Math 555 Homework 4

Winter 2015 Due Friday, January 30

(1) We introduce a notion of differentiability for real valued functions on \mathbb{C} by defining a corresponding function on \mathbb{R}^2 . Define the linear mapping $\Theta : \mathbb{R}^2 \to \mathbb{C}$ by $\Theta(x_1, x_2) = x_1 + ix_2$. Then, given $f : \mathbb{C} \to \mathbb{R}$, define a corresponding mapping $\tilde{f} : \mathbb{R}^2 \to \mathbb{R}$ by $\tilde{f} = f \circ \Theta$. We say that the mapping f is differentiable in the real sense if \tilde{f} is differentiable, and f is twice differentiable in the real sense if \tilde{f} is twice differentiable. The chain rule gives $f'(\zeta) = \Theta \nabla \tilde{f}(\Theta^{-1}\zeta)$ and $f''(\zeta)\delta = \Theta \nabla^2 \tilde{f}(\Theta^{-1}\zeta)\Theta^{-1}\delta$.

Differentiability in the real sense is the only notion of differentiability we use for mappings from \mathbb{C} to \mathbb{R} , so when we say f is differentiable it means f is differentiable in the real sense. The directional derivative of f in the direction δ is given by $f'(\zeta; \delta) = \operatorname{Re}(\overline{f'(\zeta)}\delta)$, and the second derivative is given by $f''(\zeta; \omega, \delta) = \operatorname{Re}(\overline{\omega}f''(\zeta)\delta)$. The function f is quadratic if $f''(\zeta)$ is constant in ζ . For example, the function $r_2(\zeta) = |\zeta|^2/2$ is quadratic with $r'_2(\zeta) = \zeta$ and $r''_2(\zeta) = I$.

(a) Suppose $f : \mathbb{C} \to \mathbb{R}$ is differentiable on \mathbb{C} , show that

$$f(y) = f(x) + f'(x; y - x) + o(|y - x|).$$

(b) This notion of differentiability is easily extended to mappings $f : \mathbb{C}^n \to \mathbb{R}$. Describe how this is done, and define a notion of the gradient, $\nabla f(x)$, that works with this notion of differentiability (hint: you should get $f'(x; d) = \operatorname{Re}(\nabla f(x)^H d) = \operatorname{Re}\langle \nabla f(x), d \rangle$). Then use these definitions to show that

$$f(y) = f(x) + f'(x; y - x) + o(|y - x|).$$

(c) We have the following theorem from the course notes:

Theorem Suppose that the autonomous DE x' = f(x) (with $f \in C^1$) has a Lyapunov function V for which

 $\operatorname{Re}(\nabla V(x)^H f(x)) < 0$ whenever $x \neq 0$ with $\operatorname{Re}(\nabla V(x)^H f(x)) = 0$ when x = 0.

Then every solution to DE is asymptotically stable to zero.

What goes wrong in the non-autonomous case x' = f(t, x)? Are there reasonable additional conditions that one might impose on f(t, x) for which one can prove a non-autonomous version of the theorem stated above? If so, state and prove such a result.

(2) Prove the following lemma.

Lemma The mapping $\mathcal{H} : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ given by $\mathcal{H}(M) = \frac{1}{2}(M + M^*)$ is the orthogonal projection of $\mathbb{C}^{n \times n}$ onto the subspace \mathbb{H}^n in the Frobenius inner product. Similarly, the mapping $\mathcal{S} : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ given by $\mathcal{S}(M) = \frac{1}{2}(M + M^T)$ is the orthogonal projection of $\mathbb{R}^{n \times n}$ onto the subspace \mathbb{S}^n .

- (3) Let $M \in \mathbb{H}^n$ and show that $M \preceq \gamma I$ if and only if $\lambda \leq \gamma$ for all $\lambda \in \sigma(M)$.
- (4) Prove the following theorem.

Theorem [Exponential Stability of (CLH)] Let $A \in \mathbb{C}^{n \times n}$ be such that $\alpha(A) < 0$. Then, given $\alpha(A) < \gamma < 0$, there exists $0 \prec P \in \mathbb{H}^n$ such that

$$PA + A^H P \preceq 2\gamma P.$$

Moreover, for every solution x(t) to (CLH),

$$|x(t)| \le \sqrt{\kappa(P)} \, |x(t_0)| e^{\gamma(t-t_0)} \qquad \forall \ t \ge t_0,$$

where $\kappa(P)$ is the condition number for the matrix P.

(5) Let $0 < \epsilon \ll 1$ and consider the matrix

$$A = \begin{bmatrix} -\epsilon & \epsilon^{-2} \\ 0 & -\epsilon \end{bmatrix}.$$

- (a) Obtain a closed form expression for the solution x(t) for the IVP x' = Ax with $x(0) = \delta(1, 1)^T$ for $\delta > 0$, and use Matlab to graph this solution for $\epsilon = 0.1$ and $\delta = 1$.
- (b) Use this A to show that the stability bound in the theorem of problem (4) is sharp, i.e. one cannot do better than $\sqrt{\kappa(P)}$ and obtain an exponential stability bound (hint: consider the solution near time $t = \epsilon^{-1} \epsilon^2$).