Introduction to the Numerical Solution of IVP for ODE

Consider the IVP: DE $x^{\prime}=f(t, x)$, IC $x(a)=x_{a}$. For simplicity, we will assume here that $x(t) \in \mathbb{R}^{n}$ (so $\mathbb{F}=\mathbb{R}$), and that $f(t, x)$ is continuous in t, x and uniformly Lipschitz in x (with Lipschitz constant L) on $[a, b] \times \mathbb{R}^{n}$. So we have global existence and uniqueness for the IVP on $[a, b]$.

Moreover, the solution of the IVP $x^{\prime}=f(t, x), x(a)=x_{a}$ depends continuously on the initial values $x_{a} \in \mathbb{R}^{n}$. This IVP is an example of a well-posed problem: for each choice of the "data" (here, the initial values x_{a}), we have:
(1) Existence. There exists a solution of the IVP on $[a, b]$.
(2) Uniqueness. The solution, for each given x_{a}, is unique.
(3) Continuous Dependence. The solution depends continuously on the data.

Here, e.g., the map $x_{a} \mapsto x\left(t, x_{a}\right)$ is continuous from \mathbb{R}^{n} into $\left(C([a, b]),\|\cdot\|_{\infty}\right)$. A well-posed problem is a reasonable problem to approximate numerically.

Grid Functions

Choose a mesh width h (with $0<h \leq b-a$), and let
 $N=\left[\frac{b-a}{h}\right]$ (greatest integer $\left.\leq(b-a) / h\right)$. Let $t_{i}=a+i h$ $(i=0,1, \ldots, N)$ be the grid points in t (note: $t_{0}=a$), and let x_{i} denote the approximation to $x\left(t_{i}\right)$. Note that t_{i} and x_{i} depend on h, but we will usually suppress this dependence in our notation.

Explicit One-Step Methods

Form of method: start with x_{0} (presumably $x_{0} \approx x_{a}$). Recursively compute x_{1}, \ldots, x_{N} by

$$
x_{i+1}=x_{i}+h \psi\left(h, t_{i}, x_{i}\right), \quad i=0, \ldots, N-1 .
$$

Here, $\psi(h, t, x)$ is a function defined for $0 \leq h \leq b-a, a \leq t \leq b, x \in \mathbb{R}^{n}$, and ψ is associated with the given function $f(t, x)$.

Examples.

Euler's Method.

$$
x_{i+1}=x_{i}+h f\left(t_{i}, x_{i}\right)
$$

Here, $\psi(h, t, x)=f(t, x)$.

Taylor Methods.

Let p be an integer ≥ 1. To see how the Taylor Method of order p is constructed, consider the Taylor expansion of a C^{p+1} solution $x(t)$ of $x^{\prime}=f(t, x)$:

$$
x(t+h)=x(t)+h x^{\prime}(t)+\cdots+\frac{h^{p}}{p!} x^{(p)}(t)+\underbrace{O\left(h^{p+1}\right)}_{\text {remainder term }}
$$

where the remainder term is $O\left(h^{p+1}\right)$ by Taylor's Theorem with remainder. In the approximation, we will neglect the remainder term, and use the DE $x^{\prime}=f(t, x)$ to replace $x^{\prime}(t), x^{\prime \prime}(t), \ldots$ by expressions involving f and its derivatives:

$$
\begin{aligned}
x^{\prime}(t) & =f(t, x(t)) \\
x^{\prime \prime}(t) & =\frac{d}{d t}(f(t, x(t)))=\left.D_{t} f\right|_{(t, x(t))} ^{(n \times 1)}+\left.D_{x} f\right|_{(t, x(t))} \frac{(n \times n)}{(n \times 1)} \frac{d x}{d t} \\
& =\left.\left(D_{t} f+\left(D_{x} f\right) f\right)\right|_{(t, x(t))} \quad \quad\left(\text { for } n=1, \text { this is } f_{t}+f_{x} f\right)
\end{aligned}
$$

For higher derivatives, inductively differentiate the expression for the previous derivative, and replace any occurrence of $\frac{d x}{d t}$ by $f(t, x(t))$. These expansions lead us to define the Taylor methods of order p :

$$
\begin{aligned}
& \left.p=1: \quad x_{i+1}=x_{i}+h f\left(t_{i}, x_{i}\right) \quad \quad \text { (Euler's method, } \psi(h, t, x)=f(t, x)\right) \\
& p=2: \quad x_{i+1}=x_{i}+h f\left(t_{i}, x_{i}\right)+\left.\frac{h^{2}}{2}\left(D_{t} f+\left(D_{x} f\right) f\right)\right|_{\left(t_{i}, x_{i}\right)}
\end{aligned}
$$

For the case $p=2$, we have

$$
\psi(h, t, x)=\left.T_{2}(h, t, x) \equiv\left(f+\frac{h}{2}\left(D_{t} f+\left(D_{x} f\right) f\right)\right)\right|_{(t, x)}
$$

We will use the notation $T_{p}(h, t, x)$ to denote the $\psi(h, t, x)$ function for the Taylor method of order p.

Remark. Taylor methods of order ≥ 2 are rarely used computationally. They require derivatives of f to be programmed and evaluated. They are, however, of theoretical interest in determining the order of a method.

Remark. A "one-step method" is actually an association of a function $\psi(h, t, x)$ (defined for $0 \leq h \leq b-a, a \leq t \leq b, x \in \mathbb{R}^{n}$) to each function $f(t, x)$ (which is continuous in t, x and Lipschitz in x on $[a, b] \times \mathbb{R}^{n}$). We study "methods" looking at one function f at a time. Many methods (e.g., Taylor methods of order $p \geq 2$) require more smoothness of f, either for their
definition, or to guarantee that the solution $x(t)$ is sufficiently smooth. Recall that if $f \in C^{p}$ (in t and x), then the solution $x(t)$ of the IVP $x^{\prime}=f(t, x), x(a)=x_{a}$ is in $C^{p+1}([a, b])$. For "higher-order" methods, this smoothness is essential in getting the error to be higher order in h. We will assume from here on (usually tacitly) that f is sufficiently smooth when needed.

Examples.

