Vibrating Strings and Heat Flow

Consider an infinite vibrating string. Assume
that the z-axis is the equilibrium position of
the string and that the tension in the string at

“snap shot” at time ¢:

rest in equilibrium is 7. Let w(z,t) denote the u ~u(z,t) = displacement
displacement at x at time ¢. Then the wave ‘

equation (in one space dimension) governs the x x
motion. ‘

Derivation. (for small displacements). We
make the following simplifying assumptions:

e the displacement of the string from equilibrium (and its slope) are small;
e cach point on the string moves only in the vertical direction;

e the tension force T'(z,t) in the string (i.e., the (vector) force which the part of the
string to the right of = exerts on the part to the left of x, at time t) is tangential to
the string and has magnitude proportional to the local stretching factor /1 + u2.

Since u, = 0 in equilibrium, the constant of proportionality
is the equilibrium tension 7. Thus the magnitude of T'(x,t) is
7/ 1+ u,(x,t)?, and the vertical component of T'(x,t) is Tu,.
Now consider the part of the string between x and = + Aw.
The vertical component of Newton’s second law (force = mass
x acceleration) applied to this part of the string is

/4{(;+Az,t)
—T(x,t
force mass accel - (=:£)

A |

< N ~ z x I x
Tu(z + Az, t) — Tug(z,t) = pAx uy(x,t), e

where p is the density (mass per unit length; assumed constant). Dividing by Az and taking
the limit as Az — 0, we obtain

TUpy = putt .

Normalizing units so that p = 7, we obtain the wave equation (in one space dimension):
Ut = Ugy-
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Solutions of uy = u,,
Change variables. Let y =z +t, 2=z — ¢, 80 x = 1(y + 2), t = (y — z). Then
0, = (Oy) 0+ (0,00 — L0+,
9. = (0.x)0, + (0:1)0, = 1(9, — ),

SO Uy = %(ul« + uy) and uy, = % (0 — Oy) %(um +uy) = i(um — uy). In the new coordinates,

the wave equation becomes simply u,, = 0. Thus wu, is independent of z, i.e., u, = v(y).
Integrating in y for each fixed z, we get u = v(y) + w(z) (where v(y) = [v(y)dy). So any
solution of the wave equation uy = u,, is of the form

(%) u(z,t) =v(z +t) +wlz —1t).

Physically, this is a superposition of left-going and right-going waves:

v() a

w(x)
‘\_/\— /

.- (as t increases) .

\__/\_v(:c+t) %w—t)

Observation. The derivation above shows that any C? function of z and ¢ satisfying the
wave equation is of the form (x). Conversely, if v and w are C? functions of one variable,
it is easily checked that u(x,t) = v(x +t) + w(z — t) is a C* solution of the wave equation.
But if v and w are only continuous, v(x + t) + w(x — t) still makes sense; in what sense is
this a solution of uy = u,,? We will see later in the course that the equation holds in the
sense of distributions.

Initial-Value Problem (IVP) (or the Cauchy Problem)

If we think of the wave operator as an ordinary differential operator in time acting on
functions of t taking values in functions of = (overlooking considerations arising from the
fact that 92 is itself a differential operator), we “should” be able to determine u(x,t) for
x € R and t > 0 if we are given initial values u(z,0) and u.(z,0) for z € R (we need u and
u; at t = 0 since the equation is second-order in t).

D’Alembert’s Formula (for the Cauchy Problem for uy = uy,)
Consider the IVP: DE uy = uy, (x € Rt > 0)

w@,0) = f)  (zE€R)
IC{ w(w,0) = g(x) (x € R)
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(To obtain a C? solution u(z, t), it will suffice for f € C?(R), g € C*(R).) We will separately
analyze the cases ¢ = 0 and f = 0, and then use superposition.

Case 1. ¢ =0.

of i) 219 eem

We have u(x,t) = v(z +t) + w(z — t) for some v, w € C*(R). By the IC,

v(r) +wlz) = u(z,0) = f(z)
V(z) —w'(z) = w(x,0) = 0,

so v and w differ by a constant. One solution is v(z) = w(z) = % f(z). Any other solution

v(z) = 3f(x)+c i
w(z) = 3f(z)—c

for some constant ¢. So the solution in Case 1 is

u(w,t) = sf(x+t)+3f(x—1).

