(1) For scalar equations $(n=1)$, explicitly determine the formula for the Taylor method of order 3.
(2) Heun's third-order method is the 3 -stage Runge-Kutta method:

$$
x_{i+1}=x_{i}+\frac{h}{4}\left(k_{1}+3 k_{3}\right),
$$

where

$$
\begin{aligned}
k_{1} & =f\left(t_{i}, x_{i}\right), \\
k_{2} & =f\left(t_{i}+\frac{h}{3}, x_{i}+\frac{h}{3} k_{1}\right), \quad \text { and } \\
k_{3} & =f\left(t_{i}+\frac{2}{3} h, x_{i}+\frac{2}{3} h k_{2}\right) .
\end{aligned}
$$

Show that this is accurate of order 3 (for $n=1$).
(3) Show that every explicit Runge-Kutta method is stable. That is, if $f(t, x)$ is continuous in (t, x) and uniformly Lipschitz continuous in x, then $\psi(h, t, x)$ is continuous in (h, t, x) and uniformly Lipschitz continuous in x.
(4) Derive an implicit 2-step scheme for the equation $x^{\prime}=f(t, x)$ by approximating the integral in

$$
x\left(t_{i+2}\right)=x\left(t_{i}\right)+\int_{t_{i}}^{t_{i+2}} f(t, x(t)) d t
$$

using Simpson's rule. What is the order of accuracy of your scheme?
(5) Consider the linear multi-step method (for a constant b)

$$
x_{i+2}+(b-1) x_{i+1}-b x_{i}=\frac{h}{4}\left[(b+3) f_{i+2}+(3 b+1) f_{i}\right] .
$$

(a) Show that this method is accurate of order 2 if $b \neq-1$ and accurate of order 3 if $b=-1$.
(b) Show that the method is not zero-stable if $b=-1$. For what values of b is it zero-stable?
(c) Illustrate the resulting divergence of the method with $b=-1$ by applying it to the IVP $x^{\prime}=x, x(0)=1$, and solving exactly the resulting difference equation when the starting values are $x_{0}=1, x_{1}=1$.
(6) Show that if r is a root of multiplicity $m>1$ of the characteristic polynomial of the linear difference equation

$$
x_{i+k}+a_{k-1} x_{i+k-1}+\ldots+a_{1} x_{i+1}+a_{0} x_{i}=0
$$

then the sequences $x_{i}=i^{j} r^{i}$ for $0 \leq j \leq m-1$ are solutions.