Modified Euler's Method

$$
\begin{aligned}
x_{i+1} & =x_{i}+h f\left(t_{i}+\frac{h}{2}, x_{i}+\frac{h}{2} f\left(t_{i}, x_{i}\right)\right) \\
(\text { so } \psi(h, t, x) & \left.=f\left(t+\frac{h}{2}, x+\frac{h}{2} f(t, x)\right)\right) .
\end{aligned}
$$

Here $\psi(h, t, x)$ tries to approximate

$$
x^{\prime}\left(t+\frac{h}{2}\right)=f\left(t+\frac{h}{2}, x\left(t+\frac{h}{2}\right)\right),
$$

using the Euler approximation to $x\left(t+\frac{h}{2}\right)\left(\approx x(t)+\frac{h}{2} f(t, x(t))\right)$.
Improved Euler's Method (or Heun's Method)

$$
\begin{aligned}
x_{i+1} & =x_{i}+\frac{h}{2}\left(f\left(t_{i}, x_{i}\right)+f\left(t_{i+1}, x_{i}+h f\left(t_{i}, x_{i}\right)\right)\right) \\
(\text { so } \psi(h, t, x) & \left.=\frac{1}{2}(f(t, x)+f(t+h, x+h f(t, x)))\right)
\end{aligned}
$$

Here again $\psi(h, t, x)$ tries to approximate

$$
x^{\prime}\left(t+\frac{h}{2}\right) \approx \frac{1}{2}\left(x^{\prime}(t)+x^{\prime}(t+h)\right)
$$

Or $\psi(h, t, x)$ can be viewed as an approximation to the trapezoid rule applied to

$$
\frac{1}{h}(x(t+h)-x(t))=\frac{1}{h} \int_{t}^{t+h} x^{\prime} \approx \frac{1}{2} x^{\prime}(t)+\frac{1}{2} x^{\prime}(t+h)
$$

Modified Euler and Improved Euler are examples of $2^{\text {nd }}$ order two-stage Runge-Kutta methods. Notice that no derivatives of f need be evaluated, but f needs to be evaluated twice in each step (from x_{i} to x_{i+1}).

Before stating the convergence theorem, we introduce the concept of accuracy.

Local Truncation Error

Let $x_{i+1}=x_{i}+h \psi\left(h, t_{i}, x_{i}\right)$ be a one-step method, and let $x(t)$ be a solution of the DE $x^{\prime}=f(t, x)$. The local truncation error (LTE) for $x(t)$ is defined to be

$$
l(h, t) \equiv x(t+h)-(x(t)+h \psi(h, t, x(t))),
$$

that is, the local truncation error is the amount by which the true solution of the DE fails to satisfy the numerical scheme. $l(h, t)$ is defined for those (h, t) for which $0<h \leq b-a$ and $a \leq t \leq b-h$.

Define

$$
\tau(h, t)=\frac{l(h, t)}{h}
$$

and set $\tau_{i}(h)=\tau\left(h, t_{i}\right)$. Also, set

$$
\tau(h)=\max _{a \leq t \leq b-h}|\tau(h, t)| \quad \text { for } 0<h \leq b-a .
$$

Note that

$$
l\left(h, t_{i}\right)=x\left(t_{i+1}\right)-\left(x\left(t_{i}\right)+h \psi\left(h, t_{i}, x\left(t_{i}\right)\right)\right)
$$

explicitly showing the dependence of l on h, t_{i}, and $x(t)$.
Definition. A one-step method is called [formally] accurate of order p (for a positive integer p) if for any solution $x(t)$ of the $\mathrm{DE} x^{\prime}=f(t, x)$ which is C^{p+1}, we have $l(h, t)=O\left(h^{p+1}\right)$.

Definition. A one-step method is called consistent if $\psi(0, t, x)=f(t, x)$. Consistency is essentially minimal accuracy:

Proposition. A one-step method

$$
x_{i+1}=x_{i}+h \psi\left(h, t_{i}, x_{i}\right),
$$

where $\psi(h, t, x)$ is continuous for $0 \leq h \leq h_{0}, a \leq t \leq b, x \in \mathbb{R}^{n}$ for some $h_{0} \in(0, b-a]$, is consistent with the $\mathrm{DE} x^{\prime}=f(t, x)$ if and only if $\tau(h) \rightarrow 0$ as $h \rightarrow 0^{+}$.

Proof. Suppose the method is consistent. Fix a solution $x(t)$. For $0<h \leq h_{0}$, let

$$
Z(h)=\max _{a \leq s, t \leq b,|s-t| \leq h}|\psi(0, s, x(s))-\psi(h, t, x(t))| .
$$

By uniform continuity, $Z(h) \rightarrow 0$ as $h \rightarrow 0^{+}$. Now

$$
\begin{aligned}
l(h, t) & =x(t+h)-x(t)-h \psi(h, t, x(t)) \\
& =\int_{t}^{t+h}\left[x^{\prime}(s)-\psi(h, t, x(t))\right] d s \\
& =\int_{t}^{t+h}[f(s, x(s))-\psi(h, t, x(t))] d s \\
& =\int_{t}^{t+h}[\psi(0, s, x(s))-\psi(h, t, x(t))] d s
\end{aligned}
$$

so $|l(h, t)| \leq h Z(h)$. Therefore $\tau(h) \leq Z(h) \rightarrow 0$.
Conversely, suppose $\tau(h) \rightarrow 0$. For any $t \in[a, b)$ and any $h \in(0, b-t]$,

$$
\frac{x(t+h)-x(t)}{h}=\psi(h, t, x(t))+\tau(h, t)
$$

Taking the limit as $h \downarrow 0$ gives $f(t, x(t))=x^{\prime}(t)=\psi(0, t, x(t))$.

Convergence Theorem for One-Step Methods

Theorem. Suppose $f(t, x)$ is continuous in t, x and uniformly Lipschitz in x on $[a, b] \times \mathbb{R}^{n}$. Let $x(t)$ be the solution of the IVP $x^{\prime}=f(t, x), x(a)=x_{a}$ on $[a, b]$. Suppose that the function $\psi(h, t, x)$ in the one step method satisfies the following two conditions:

1. (Stability) $\psi(h, t, x)$ is continuous in h, t, x and uniformly Lipschitz in x (with Lipschitz constant K) on $0 \leq h \leq h_{0}, a \leq t \leq b, x \in \mathbb{R}^{n}$ for some $h_{0}>0$ with $h_{0} \leq b-a$, and
2. (Consistency) $\psi(0, t, x)=f(t, x)$.

Let $e_{i}(h)=x\left(t_{i}(h)\right)-x_{i}(h)$, where x_{i} is obtained from the one-step method $x_{i+1}=x_{i}+$ $h \psi\left(h, t_{i}, x_{i}\right)$. (Note that $e_{0}(h)=x_{a}-x_{0}(h)$ is the error in the initial value $x_{0}(h)$.) Then

$$
\left|e_{i}(h)\right| \leq e^{K\left(t_{i}(h)-a\right)}\left|e_{0}(h)\right|+\tau(h)\left(\frac{e^{K\left(t_{i}(h)-a\right)}-1}{K}\right)
$$

so

$$
\left|e_{i}(h)\right| \leq e^{K(b-a)}\left|e_{0}(h)\right|+\frac{e^{K(b-a)}-1}{K} \tau(h) .
$$