Remark. For a solution u(z,t) of uy = uy,, v and w are uniquely determined up to a constant.
This is because if vy (z +t) +wi(x —t) = va(x + t) + wo(x — t), then v (z +t) —vo(x + 1) =

wy(x —t) —w (x —t) is independent of both y = x+t and z = x —t, and is thus a constant.

Case 2. f =0.

u(z,0) = 0
C{ w(z0) = gz) @R

Again, u(z,t) = v(z +t) + w(z — t) for some v,w € C*(R). By the IC,

Thus , 1

v(z)+w(x) = 0 w o= —v
Vi) —w'(x) = g(x) Vo= 39

Sowv = %fg and the solution in Case 2 is
1 -+t
u(zx,t) = 5/ g(s)ds.

Adding Cases 1 and 2, the solution of the IVP with IC u(w,0) = f(x) is given by
(,0) = g(z)
d’Alembert’s formula:

T+t

u(a:,t):%f(:c+t)+%f(x—t)+%/ g(s)ds.

r—t
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Remarks.

(1) d’Alembert’s formula gives an explicit demonstration of the finite
domain of dependence of the solution of this IVP on the initial
L data (a general property of hyperbolic PDEs): for a fixed z € R
and fixed t > 0, u(z,t) depends only on f(x +t), f(z —t), and
{9(s) iz —t <s<ux+t}.

(2) d’Alembert’s formula also provides a solution for negative ¢ as
u(z,0) = f(x)
well: uy = uz (v € Rt < 0), ’ “final”
o e e = o ¢
conditions); like ODEs, hyperbolic PDEs in general can be ad-
vanced either in the +t direction or the —t direction.

Initial-Boundary Value Problem (IBVP)

Consider now a finite string (0 < z < 7) fixed at both
ends, so u(0,t) = wu(m,t) = 0. Suppose the initial
displacement is u(z,0) = f(z) (0 < z < 7) (where
f(0) = f(m) = 0), and for simplicity suppose the ini-
tial velocity is u¢(x,0) = 0 (0 < 2 < 7). This models a
“plucked” violin string (moved to position u(x,0) = f(x)
at time t = 0, and then released with initial velocity
ut(z,0) = 0). We obtain an IBVP with both initial con-
ditions (IC) and boundary conditions (BC):

DE  wuy = uy, 0<z<mt>0)

Wz,0) = f(x)
© {ut(af,O) = 0 0<z<m)

u(0,t) = 0
BC {u(w,t) =0 (t=0)

We will solve this IBVP in two ways: (D) by d’Alembert’s formula, and (2) by Fourier series.
Solution @ (d’Alembert). Find functions v, w defined on R so that

u(z,t) =v(x +t) +wlx —1t)

satisfies the IC and BC. The BC u(0,t) = 0 for ¢t > 0 gives 0 = v(t) + w(—t) for ¢t > 0, or
w(t) = —v(—t) for t < 0. [Note that to define u(x,t) in the region 0 < z < 7, t > 0, we
only need to give v(s) for s > 0 and w(s) for s < 7. To simplify our calculations, we will
find v and w defined on all of R, so that u(z,t) satisfies the BC for ¢ < 0 too.] So we ask

w(t) = —v(—t)(Vt € R). Next, the BC u(m,t) = 0 (now V¢ € R) gives 0 = v(r+t)+w(m—1t),
sov(m+1t) = —w(r —t) = vt —m), ie, v(t +2m) = v(t)(Vt € R). So v is 2w-periodic,
and thus w(t) = —v(—t) is also 2m-periodic. The IC w(x,0) = 0 (0 < x < 7) gives
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0=1(z) —w(zx) =2 (x) —v(—x) for 0 <z <, ie., v'(—x) =v(z) for 0 <z < 7. Since
v’ is 2m-periodic, we conclude that ¢’ is an even function on R. We may assume v(0) = 0 (if
not, replace v by v(s) — v(0) and replace w by w(s) + v(0)). Then

o(—z) = /0 V(s)ds = — /0 o (—s)ds = — /0 o(s)ds = —v(z)(Vz € R),

so v is an odd function on R; moreover w = v since w(t) = —v(—t). Finally, the IC
u(z,0) = f(z) (0 < z < 7) gives f(z) = v(z) + w(z) = 2v(z), Le., v(z) = 5f(x) for
0 < z < 7. This completes the determination of v: it is the 2m-periodic, odd function on

R which agrees with % f on [0,7]. So d’Alembert’s solution can be summarized as follows:

define f(z) = f(z) for 0 < z < m, f(z) = —f(—x) for = < 2 < 0 (the odd extension of f
from [0, 7] to [—, 7)), and then extend f to be 2m-periodic on R. [Note: if £(0) = f(x) =0
and f € C[0,7], then f € C'(R); if in addition f € C2[0,7] and f”(0) = f(x) = 0, then
f € C2(R).] We obtain d’Alembert’s formula for the solution of this IBVP:

u(z,t) = % <f(x )+ flo— t))

(remember, this is the special case where u;(z,0) =0 (0 <z < 7)).

