(1) Osgood's Uniqueness Theorem: Suppose that $\phi: \mathbb{R}_{+} \mapsto \mathbb{R}$ is a continuous increasing positive function on \mathbb{R}_{+}for which $\int_{0}^{1} \frac{d u}{\phi(u)}=\infty$. Show that if $f: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is continuous and $|f(t, x)-f(t, y)| \leq \phi(|x-y|)$, then the IVP $x^{\prime}=f(t, x), x(0)=x_{0}$ has at most one solution.
(2) Let $\mathcal{D} \subset \mathbb{R}^{2}$ be open and nonempty, and suppose that $f: \mathcal{D} \rightarrow \mathbb{R}$ is continuous. Let $\left(t_{0}, x_{0}\right) \in \mathcal{D}$. Show that if there exits $\beta>0$ and convex set $\Omega \subset \mathbb{R}$ with $\left[t_{0}, t_{0}+\beta\right] \times \Omega \subset$ \mathcal{D} such that the initial value problem

$$
I V P: \quad x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

has two distinct solutions $x_{1}(t)$ and $x_{2}(t)$ with $x_{i}(t) \in \Omega$ for all $t \in\left[t_{0}, t_{0}+\beta\right], \mathrm{i}=1,2$, then there are infinitely many solutions to the initials value problem IVT on I.
(3) Let $n=1, \mathbb{F}=\mathbb{R}$. Let $f(u)$ be a positive continuous function on $\left[u_{0}, \infty\right)$. Consider the IVP $u^{\prime}=f(u), u(0)=u_{0}$.
(a) Use the inverse function theorem to give a rigorous justification of the method of separation of variables to solve this problem by proving that the equation

$$
\int_{u_{0}}^{u} \frac{d v}{f(v)}=t
$$

determines a \mathcal{C}^{1} function $u(t)$ that is the unique solution of the IVP for $t \geq 0$.
(b) Show that the solution of this IVP exists for all time $t \geq 0$ if and only if $\int_{u_{0}}^{\infty} \frac{d v}{f(v)}=$ ∞.
(4) Let $V: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $f: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$ be \mathcal{C}^{1}. Suppose that

$$
\nabla V(x) \cdot f(x) \leq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

(a) Interpret this inequality geometrically.
(b) Further, suppose that there is an $\alpha>0$ such that

$$
V(x) \geq \alpha|x|^{2} \quad \text { for all } x \in \mathbb{R}^{n}
$$

Show that for any $x_{0} \in \mathbb{R}^{n}$, the solution of the IVP $x^{\prime}=f(x), x(0)=x_{0}$ can be extended to all of $[0, \infty)$.
Remark: $V(x)$ is called a Liapunov function for $f(x)$.