Moreover, $\tau(h) \rightarrow 0$ as $h \rightarrow 0$. Therefore, if $e_{0}(h) \rightarrow 0$ as $h \rightarrow 0$, then

$$
\max _{0 \leq i \leq \frac{b-a}{h}}\left|e_{i}(h)\right| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

that is, the approximations converge uniformly on the grid to the solution.
Proof. Hold $h>0$ fixed, and ignore rounding error. Subtracting

$$
x_{i+1}=x_{i}+h \psi\left(h, t_{i}, x_{i}\right)
$$

from

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h \psi\left(h, t_{i}, x\left(t_{i}\right)\right)+h \tau_{i},
$$

gives

$$
\begin{aligned}
\left|e_{i+1}\right| & \leq\left|e_{i}\right|+h\left|\psi\left(h, t_{i}, x\left(t_{i}\right)\right)-\psi\left(h, t_{i}, x_{i}\right)\right|+h\left|\tau_{i}\right| \\
& \leq\left|e_{i}\right|+h K\left|e_{i}\right|+h \tau(h) \\
& =(1+h K)\left|e_{i}\right|+h \tau(h) .
\end{aligned}
$$

So

$$
\begin{aligned}
\left|e_{1}\right| & \leq(1+h K)\left|e_{0}\right|+h \tau(h), \quad \text { and } \\
\left|e_{2}\right| & \leq(1+h K)\left|e_{1}\right|+h \tau(h) \\
& \leq(1+h K)^{2}\left|e_{0}\right|+h \tau(h)(1+(1+h K))
\end{aligned}
$$

By induction,

$$
\begin{aligned}
\left|e_{i}\right| & \leq(1+h K)^{i}\left|e_{0}\right|+h \tau(h)\left(1+(1+h K)+(1+h K)^{2}+\cdots+(1+h K)^{i-1}\right) \\
& =(1+h K)^{i}\left|e_{0}\right|+h \tau(h) \frac{(1+h K)^{i}-1}{(1+h K)-1} \\
& =(1+h K)^{i}\left|e_{0}\right|+\tau(h) \frac{(1+h K)^{i}-1}{K}
\end{aligned}
$$

Since $(1+h K)^{\frac{1}{h}} \uparrow e^{K}$ as $h \rightarrow 0^{+}$(for $K>0$), and $i=\frac{t_{i}-a}{h}$, we have

$$
(1+h K)^{i}=(1+h K)^{\frac{t_{i}-a}{h}} \leq e^{K\left(t_{i}-a\right)} .
$$

Thus

$$
\left|e_{i}\right| \leq e^{K\left(t_{i}-a\right)}\left|e_{0}\right|+\tau(h) \frac{e^{K\left(t_{i}-a\right)}-1}{K}
$$

The preceding proposition shows $\tau(h) \rightarrow 0$, and the theorem follows.
If f is sufficiently smooth, then we know that $x(t) \in C^{p+1}$. The theorem thus implies that if a one-step method is accurate of order p and stable [i.e. ψ is Lipschitz in x], then for sufficiently smooth f,

$$
l(h, t)=O\left(h^{p+1}\right) \quad \text { and thus } \quad \tau(h)=O\left(h^{p}\right) .
$$

If, in addition, $e_{0}(h)=O\left(h^{p}\right)$, then

$$
\max _{i}\left|e_{i}(h)\right|=O\left(h^{p}\right),
$$

i.e. we have $p^{\text {th }}$ order convergence of the numerical approximations to the solution.

Example. The "Taylor method of order p " is accurate of order p. If $f \in C^{p}$, then $x \in C^{p+1}$, and

$$
l(h, t)=x(t+h)-\left(x(t)+h x^{\prime}(t)+\cdots+\frac{h^{p}}{p!} x^{(p)}(t)\right)=\frac{1}{p!} \int_{t}^{t+h}(t+h-s)^{p} x^{(p+1)}(s) d s
$$

So

$$
|l(h, t)| \leq M_{p+1} \frac{h^{p+1}}{(p+1)!} \quad \text { where } \quad M_{p+1}=\max _{a \leq t \leq b}\left|x^{(p+1)}(t)\right| .
$$

Fact. A one-step method $x_{i+1}=x_{i}+h \psi\left(h, t_{i}, x_{i}\right)$ is accurate of order p if and only if

$$
\psi(h, t, x)=T_{p}(h, t, x)+O\left(h^{p}\right),
$$

where T_{p} is the " ψ " for the Taylor method of order p.
Proof. Since

$$
x(t+h)-x(t)=h T_{p}(h, t, x(t))+O\left(h^{p+1}\right),
$$

we have for any given one-step method that

$$
\begin{aligned}
l(h, t) & =x(t+h)-x(t)-h \psi(h, t, x(t)) \\
& =h T_{p}(h, t, x(t))+O\left(h^{p+1}\right)-h \psi(h, t, x(t)) \\
& =h\left(T_{p}(h, t, x(t))-\psi(h, t, x(t))\right)+O\left(h^{p+1}\right) .
\end{aligned}
$$

So $l(h, t)=O\left(h^{p+1}\right)$ iff $h\left(T_{p}-\psi\right)=O\left(h^{p+1}\right)$ iff $\psi=T_{p}+O\left(h^{p}\right)$.
Remark. The controlled growth of the effect of the local truncation error (LTE) from previous steps in the proof of the convergence theorem (a consequence of the Lipschitz continuity of ψ in $x)$ is called stability. The theorem states:

$$
\text { Stability } \quad+\quad \text { Consistency (minimal accuracy) } \quad \Rightarrow \quad \text { Convergence. }
$$

In fact, here, the converse is also true.

Explicit Runge-Kutta methods

One of the problems with Taylor methods is the need to evaluate higher derivatives of f. Runge-Kutta (RK) methods replace this with the much more reasonable need to evaluate f more than once to go from x_{i} to x_{i+1}. An m-stage (explicit) RK method is of the form

$$
x_{i+1}=x_{i}+h \psi\left(h, t_{i}, x_{i}\right),
$$

with

$$
\psi(h, t, x)=\sum_{j=1}^{m} a_{j} k_{j}(h, t, x),
$$

where a_{1}, \ldots, a_{m} are given constants,

$$
k_{1}(h, t, x)=f(t, x)
$$

and for $2 \leq j \leq m$,

$$
k_{j}(h, t, x)=f\left(t+\alpha_{j} h, x+h \sum_{r=1}^{j-1} \beta_{j r} k_{r}(h, t, x)\right)
$$

with $\alpha_{2}, \ldots, \alpha_{m}$ and $\beta_{j r}(1 \leq r<j \leq m)$ given constants. We usually choose $0<\alpha_{j} \leq 1$, and for accuracy reasons we choose

$$
\begin{equation*}
\alpha_{j}=\sum_{r=1}^{j-1} \beta_{j r} \quad(2 \leq j \leq m) \tag{}
\end{equation*}
$$

Example. $m=2$

$$
x_{i+1}=x_{i}+h\left(a_{1} k_{1}\left(h, t_{i}, x_{i}\right)+a_{2} k_{2}\left(h, t_{i}, x_{i}\right)\right)
$$

where

$$
\begin{aligned}
k_{1}\left(h, t_{i}, x_{i}\right) & =f\left(t_{i}, x_{i}\right) \\
k_{2}\left(h, t_{i}, x_{i}\right) & =f\left(t_{i}+\alpha_{2} h, x_{i}+h \beta_{21} k_{1}\left(h, t_{i}, x_{i}\right)\right)
\end{aligned}
$$