Solution (2 (Fourier series). We use separation of variables. We want to find simple
harmonics of the string, that is, solutions of the form

u(z,t) = v(x)w(t)

(often called fundamental modes). The v and w here are not the same v and w as above.

Using ' to mean - for v, and also 4 for w, the DE uy = u,, becomes v(z)w”(t) = v"(z)w(t),
or (wherever v(x)w(t) # 0)

w//(t) B U”(SL’)
w(t)  w(z)’
The LHS is independent of z and the RHS is independent of ¢, so both sides are equal to a

constant; call it —A.
We end up with ODEs for v and w:

v'(x) + Mv(z) = 0 0<z<m) “spatial ODE”
w'(t) + A w(t) = 0 (t>0) “temporal ODE”

Applying the BC to the “spatial ODE”, we get v(0) = v(w) = 0, leading to the following
“eigenvalue problem”: determine for which (in this case real) values of A there exists a
non-trivial (i.e., not = 0) solution v(x) of the boundary-value problem (BVP):

DE v+ = 0 0<z<m
BC v(0) =v(r) = 0.
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Case (i) A < 0. The general solution of v” + Av = 0 is ¢; cosh(v/—Az) + ¢y sinh(v/—Az).
v(0) =0 = ¢; =0, and then v(7) = 0 = ¢ = 0. No nontrivial solutions.

Case (ii) A = 0. The general solution of v” = 0is v(z) = ¢; + caz. v(0) =0 = ¢; =0, and
then v(m) = 0 = ¢ = 0. No nontrivial solutions.

Case (iii) A > 0. The general solution of v" + Av = 0 is v(x) = ¢; cos(vV/Az) + ¢y sin(vAx)
v(0) =0 = ¢; = 0. Then v(7) =0 (and ¢, # 0 so v is nontrivial) = sin(v/Ar) = 0= VA €
{1,2,3,...} == A =n?forn € {1,2,3,...}. These are the “eigenvalues” of this eigenvalue
problem. The corresponding “eigenfunctions” are sin(v/Az) = sin(nz).

Applying the homogeneous IC u(x,0) = 0 to the “temporal ODE,” we get w'(0) = 0.
For A\ = n?, the general solution of w” + Aw = 0 is ¢; cosnt + cysinnt. The IC w’(0) = 0
implies co = 0, so w(t) = ¢; cosnt. Thus the fundamental modes for this problem are

up(z,t) = cos(nt) sin(nx) ne{l,2,3,...}.

Linear combinations of these are also solutions of the DE, the BC, and the one IC u;(x,0) = 0.
To satisfy the IC u(z,0) = f(z) for 0 < 2 < 7, we represent f(z) in a Fourier sine series:

flx) = Z A, sin(nx).
n=1
Then (provided this series converges appropriately),

u(z,t) = Z A, cos(nt) sin(nx)

n=1

satisfies the DE, the BC, and both IC. (See Problem 3 on Problem Set 7 for details).

Heat Flow

Counsider heat flow in a thin rod with insulated lateral surface.

T z+Ax

Assume that the temperature u(z,t) is a function only of horizontal position z and time ¢.

By Newton’s law of cooling, the amount of heat flowing from left to right across the point x
in time At is —x2%(z, t) At (proportional to the gradient of temperature), where the constant

of proportionality « is called the heat conductivity of the rod. So the net heat flowing into
the part of rod between x and = + Az in the time interval from ¢ to ¢ + At is

ou ou
ma—x(:c + Az, t)At — “%@’ t)At.

