
Math 555 Winter 2015
Homework 4 Due Friday, January 30

(1) We introduce a notion of differentiability for real valued functions on C by defining a cor-
responding function on R2. Define the linear mapping Θ : R2 → C by Θ(x1, x2) = x1 + ix2.
Then, given f : C → R, define a corresponding mapping f̃ : R2 → R by f̃ = f ◦ Θ.
We say that the mapping f is differentiable in the real sense if f̃ is differentiable, and f
is twice differentiable in the real sense if f̃ is twice differentiable. The chain rule gives
f ′(ζ) = Θ∇f̃(Θ−1ζ) and f ′′(ζ)δ = Θ∇2f̃(Θ−1ζ)Θ−1δ.

Differentiability in the real sense is the only notion of differentiability we use for mappings
from C to R, so when we say f is differentiable it means f is differentiable in the real sense.
The directional derivative of f in the direction δ is given by f ′(ζ; δ) = Re(f ′(ζ)δ), and the
second derivative is given by f ′′(ζ;ω, δ) = Re(ω̄f ′′(ζ)δ). The function f is quadratic if f ′′(ζ)
is constant in ζ. For example, the function r2(ζ) = |ζ|2 /2 is quadratic with r′2(ζ) = ζ and
r′′2(ζ) = I.
(a) Suppose f : C→ R is differentiable on C, show that

f(y) = f(x) + f ′(x; y − x) + o(|y − x|).
(b) This notion of differentiability is easily extended to mappings f : Cn → R. Describe how

this is done, and define a notion of the gradient, ∇f(x), that works with this notion of

differentiability (hint: you should get f ′(x; d) = Re(∇f(x)Hd) = Re 〈∇f(x), d〉). Then
use these definitions to show that

f(y) = f(x) + f ′(x; y − x) + o(|y − x|).
(c) We have the following theorem from the course notes:

Theorem Suppose that the autonomous DE x′ = f(x) (with f ∈ C1) has a Lyapunov
function V for which

Re(∇V (x)Hf(x)) < 0 whenever x 6= 0 with Re(∇V (x)Hf(x)) = 0 when x = 0.

Then every solution to DE is asymptotically stable to zero.

What goes wrong in the non-autonomous case x′ = f(t, x)? Are there reasonable
additional conditions that one might impose on f(t, x) for which one can prove a non-
autonomous version of the theorem stated above? If so, state and prove such a result.

(2) Prove the following lemma.

Lemma The mapping H : Cn×n → Cn×n given by H(M) = 1
2(M + M∗) is the orthogonal

projection of Cn×n onto the subspace Hn in the Frobenius inner product. Similarly, the
mapping S : Rn×n → Rn×n given by S(M) = 1

2(M + MT ) is the orthogonal projection of
Rn×n onto the subspace Sn.

(3) Let M ∈ Hn and show that M � γI if and only if λ ≤ γ for all λ ∈ σ(M).
(4) Prove the following theorem.

Theorem [Exponential Stability of (CLH)] Let A ∈ Cn×n be such that α(A) < 0. Then,
given α(A) < γ < 0, there exists 0 ≺ P ∈ Hn such that

PA+ AHP � 2γP.

Moreover, for every solution x(t) to (CLH),

|x(t)| ≤
√
κ(P ) |x(t0)|eγ(t−t0) ∀ t ≥ t0,

where κ(P ) is the condition number for the matrix P .

(5) Let 0 < ε << 1 and consider the matrix

A =

[
−ε ε−2

0 −ε

]
.
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(a) Obtain a closed form expression for the solution x(t) for the IVP x′ = Ax with x(0) =
δ(1, 1)T for δ > 0, and use Matlab to graph this solution for ε = 0.1 and δ = 1.

(b) Use this A to show that the stability bound in the theorem of problem (4) is sharp,

i.e. one cannot do better than
√
κ(P ) and obtain an exponential stability bound (hint:

consider the solution near time t = ε−1 − ε2).