For simplicity, write α for α_{2} and β for β_{2}. Expanding in h,

$$
\begin{aligned}
k_{2}(h, t, x) & =f(t+\alpha h, x+h \beta f(t, x)) \\
& =f(t, x)+\alpha h D_{t} f(t, x)+\left(D_{x} f(t, x)\right)(h \beta f(t, x))+O\left(h^{2}\right) \\
& =\left[f+h\left(\alpha D_{t} f+\beta\left(D_{x} f\right) f\right)\right](t, x)+O\left(h^{2}\right)
\end{aligned}
$$

So

$$
\psi(h, t, x)=\left(a_{1}+a_{2}\right) f+h\left(a_{2} \alpha D_{t} f+a_{2} \beta\left(D_{x} f\right) f\right)+O\left(h^{2}\right) .
$$

Recalling that

$$
T_{2}=f+\frac{h}{2}\left(D_{t} f+\left(D_{x} f\right) f\right),
$$

and that the method is accurate of order two if and only if

$$
\psi=T_{2}+O\left(h^{2}\right)
$$

we obtain the following necessary and sufficient conditions on a two-stage (explicit) RK method to be accurate of order two:

$$
a_{1}+a_{2}=1, \quad a_{2} \alpha=\frac{1}{2}, \quad \text { and } \quad a_{2} \beta=\frac{1}{2} .
$$

We require $\alpha=\beta$ as in $\left({ }^{*}\right)$ (we now see why this condition needs to be imposed), whereupon these conditions become:

$$
a_{1}+a_{2}=1, \quad a_{2} \alpha=\frac{1}{2} .
$$

Therefore, there is a one-parameter family (e.g., parameterized by α) of $2^{\text {nd }}$ order, two-stage ($m=2$) explicit RK methods.

Examples.

(1) Setting $\alpha=\frac{1}{2}$ gives $a_{2}=1, a_{1}=0$, which is the Modified Euler method.
(2) Choosing $\alpha=1$ gives $a_{2}=\frac{1}{2}, a_{1}=\frac{1}{2}$, which is the Improved Euler method, or Heun's method.

Remark. Note that an m-stage explicit RK method requires m function evaluations (i.e., evaluations of f) in each step (x_{i} to x_{i+1}).

Attainable Orders of Accuracy for Explicit RK methods

\# of stages (m)

1	1
2	2
3	3
4	4
5	4
6	5
7	6
8	7

Explicit RK methods are always stable: ψ inherits its Lipschitz continuity from f.

Example.

Modified Euler. Let L be the Lipschitz constant for f, and suppose $h \leq h_{0}$ (for some $\left.h_{0} \leq b-a\right)$.

$$
\begin{aligned}
x_{i+1} & =x_{i}+h f\left(t_{i}+\frac{h}{2}, x_{i}+\frac{h}{2} f\left(t_{i}, x_{i}\right)\right) \\
\psi(t, h, x) & =f\left(t+\frac{h}{2}, x+\frac{h}{2} f(t, x)\right)
\end{aligned}
$$

So

$$
\begin{aligned}
|\psi(h, t, x)-\psi(h, t, y)| & \leq L\left|\left(x+\frac{h}{2} f(t, x)\right)-\left(y+\frac{h}{2} f(t, y)\right)\right| \\
& \leq L|x-y|+\frac{h}{2} L|f(t, x)-f(t, y)| \\
& \leq L|x-y|+\frac{h}{2} L^{2}|x-y| \\
& \leq K|x-y|
\end{aligned}
$$

where $K=L+\frac{h_{0}}{2} L^{2}$ is thus the Lipschitz constant for ψ.
Example. A popular $4^{\text {th }}$ order four-stage RK method is

$$
x_{i+1}=x_{i}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

where

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, x_{i}\right) \\
& k_{2}=f\left(t_{i}+\frac{h}{2}, x_{i}+\frac{h}{2} k_{1}\right) \\
& k_{3}=f\left(t_{i}+\frac{h}{2}, x_{i}+\frac{h}{2} k_{2}\right) \\
& k_{4}=f\left(t_{i}+h, x_{i}+h k_{3}\right) .
\end{aligned}
$$

The same argument as above shows this method is stable.
Remark. RK methods require multiple function evaluations per step (going from x_{i} to x_{i+1}). One-step methods discard information from previous steps (e.g., x_{i-1} is not used to get x_{i+1} - except in its influence on x_{i}). We will next study a class of multi-step methods. But first, we consider linear difference equations.

Linear Difference Equations (Constant Coefficients)

In this discussion, x_{i} will be a (scalar) sequence defined for $i \geq 0$. Consider the linear difference equation (k-step)

$$
\text { (LDE) } \quad x_{i+k}+\alpha_{k-1} x_{i+k-1}+\cdots+\alpha_{0} x_{i}=b_{i} \quad(i \geq 0)
$$

If $b_{i} \equiv 0$, the linear difference equation (LDE) is said to be homogeneous, in which case we will refer to it as (lh). If $b_{i} \neq 0$ for some $i \geq 0$, the linear difference equation (LDE) is said to be inhomogeneous, in which case we refer to it as (li).

Initial Value Problem (IVP): Given x_{i} for $i=0, \ldots, k-1$, determine x_{i} satisfying (LDE) for $i \geq 0$.

Theorem. There exists a unique solution of (IVP) for (lh) or (li).
Proof. An obvious induction on i. The equation for $i=0$ determines x_{k}, etc.
Theorem. The solution set of $(l h)$ is a k-dimensional vector space (a subspace of the set of all sequences $\left.\left\{x_{i}\right\}_{i \geq 0}\right)$.

Proof Sketch. Choosing

$$
\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{k-1}
\end{array}\right]=e_{j} \in \mathbb{R}^{k}
$$

for $j=1,2, \ldots k$ and then solving $(l h)$ gives a basis of the solution space of $(l h)$.
Define the characteristic polynomial of (lh) to be

$$
p(r)=r^{k}+\alpha_{k-1} r^{k-1}+\cdots+\alpha_{0} .
$$

Let us assume that $\alpha_{0} \neq 0$. (If $\alpha_{0}=0$, (LDE) isn't really a k-step difference equation since we can shift indices and treat it as a \widetilde{k}-step difference equation for a $\widetilde{k}<k$, namely $\widetilde{k}=k-\nu$, where ν is the smallest index with $\alpha_{\nu} \neq 0$.) Let r_{1}, \ldots, r_{s} be the distinct zeroes of p, with multiplicities m_{1}, \ldots, m_{s}. Note that each $r_{j} \neq 0$ since $\alpha_{0} \neq 0$, and $m_{1}+\cdots+m_{s}=k$. Then a basis of solutions of $(l h)$ is:

$$
\left\{\left\{i^{l} r_{j}^{i}\right\}_{i=0}^{\infty}: 1 \leq j \leq s, 0 \leq l \leq m_{j}-1\right\}
$$