The net heat flowing into this part of the rod in this time interval can also be expressed as

~Au
mass  gpecific heat /a_/\
~ N u
pAT - c . EAt’
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where p is the density (mass per unit length) of the rod, and ¢ is the specific heat of the rod
(the amount of heat needed to raise a unit mass by 1 unit of temperature). Equating these
two expressions, dividing by At and Az, and taking the limit as Ax — 0, we obtain

Klgy = PCU.
Normalizing units so that pc = k, we obtain the heat equation (in one space dimension):
Ut = Ugy-

Fourier considered circular rods of length 27, leading to the following IBVP with periodic
BC:

0<z<2m

IBVP: DE Up = Ugy 0<x<2m,t>0
IC u(z,0) = f(z) 0<z<2m
. u(0,t) = wu(2m,t)
>
periodic BC { w(0.8) = up(2m, 1) t>0

We can view u as defined on T x [0,00) (where T' = S'), or as a 2m-periodic function of

r € R with ¢t >0.)
As with the wave equation, we separate variables and look for solutions of the form

u(z,t) = v(x)w(t). The DE u; = ug, becomes v(x)w'(t) = v"(x)w(t), or (wherever
o(@)w(t) £ 0) o

both sides are equal to a constant; call it —\. The “spatial ODE” is
V'(z) + Av(x) =0
and the “temporal ODE” is

w'(t) + A w(t) =0, (t>0).
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In this case our eigenvalue problem has periodic boundary conditions:
v 4+ v =0, (0 <z <2m)
v(0) = v(27), v'(0) =" (27).

Case (i). A < 0. The only solution is v = 0.

Case (ii). A = 0. There is one linearly independent solution: v = 1.

Case (iii). A > 0 We must have A\ = n? for n € {1,2,3,...}, now with two linearly
independent solutions: cos(nt) and sin(nt) (see Problem 1 on Problem Set 7 for details). For
A =n? (with n € {0,1,2,...}), there is one linearly independent solution of w’ + Aw = 0:
w = e~ . Thus the fundamental modes for this problem are:

u=1
and for n € {1,2,3,...}:
w(z,t) = e " cosnt, and  u(z,t) = e " sinnt.
To satisty the IC u(z,0) = f(z) for 0 < z < 27, we represent f(z) in a Fourier series:

f(z) =ay+ Z(an cos nx + b, sin nzx).

n=1

Then (provided this series converges appropriately)
u(x,t) = ap + Z ¢"ay cosna + by, sinnx)
n=1

satisfies the DE, the periodic BC, and the IC.

Remark. This form of the Fourier series of f (viewed as its 2m-periodic extension) is equiv-
alent to the complex exponential form

f(z) = Z cne™.

n=—oo

Forn > 1,

cosSnNT = % (emm + e*mm) and sinnr = % (emm — e*mx)

span the same two-dimensional subspace (over C) as

in —inx

""" = cosnx + i sin nx and e = cosnxr — tsinnx.
The coefficients are related as follows: ¢y = ag, and for n > 1,

(an, — iby,), Cepy = %(an +ib,,),

N[

Cp =
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(p = Cp + C_p, by, =i(cp —c_p).

In the inner product

(0.0) = 5= | T@ @)

on L*(S1), the set
{1,V2cosnz,2sinnz : n > 1}

is a complete orthonormal set, giving us the following formulae for a,, and b,,:
1 2
= — d
= [ 1@

a, = 2(cosnz, f) = / f(x) cosnxdz,

and for n > 1,

b, = 2(sinnz, f) = / f(z) sinnxdx.

Caution. Many books will write

L Z(an cosnx + by, sinnx),

fa) =5

n=1

ap=2(1, f) = / f(x %/0% f(z) cos(0z)dx

The solution u(x,t) expressed in terms of complex exponentials is
= fle e
ez

where f(f) = (e, f) = 5= 0% f(z)e ™ dz. Note that if f € C*(T) (or even f is continuous
and piecewise C' on T, meaning f’ has only a finite number of jump discontinuities), then

in which case

]? € [1(Z). Thus this series for u(z,t) converges absolutely and uniformly for x € T and
t >0, and u(x,0) = f(x); moreover, for ¢ > 0, this is a C* solution of u; = wu,,. This is
a consequence of the rapid decay of e ¢t as |€| — oo for t > 0. But for ¢ < 0, we do not
expect this series to converge unless |f(§ )| — 0 extremely fast as |£| — oo. These properties
are common for parabolic equations: the solution is smooth for ¢ > 0, but we cannot go
backwards in time.

Remark. As for the wave equation, we can also solve IBVP of the form

DE U = Uy 0<z<mt=>0)
IC u(z,0) = f(z) 0<z<m)
BC u(0,t) = 0, u(m,t) =0 (t>0)

(or with BC u,(0,t) = 0, u,(m,t) = 0, etc.)



