration, but give a precise statement and reference.