Example. Fibonacci Sequence:

$$
F_{i+2}-F_{i+1}-F_{i}=0, \quad F_{0}=0, \quad F_{1}=1
$$

The associated characteristic polynomial $r^{2}-r-1=0$ has roots

$$
r_{ \pm}=\frac{1 \pm \sqrt{5}}{2} \quad\left(r_{+} \approx 1.6, r_{-} \approx-0.6\right)
$$

The general solution of $(l h)$ is

$$
F_{i}=C_{+}\left(\frac{1+\sqrt{5}}{2}\right)^{i}+C_{-}\left(\frac{1-\sqrt{5}}{2}\right)^{i}
$$

The initial conditions $F_{0}=0$ and $F_{1}=1$ imply that $C_{+}=\frac{1}{\sqrt{5}}$ and $C_{-}=-\frac{1}{\sqrt{5}}$. Hence

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}\right)
$$

Since $\left|r_{-}\right|<1$, we have

$$
\left(\frac{1-\sqrt{5}}{2}\right)^{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

Hence, the Fibonacci sequence behaves asymptotically like the sequence $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}$.

Remark. If $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{\nu-1}=0$ and $\alpha_{\nu} \neq 0$ (i.e., 0 is a root of multiplicity ν), then $x_{0}, x_{1}, \ldots, x_{\nu-1}$ are completely independent of x_{i} for $i \geq \nu$. So $x_{i+k}+\cdots+\alpha_{\nu} x_{i+\nu}=b_{i}$ for $i \geq 0$ with x_{i} given for $i \geq \nu$ behaves like a ($k-\nu$)-step difference equation.

Remark. Define $\widetilde{x}_{i}=\left[\begin{array}{c}x_{i} \\ x_{i+1} \\ \vdots \\ x_{i+k-1}\end{array}\right]$. Then $\widetilde{x}_{i+1}=A \widetilde{x}_{i}$ for $i \geq 0$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
-\alpha_{0} & \cdots & & -\alpha_{k-1}
\end{array}\right]
$$

and $\widetilde{x}_{0}=\left[\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{k-1}\end{array}\right]$ is given by the I.C. So $(l h)$ is equivalent to the one-step vector difference equation

$$
\widetilde{x}_{i+1}=A \widetilde{x}_{i}, \quad i \geq 0
$$

whose solution is $\widetilde{x}_{i}=A^{i} \widetilde{x}_{0}$. The characteristic polynomial of $(l h)$ is the characteristic polynomial of A. Because A is a companion matrix, each distinct eigenvalue has only one Jordan block. If $A=P J P^{-1}$ is the Jordan decomposition of $A(J$ in Jordan form, P invertible), then

$$
\widetilde{x}_{i}=P J^{i} P^{-1} \widetilde{x}_{0} .
$$

Let J_{j} be the $m_{j} \times m_{j}$ block corresponding to r_{j} (for $1 \leq j \leq s$), so $J_{j}=r_{j} I+Z_{j}$, where Z_{j} denotes the $m_{j} \times m_{j}$ shift matrix:

$$
Z_{j}=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
& & & 0
\end{array}\right]
$$

Then

$$
J_{j}^{i}=\left(r_{j} I+Z_{j}\right)^{i}=\sum_{l=0}^{i}\binom{i}{l} r_{j}^{i-l} Z_{j}^{l} .
$$

Since $\binom{i}{l}$ is a polynomial in i of degree l and $Z_{j}^{m_{j}}=0$, we see entries in \widetilde{x}_{i} of the form (constant) $i^{l} r_{j}^{i}$ for $0 \leq l \leq m_{j}-1$.

Remark. (li) becomes

$$
\widetilde{x}_{i+1}=A \widetilde{x}_{i}+\widetilde{b}_{i}, \quad i \geq 0,
$$

where $\widetilde{b}_{i}=\left[0, \ldots, 0, b_{i}\right]^{T}$. This leads to a discrete version of Duhamel's principle (exercise).
Remark. All solutions $\left\{x_{i}\right\}_{i \geq 0}$ of (lh) stay bounded (i.e. are elements of l^{∞})
\Leftrightarrow the matrix A is power bounded (i.e., $\exists M$ so that $\left\|A^{i}\right\| \leq M$ for all $i \geq 0$)
\Leftrightarrow the Jordan blocks J_{1}, \ldots, J_{s} are all power bounded
$\Leftrightarrow\left\{\begin{array}{lll} & \text { (a) } & \text { each }\left|r_{j}\right| \leq 1 \\ \text { and (b) } & \text { for any } j \text { with } m_{j}>1 \text { (multiple roots), } & \left|r_{j}\right|<1\end{array}\right.$.
If (a) and (b) are satisfied, then the map $\widetilde{x}_{0} \mapsto\left\{x_{i}\right\}_{i \geq 0}$ is a bounded linear operator from \mathbb{R}^{k} (or \mathbb{C}^{k}) into l^{∞} (exercise).

Linear Multistep Methods (LMM)

A LMM is a method of the form

$$
\sum_{j=0}^{k} \alpha_{j} x_{i+j}=h \sum_{j=0}^{k} \beta_{j} f_{i+j}, \quad i \geq 0
$$

for the approximate solution of an ODE IVP

$$
x^{\prime}=f(t, x), \quad x(a)=x_{a} .
$$

Here we want to approximate the solution $x(t)$ of this IVP for $a \leq t \leq b$ at the points $t_{i}=a+i h$ (where h is the time step), $0 \leq i \leq \frac{b-a}{h}$. The term x_{i} denotes the approximation to $x\left(t_{i}\right)$. We have set $f_{i+j}=f\left(t_{i+j}, x_{i+j}\right)$. We normalize the coefficients so that $\alpha_{k}=1$. The above is called a k-step $L M M$ (if at least one of the coefficients α_{0} and β_{0} is non-zero). The above equation is similar to a difference equation in that one is solving for x_{i+k} from $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$. We assume as usual that f is continuous in (t, x) and uniformly Lipschitz in x. For simplicity of notation, we will assume that $x(t)$ is real and scalar; the analysis that follows applies to $x(t) \in \mathbb{R}^{n}$ or $x(t) \in \mathbb{C}^{n}$ (viewed as $\mathbb{R}^{2 n}$ for differentiability) with minor adjustments.

Example. (Midpoint rule) (explicit)

$$
x\left(t_{i+2}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+2}} x^{\prime}(s) d s \approx 2 h x^{\prime}\left(t_{i+1}\right)=2 h f\left(t_{i+1}, x\left(t_{i+1}\right)\right) .
$$

This approximate relationship suggests the LMM

$$
\text { Midpoint rule: } \quad x_{i+2}-x_{i}=2 h f_{i+1} .
$$

Example. (Trapezoid rule) (implicit)
The approximation

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} x^{\prime}(s) d s \approx \frac{h}{2}\left(x^{\prime}\left(t_{i+1}\right)+x^{\prime}\left(t_{i}\right)\right)
$$

suggests the LMM

$$
\text { Trapezoid rule: } \quad x_{i+1}-x_{i}=\frac{h}{2}\left(f_{i+1}+f_{i}\right) .
$$

Explicit vs Implicit.

