Math 555 Homework Set 1

Winter 2006 Due Friday January 9

- (1) Osgood's Uniqueness Theorem: Suppose that $\phi : \mathbb{R}_+ \to \mathbb{R}$ is a continuous increasing positive function on \mathbb{R}_+ for which $\int_0^1 \frac{du}{\phi(u)} = \infty$. Show that if $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and $|f(t,x) f(t,y)| \le \phi(|x-y|)$, then the IVP $x' = f(t,x), x(0) = x_0$ has at most one solution.
- (2) Let $\mathcal{D} \subset \mathbb{R}^2$ be open and nonempty, and suppose that $f : \mathcal{D} \to \mathbb{R}$ is continuous. Let $(t_0, x_0) \in \mathcal{D}$. Show that if there exits $\beta > 0$ and convex set $\Omega \subset \mathbb{R}$ with $[t_0, t_0 + \beta] \times \Omega \subset \mathcal{D}$ such that the initial value problem

$$IVP: x' = f(t, x), x(t_0) = x_0$$

has two distinct solutions $x_1(t)$ and $x_2(t)$ with $x_i(t) \in \Omega$ for all $t \in [t_0, t_0 + \beta]$, i=1,2, then there are infinitely many solutions to the initials value problem IVT on I.

- (3) Let n = 1, $\mathbb{F} = \mathbb{R}$. Let f(u) be a positive continuous function on $[u_0, \infty)$. Consider the IVP u' = f(u), $u(0) = u_0$.
 - (a) Use the inverse function theorem to give a *rigorous* justification of the method of *separation of variables* to solve this problem by proving that the equation

$$\int_{u_0}^u \frac{dv}{f(v)} = t$$

determines a \mathcal{C}^1 function u(t) that is the unique solution of the IVP for $t \ge 0$.

- (b) Show that the solution of this IVP exists for all time $t \ge 0$ if and only if $\int_{u_0}^{\infty} \frac{dv}{f(v)} = \infty$.
- (4) Let $V : \mathbb{R}^n \to \mathbb{R}$ and $f : \mathbb{R}^N \to \mathbb{R}^N$ be \mathcal{C}^1 . Suppose that

 $\nabla V(x) \cdot f(x) \leq 0$ for all $x \in \mathbb{R}^n$.

- (a) Interpret this inequality geometrically.
- (b) Further, suppose that there is an $\alpha > 0$ such that

$$V(x) \ge \alpha |x|^2$$
 for all $x \in \mathbb{R}^n$.

Show that for any $x_0 \in \mathbb{R}^n$, the solution of the IVP x' = f(x), $x(0) = x_0$ can be extended to all of $[0, \infty)$.

Remark: V(x) is called a *Liapunov function* for f(x).