(1) We introduce a notion of differentiability for real valued functions on \mathbb{C} by defining a corresponding function on \mathbb{R}^{2}. Define the linear mapping $\Theta: \mathbb{R}^{2} \rightarrow \mathbb{C}$ by $\Theta\left(x_{1}, x_{2}\right)=x_{1}+\mathbf{i} x_{2}$. Then, given $f: \mathbb{C} \rightarrow \mathbb{R}$, define a corresponding mapping $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\tilde{f}=f \circ \Theta$. We say that the mapping f is differentiable in the real sense if \tilde{f} is differentiable, and f is twice differentiable in the real sense if \tilde{f} is twice differentiable. The chain rule gives $f^{\prime}(\zeta)=\Theta \nabla \tilde{f}\left(\Theta^{-1} \zeta\right)$ and $f^{\prime \prime}(\zeta) \delta=\Theta \nabla^{2} \tilde{f}\left(\Theta^{-1} \zeta\right) \Theta^{-1} \delta$.

Differentiability in the real sense is the only notion of differentiability we use for mappings from \mathbb{C} to \mathbb{R}, so when we say f is differentiable it means f is differentiable in the real sense. The directional derivative of f in the direction δ is given by $f^{\prime}(\zeta ; \delta)=\operatorname{Re}\left(\overline{f^{\prime}(\zeta)} \delta\right)$, and the second derivative is given by $f^{\prime \prime}(\zeta ; \omega, \delta)=\operatorname{Re}\left(\bar{\omega} f^{\prime \prime}(\zeta) \delta\right)$. The function f is quadratic if $f^{\prime \prime}(\zeta)$ is constant in ζ. For example, the function $r_{2}(\zeta)=|\zeta|^{2} / 2$ is quadratic with $r_{2}^{\prime}(\zeta)=\zeta$ and $r_{2}^{\prime \prime}(\zeta)=I$.
(a) Suppose $f: \mathbb{C} \rightarrow \mathbb{R}$ is differentiable on \mathbb{C}, show that

$$
f(y)=f(x)+f^{\prime}(x ; y-x)+o(|y-x|) .
$$

(b) This notion of differentiability is easily extended to mappings $f: \mathbb{C}^{n} \rightarrow \mathbb{R}$. Describe how this is done, and define a notion of the gradient, $\nabla f(x)$, that works with this notion of differentiability (hint: you should get $\left.f^{\prime}(x ; d)=\operatorname{Re}\left(\nabla f(x)^{H} d\right)=\operatorname{Re}\langle\nabla f(x), d\rangle\right)$. Then use these definitions to show that

$$
f(y)=f(x)+f^{\prime}(x ; y-x)+o(|y-x|) .
$$

(c) We have the following theorem from the course notes:

Theorem Suppose that the autonomous $D E x^{\prime}=f(x)$ (with $f \in C^{1}$) has a Lyapunov function V for which
$\operatorname{Re}\left(\nabla V(x)^{H} f(x)\right)<0 \quad$ whenever $x \neq 0$ with $\operatorname{Re}\left(\nabla V(x)^{H} f(x)\right)=0$ when $x=0$.
Then every solution to $D E$ is asymptotically stable to zero.
What goes wrong in the non-autonomous case $x^{\prime}=f(t, x)$? Are there reasonable additional conditions that one might impose on $f(t, x)$ for which one can prove a nonautonomous version of the theorem stated above? If so, state and prove such a result.
(2) Prove the following lemma.

Lemma The mapping $\mathcal{H}: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ given by $\mathcal{H}(M)=\frac{1}{2}\left(M+M^{*}\right)$ is the orthogonal projection of $\mathbb{C}^{n \times n}$ onto the subspace \mathbb{H}^{n} in the Frobenius inner product. Similarly, the mapping $\mathcal{S}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ given by $\mathcal{S}(M)=\frac{1}{2}\left(M+M^{T}\right)$ is the orthogonal projection of $\mathbb{R}^{n \times n}$ onto the subspace \mathbb{S}^{n}.
(3) Let $M \in \mathbb{H}^{n}$ and show that $M \preceq \gamma I$ if and only if $\lambda \leq \gamma$ for all $\lambda \in \sigma(M)$.
(4) Prove the following theorem.

Theorem [Exponential Stability of $(C L H)$] Let $A \in \mathbb{C}^{n \times n}$ be such that $\alpha(A)<0$. Then, given $\alpha(A)<\gamma<0$, there exists $0 \prec P \in \mathbb{H}^{n}$ such that

$$
P A+A^{H} P \preceq 2 \gamma P .
$$

Moreover, for every solution $x(t)$ to (CLH),

$$
|x(t)| \leq \sqrt{\kappa(P)}\left|x\left(t_{0}\right)\right| e^{\gamma\left(t-t_{0}\right)} \quad \forall t \geq t_{0},
$$

where $\kappa(P)$ is the condition number for the matrix P.
(5) Let $0<\epsilon \ll 1$ and consider the matrix

$$
A=\left[\begin{array}{cc}
-\epsilon & \epsilon^{-2} \\
0 & -\epsilon
\end{array}\right] .
$$

(a) Obtain a closed form expression for the solution $x(t)$ for the IVP $x^{\prime}=A x$ with $x(0)=$ $\delta(1,1)^{T}$ for $\delta>0$, and use Matlab to graph this solution for $\epsilon=0.1$ and $\delta=1$.
(b) Use this A to show that the stability bound in the theorem of problem (4) is sharp, i.e. one cannot do better than $\sqrt{\kappa(P)}$ and obtain an exponential stability bound (hint: consider the solution near time $t=\epsilon^{-1}-\epsilon^{2}$).