If $\beta_{k}=0$, the LMM is called explicit: once we know $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$, we compute immediately

$$
x_{i+k}=\sum_{j=0}^{k-1}\left(h \beta_{j} f_{i+j}-\alpha_{j} x_{i+j}\right) .
$$

On the other hand, if $\beta_{k} \neq 0$, the LMM is called implicit: knowing $x_{i}, x_{i+1}, \ldots, x_{i+k-1}$, we need to solve

$$
x_{i+k}=h \beta_{k} f\left(t_{i+k}, x_{i+k}\right)-\sum_{j=0}^{k-1}\left(\alpha_{j} x_{i+j}-h \beta_{j} f_{i+j}\right)
$$

for x_{i+k}.
Remark. If h is sufficiently small, implicit LMM methods also have unique solutions given h and $x_{0}, x_{1}, \ldots, x_{k-1}$. To see this, let L be the Lipschitz constant for f. Given x_{i}, \ldots, x_{i+k-1}, the value for x_{i+k} is obtained by solving the equation

$$
x_{i+k}=h \beta_{k} f\left(t_{i+k}, x_{i+k}\right)+g_{i},
$$

where

$$
g_{i}=\sum_{j=0}^{k-1}\left(h \beta_{j} f_{i+j}-\alpha_{j} x_{i+j}\right)
$$

is a constant as far as x_{i+k} is concerned. That is, we are looking for a fixed point of

$$
\Phi(x)=h \beta_{k} f\left(t_{i+k}, x\right)+g_{i} .
$$

Note that if $h\left|\beta_{k}\right| L<1$, then Φ is a contraction:

$$
|\Phi(x)-\Phi(y)| \leq h\left|\beta_{k}\right|\left|f\left(t_{i+k}, x\right)-f\left(t_{i+k}, y\right)\right| \leq h\left|\beta_{k}\right| L|x-y| .
$$

So by the Contraction Mapping Fixed Point Theorem, Φ has a unique fixed point. Any initial guess for x_{i+k} leads to a sequence converging to the fixed point using functional iteration

$$
x_{i+k}^{(l+1)}=h \beta_{k} f\left(t_{i+k}, x_{i+k}^{(l)}\right)+g_{i}
$$

which is initiated at some initial point $x_{i+k}^{(0)}$. In practice, one chooses either
(1) iterate to convergence, or
(2) a fixed number of iterations, using an explicit method to get the initial guess $x_{i+k}^{(0)}$. This pairing is often called a Predictor-Corrector Method.

Function Evaluations. One FE means evaluating f once.
Explicit LMM: 1 FE per step (after initial start)
Implicit LMM: ? FEs per step if iterate to convergence usually 2 FE per step for a Predictor-Corrector Method.

Initial Values. To start a k-step LMM, we need $x_{0}, x_{1}, \ldots, x_{k-1}$. We usually take $x_{0}=x_{a}$, and approximate x_{1}, \ldots, x_{k-1} using a one-step method (e.g., a Runge-Kutta method).
Local Truncation Error. For a true solution $x(t)$ to $x^{\prime}=f(t, x)$, define the LTE to be

$$
l(h, t)=\sum_{j=0}^{k} \alpha_{j} x(t+j h)-h \sum_{j=0}^{k} \beta_{j} x^{\prime}(t+j h) .
$$

If $x \in C^{p+1}$, then

$$
\begin{aligned}
x(t+j h) & =x(t)+j h x^{\prime}(t)+\cdots+\frac{(j h)^{p}}{p!} x^{(p)}(t)+O\left(h^{p+1}\right) \quad \text { and } \\
h x^{\prime}(t+j h) & =h x^{\prime}(t)+j h^{2} x^{\prime \prime}(t)+\cdots+\frac{j^{p-1} h^{p}}{(p-1)!} x^{(p)}(t)+O\left(h^{p+1}\right)
\end{aligned}
$$

and so

$$
l(h, t)=C_{0} x(t)+C_{1} h x^{\prime}(t)+\cdots+C_{p} h^{p} x^{(p)}(t)+O\left(h^{p+1}\right)
$$

where

$$
\begin{aligned}
C_{0} & =\alpha_{0}+\cdots+\alpha_{k} \\
C_{1} & =\left(\alpha_{1}+2 \alpha_{2}+\cdots+k \alpha_{k}\right)-\left(\beta_{0}+\cdots+\beta_{k}\right) \\
& \vdots \\
C_{q} & =\frac{1}{q!}\left(\alpha_{1}+2^{q} \alpha_{2}+\cdots+k^{q} \alpha_{k}\right)-\frac{1}{(q-1)!}\left(\beta_{1}+2^{q-1} \beta_{2}+\cdots+k^{q-1} \beta_{k}\right)
\end{aligned}
$$

Definition. A LMM is called accurate of order p if $l(h, t)=O\left(h^{p+1}\right)$ for any solution of $x^{\prime}=f(t, x)$ which is C^{p+1}.

Fact. A LMM is accurate of order at least p iff $C_{0}=C_{1}=\cdots=C_{p}=0$. (It is called accurate of order exactly p if also $C_{p+1} \neq 0$.)

Remarks.
(i) For the LTE of a method to be $o(h)$ for all f 's, we must have $C_{0}=C_{1}=0$. To see this, for any f which is C^{1}, all solutions $x(t)$ are C^{2}, so

$$
l(h, t)=C_{0} x(t)+C_{1} h x^{\prime}(t)+O\left(h^{2}\right) \text { is } o(h) \quad \text { iff } \quad C_{0}=C_{1}=0 .
$$

(ii) Note that C_{0}, C_{1}, \ldots depend only on $\alpha_{0}, \ldots, \alpha_{k}, \beta_{0}, \ldots, \beta_{k}$ and not on f. So here, "minimal accuracy" is first order.

Definition. A LMM is called consistent if $C_{0}=C_{1}=0$ (i.e., at least first-order accurate).
Remark. If a LMM is consistent, then any solution $x(t)$ for any f (continuous in (t, x), Lipschitz in x) has $l(h, t)=o(h)$. To see this, note that since $x \in C^{1}$,

$$
x(t+j h)=x(t)+j h x^{\prime}(t)+o(h) \quad \text { and } \quad h x^{\prime}(t+j h)=h x^{\prime}(t)+o(h)
$$

so

$$
l(h, t)=C_{0} x(t)+C_{1} h x^{\prime}(t)+o(h) .
$$

Exercise: Verify that the $o(h)$ terms converge to 0 uniformly in t (after dividing by h) as $h \rightarrow 0$: use the uniform continuity of $x^{\prime}(t)$ on $[a, b]$.

Definition. A k-step LMM

$$
\sum \alpha_{j} x_{i+j}=h \sum \beta_{j} f_{i+j}
$$

is called convergent if for each IVP $x^{\prime}=f(t, x), x(a)=x_{a}$ on $[a, b](f \in(C$, Lip $))$ and for any choice of $x_{0}(h), \ldots, x_{k-1}(h)$ for which

$$
\lim _{h \rightarrow 0}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|=0 \quad \text { for } \quad i=0, \ldots, k-1
$$

we have

$$
\lim _{h \rightarrow 0} \max _{\left\{: a \leq t_{i}(h) \leq b\right\}}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|=0 .
$$

Remarks.
(i) This asks for uniform decrease of the error on the grid as $h \rightarrow 0$.
(ii) By continuity of $x(t)$, the condition on the initial values is equivalent to $x_{i}(h) \rightarrow x_{a}$ for $i=0,1, \ldots, k-1$.

Fact. If a LMM is convergent, then the zeroes of the (first) characteristic polynomial of the method $p(r)=\alpha_{k} r^{k}+\cdots+\alpha_{0}$ satisfy the Dahlquist root condition:
(a) all zeroes r satisfy $|r| \leq 1$, and
(b) multiple zeroes r satisfy $|r|<1$.

Examples. Consider the IVP $x^{\prime}=0, a \leq t \leq b, x(a)=0$. So $f \equiv 0$. Consider the LMM:

$$
\sum \alpha_{j} x_{i+j}=0 .
$$

(1) Let r be any zero of $p(r)$. Then the solution with initial conditions

$$
x_{i}=h r^{i} \quad \text { for } \quad 0 \leq i \leq k-1
$$

is

$$
x_{i}=h r^{i} \quad \text { for } \quad 0 \leq i \leq \frac{b-a}{h} .
$$

Suppose $h=\frac{b-a}{m}$ for some $m \in \mathbb{Z}$. If the LMM is convergent, then

$$
x_{m}(h) \rightarrow x(b)=0
$$

as $m \rightarrow \infty$. But

$$
x_{m}(h)=h r^{m}=\frac{b-a}{m} r^{m} .
$$

So

$$
\left|x_{m}(h)-x(b)\right|=\frac{b-a}{m}\left|r^{m}\right| \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty
$$

iff $|r| \leq 1$.
(2) Similarly if r is a multiple zero of $p(r)$, taking $x_{i}(h)=h i r^{i}$ for $0 \leq i \leq k-1$ gives

$$
x_{i}(h)=\text { hir }^{i}, \quad 0 \leq i \leq \frac{b-a}{h} .
$$

So if $h=\frac{b-a}{m}$, then

$$
x_{m}(h)=\frac{b-a}{m} m r^{m}=(b-a) r^{m},
$$

so $x_{m}(h) \rightarrow 0$ as $h \rightarrow 0$ iff $|r|<1$.

Definition. A LMM is called zero-stable if it satisfies the Dahlquist root condition.
Recall from our discussion of linear difference equations that zero-stability is equivalent to requiring that all solutions of $(l h) \quad \sum_{j=0}^{k} \alpha_{j} x_{i+j}=0$ for $i \geq 0$ stay bounded as $i \rightarrow \infty$.
Remark. A consistent one-step LMM (i.e., $k=1$) is always zero-stable. Indeed, consistency implies that $C_{0}=C_{1}=0$, which in turn implies that $p(1)=\alpha_{0}+\alpha_{1}=C_{0}=0$ and so $r=1$ is the zero of $p(r)$. Therefore $\alpha_{1}=1, \alpha_{0}=-1$, so the characteristic polynomial is $p(r)=r-1$, and the LMM is zero-stable.

Exercise: Show that if an LMM is convergent, then it is consistent.
Key Theorem. [LMM Convergence]
A LMM is convergent if and only if it is zero-stable and consistent. Moreover, for zero-stable methods, we get an error estimate of the form

$$
\max _{a \leq t_{i}(h) \leq b}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right| \leq K_{1} \underbrace{\max _{0 \leq i \leq k-1}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|}_{\text {initial error }}+K_{2} \underbrace{\frac{\max _{i}\left|l\left(h, t_{i}(h)\right)\right|}{h}}_{\begin{array}{c}
\text { growth of error" } \\
\text { controlled by } \\
\text { zero-stability }
\end{array}}
$$

Remark. If $x \in C^{p+1}$ and the LMM is accurate of order p, then $|L T E| / h=O\left(h^{p}\right)$. To get $p^{\text {th }}$-order convergence (i.e., $L H S=O\left(h^{p}\right)$), we need

$$
x_{i}(h)=x\left(t_{i}(h)\right)+O\left(h^{p}\right) \quad \text { for } \quad i=0, \ldots, k-1 .
$$

This can be done using $k-1$ steps of a RK method of order $\geq p-1$.
Lemma. Consider
(li) $\quad \sum_{j=0}^{k} \alpha_{j} x_{i+j}=b_{i} \quad$ for $\quad i \geq 0 \quad\left(\right.$ where $\left.\alpha_{k}=1\right)$,
with the initial values x_{0}, \ldots, x_{k-1} given, and suppose that the characteristic polynomial $p(r)=\sum_{j=0}^{k} \alpha_{j} r^{j}$ satisfies the Dahlquist root condition. Then there is an $M>0$ such that for $i \geq 0$,

$$
\left|x_{i+k}\right| \leq M\left(\max \left\{\left|x_{0}\right|, \ldots,\left|x_{k-1}\right|\right\}+\sum_{\nu=0}^{i}\left|b_{\nu}\right|\right) .
$$

Remark. Recall that the Dahlquist root condition implies that there is an $M>0$ for which $\left\|A^{i}\right\|_{\infty} \leq M$ for all $i \geq 0$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
-\alpha_{0} & \cdots & -\alpha_{k-1}
\end{array}\right]
$$

is the companion matrix for $p(r)$, and $\|\cdot\|_{\infty}$ is the operator norm induced by the vector norm $\|\cdot\|_{\infty}$. The M in the Lemma can be taken to be the same as this M bounding $\left\|A^{i}\right\|_{\infty}$.

Proof. Let $\widetilde{x}_{i}=\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]^{T}$ and $\widetilde{b}_{i}=\left[0, \ldots, 0, b_{i}\right]^{T}$. Then $\widetilde{x}_{i+1}=A \widetilde{x}_{i}+\widetilde{b}_{i}$, so by induction

$$
\widetilde{x}_{i+1}=A^{i+1} \widetilde{x}_{0}+\sum_{\nu=0}^{i} A^{i-\nu} \widetilde{b}_{\nu} .
$$

Thus

$$
\begin{aligned}
\left|x_{i+k}\right| & \leq\left\|\widetilde{x}_{i+1}\right\|_{\infty} \\
& \leq\left\|A^{i+1}\right\|_{\infty}\left\|\widetilde{x}_{0}\right\|_{\infty}+\sum_{\nu=0}^{i}\left\|A^{i-\nu}\right\|_{\infty}\left\|\widetilde{b}_{\nu}\right\|_{\infty} \\
& \leq M\left(\left\|\widetilde{x}_{0}\right\|_{\infty}+\sum_{\nu=0}^{i}\left|b_{\nu}\right|\right) .
\end{aligned}
$$

Proof of the LMM Convergence Theorem. The fact that convergence implies zerostability and consistency has already been discussed. Suppose a LMM is zero-stable and consistent. Let $x(t)$ be the true solution of the IVP $x^{\prime}=f(t, x), x(a)=x_{a}$ on $[a, b]$, let L be the Lipschitz constant for f, and set

$$
\beta=\sum_{j=0}^{k}\left|\beta_{j}\right| .
$$

Hold h fixed, and set

$$
\begin{aligned}
e_{i}(h) & =x\left(t_{i}(h)\right)-x_{i}(h), & E & =\max \left\{\left|e_{0}\right|, \ldots,\left|e_{k-1}\right|\right\}, \\
l_{i}(h) & =l\left(h, t_{i}(h)\right), & \lambda(h) & =\max _{i \in \mathcal{I}}\left|l_{i}(h)\right|,
\end{aligned}
$$

where $\mathcal{I}=\left\{i \geq 0: i+k \leq \frac{b-a}{h}\right\}$.
Step 1. The first step is to derive a "difference inequality" for $\left|e_{i}\right|$. This difference inequality is a discrete form of the integral inequality leading to Gronwall's inequality. For $i \in \mathcal{I}$, we have

$$
\begin{aligned}
\sum_{j=0}^{k} \alpha_{j} x\left(t_{i+j}\right) & =h \sum_{j=0}^{k} \beta_{j} f\left(t_{i+j}, x\left(t_{i+j}\right)\right)+l_{i} \\
\sum_{j=0}^{k} \alpha_{j} x_{i+j} & =h \sum_{j=0}^{k} \beta_{j} f_{i+j} .
\end{aligned}
$$

Subtraction gives

$$
\sum_{j=0}^{k} \alpha_{j} e_{i+j}=b_{i}
$$

where

$$
b_{i} \equiv h \sum_{j=0}^{k} \beta_{j}\left(f\left(t_{i+j}, x\left(t_{i+j}\right)\right)-f\left(t_{i+j}, x_{i+j}\right)\right)+l_{i} .
$$

Then

$$
\left|b_{i}\right| \leq h \sum_{j=0}^{k}\left|\beta_{j}\right| L\left|e_{i+j}\right|+\left|l_{i}\right| .
$$

So, by the preceeding Lemma with x_{i+k} replaced by e_{i+k}, we obtain for $i \in \mathcal{I}$

$$
\begin{aligned}
\left|e_{i+k}\right| & \leq M\left[E+\sum_{\nu=0}^{i}\left|b_{\nu}\right|\right] \\
& \leq M\left[E+h L \sum_{\nu=0}^{i} \sum_{j=0}^{k}\left|\beta_{j}\right|\left|e_{\nu+j}\right|+\sum_{\nu=0}^{i}\left|l_{\nu}\right|\right] \\
& \leq M\left[E+h L\left|\beta_{k}\right|\left|e_{i+k}\right|+h L \beta \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+\sum_{\nu=0}^{i}\left|l_{\nu}\right|\right] .
\end{aligned}
$$

From here on, assume h is small enough that

$$
M h L\left|\beta_{k}\right| \leq \frac{1}{2} .
$$

(Since $\left\{h \leq b-a: M h L\left|\beta_{k}\right| \geq \frac{1}{2}\right\}$ is a compact subset of $(0, b-a]$, the estimate in the Key Theorem is clearly true for those values of h.) Moving $M h L\left|\beta_{k}\right|\left|e_{i+k}\right|$ to the LHS gives

$$
\left|e_{i+k}\right| \leq h M_{1} \sum_{\nu=0}^{i+k-1}\left|e_{\nu}\right|+M_{2} E+M_{3} \lambda / h
$$

for $i \in \mathcal{I}$, where $M_{1}=2 M L \beta, M_{2}=2 M$, and $M_{3}=2 M(b-a)$. (Note: For explicit methods, $\beta_{k}=0$, so the restriction $M h L\left|\beta_{k}\right| \leq \frac{1}{2}$ is unnecessary, and the factors of 2 in M_{1}, M_{2}, M_{3} can be dropped.)
Step 2. We now use a discrete "comparison" argument to bound $\left|e_{i}\right|$. Let y_{i} be the solution of

$$
\begin{equation*}
y_{i+k}=h M_{1} \sum_{\nu=0}^{i+k-1} y_{\nu}+\left(M_{2} E+M_{3} \lambda / h\right) \quad \text { for } i \in \mathcal{I} \tag{*}
\end{equation*}
$$

with initial values $y_{j}=\left|e_{j}\right|$ for $0 \leq j \leq k-1$. Then clearly by induction $\left|e_{i+k}\right| \leq y_{i+k}$ for $i \in \mathcal{I}$. Now

$$
y_{k} \leq h M_{1} k E+\left(M_{2} E+M_{3} \lambda / h\right) \leq M_{4} E+M_{3} \lambda / h,
$$

where $M_{4}=(b-a) M_{1} k+M_{2}$. Subtracting (*) for i from (*) for $i+1$ gives

$$
y_{i+k+1}-y_{i+k}=h M_{1} y_{i+k}, \quad \text { and so } \quad y_{i+k+1}=\left(1+h M_{1}\right) y_{i+k} .
$$

Therefore, by induction we obtain for $i \in \mathcal{I}$:

$$
\begin{aligned}
y_{i+k} & =\left(1+h M_{1}\right)^{i} y_{k} \\
& \leq\left(1+h M_{1}\right)^{(b-a) / h} y_{k} \\
& \leq e^{M_{1}(b-a)} y_{k} \\
& \leq K_{1} E+K_{2} \lambda / h,
\end{aligned}
$$

where $K_{1}=e^{M_{1}(b-a)} M_{4}$ and $K_{2}=e^{M_{1}(b-a)} M_{3}$. Thus, for $i \in \mathcal{I}$,

$$
\left|e_{i+k}\right| \leq K_{1} E+K_{2} \lambda / h ;
$$

since $K_{1} \geq M_{4} \geq M_{2} \geq M \geq 1$, also $\left|e_{j}\right| \leq E \leq K_{1} E+K_{2} \lambda / h$ for $0 \leq j \leq k-1$. Since consistency implies $\lambda=o(h)$, we are done.

Remarks.
(1) Note that K_{1} and K_{2} depend only on a, b, L, k, the α_{j} 's and β_{j} 's, and M.
(2) The estimate can be refined - we did not try to get the best constants K_{1}, K_{2}. For example, $e^{M_{1}(b-a)}$ could be replaced by $e^{M_{1}\left(t_{i}-a\right)}$ in both K_{1} and K_{2}, yielding more precise estimates depending on i, similar to the estimate for one-step methods.

