46 Ordinary Differential Equations

Lyapunov Stability

The stability of solutions to ODEs was first put on a sound mathematical footing by Lya-
punov circa 1890. This theory still dominates modern notions of stability, and provides the
foundation upon which alternative notions of stability continue to be built. In this section,
we provide a brief introduction to a few of the basic ideas and results in the context of linear
homogeneous systems:

(LH) ¥ = A(t)z,

where A : R — F"*™. We begin by providing a precise definition for these ideas.
A point z. € F™ is said to be an equilibrium point for (LH) if the (IVP)

has the unique solution

For example, if we take

then z, = (1, 0)7 is an equilibrium point.

Definition.|Lyapunov Stability] The system (LH) is said to be stable about the equilibrium
point x. if

Ve> 039> 0such that if |z(tg) — x| <9, then |x(t) —z.| <€ V> 1.

The system (LH) is said to be asymptotically stable about the equilibrium point x, if

3§ > 0 such that if |x(ty) — x| < 0, then |z(t) — x| = .

It is possible for a system to be stable but not asymptotically stable.
Example.[Stable but not asymptotically stable| Set

a0 =) ]

and consider the equilibrium point z. = (0,0)7. Since the eigenvalues of A are A = +i, the
solution to the IVP with z(tg) = (d1,d2)7 is

(1) = 1 cos(t — to) + dasin(t — to)
T = —d0ysin(t — tg) + dg cos(t —ty) )

Therefore,
|[2(t) — we| = [z(to)| V> to,

and so the system is stable, but not asymptotically stable.
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With no loss in generality, we need only consider the equilibrium point z. = 0. To see
this, let z. be any equilibrium point for (LH) and let ®(¢,y) be a fundamental matrix for
(LH) normalized at ¢y, e.g. for the (CLH) system ®(¢,ty) = exp(A(t — ty)). Let z(t) be a
solution to (LH) and consider the function

y(t) == x(t) — xe = x(t) — (L, o).
Then,

YO = L) - Bt
o' (t) — D'(t,tg)xe
= A(t)z(t) — A()D(1, to)a.
AD(0)

and y. = 0 is an equilibrium point for y. We now have the following elementary observations.

Theorem.|[Fundamental Matrix Characterizations of Stability]

(1) z. = 0 is a stable equilibrium point for (LH) at initial time ¢, if and only if there exists
C > 0 such that |®(¢, )| < C for all t > .

(2) x. = 0 is an asymptotically stable equilibrium point for (LH) at initial time ¢ if and
only if |®(t,tp)| — 0 as t — oo.

Proof. Since |z(t)| < |®(t,t0)| |x(to)|, we need only show the forward implication in each
the statements of the theorem.

(1) Assume the result is false. Then z. = 0 is stable, but there exists ¢ty < t;, — oo such
that |®(tg,to)| T 0o. In particular, there is a component function ®; ;)(¢,ty) of ® such that
|®; j)(te, to)] — 0o. Now consider the solution z(t) to the IVP with x(ty) = ee; for e > 0.
We have

|2 (tk)| = [ (tr, to)x(to)| = €| (tr, o)e;| = €| P Ly, to)| — o0,

which contradicts the stability of x. = 0.

(2) The proof is essentially the same. Again assume the result is false so that there exists € > 0
and ty < t; — oo such that infy |®(¢x,t9)| > €. Then, by passing to a further subsequence
if necessary, there is a component function ®; ;(¢,%o) of ® such that infy |®; j)(te, to)| > €
for some € > 0. Again consider the solution z(t) to the IVP with x(ty) = de; for § > 0. We
have

|[2(t)| = [D(tr, to)x(to)| = 6| D (tk, to)es| > 6P j)(tr, to)| > d€’ > 0,
which contradicts the asymptotic stability of x. = 0. U

We now consider the stability of solutions to constant coefficient linear homogeneous
systems;
(CLH) 2’ = Az,
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where A € F*™*". Let A € F™™ have distinct eigenvalues o(A) = {A\1, Ag,..., A} with
multiplicities n;, respectively, and spectral decomposition

m

A:Z[/\ij+Nj]v

7j=1
where

P}=P, N”=0, and » P,=1I,

J

s=1
for all 1 < 7,k < m with
N i
From our previous work on (CLH), we know that
m n;—1 "
O(t,tg) = 1) =y "M 1y N %Nf
j=1 k=1

The following stability theorem follows from this representation.

Theorem.[Stability for (CLH)] Let A € F™™ have the spectral decomposition described
above.

(1) (CLH) is stable about z, = 0 if and only if Re(\) < 0 for all A € o(A), and for all
A; € 0(A) for which Re();) = 0 it must be the case that N; = 0, i.e., A; is semi-simple.

(2) (CLH) is asymptotically stable about z, = 0 if and only if Re(\) < 0 for all A € o(A).
Example. A broad result of this type does not extend to non-constant coefficient (LH)

systems even if the eigenvalues of A(t) are constant with negative del parts for all ¢. For
example, consider the matrix function

A(t) = {_;fl& o St} |

It is easily seen that the eigenvalues for A(t) are A = —1,—3 for all ¢ € R. On the other
hand, a solution to the IVP (2’ = A(t)z, x(0) = €(1,1)7) is given by

e % — 2Tt
sy =e (),

with x(t) — (0, —o0) as t — oo.
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Lyapunov Functions

A function V : F* — R is said to be a positive definite function if
1. V(z) >0 VzeR™

2. V(x) =0 if and only if z = 0, and
3. for all @ € R the set {z € F* : V(x) < a} is compact.
Given f € C[ty,00),F"], a Lyapunov function for the differential equation
DE 2= f(t,x)

is any continuously differentiable positive definite function V' : F™ — R such that for every
solution x to DE on I = [ty, 00), we have

%V(l‘(t)) = Re(VV (2(1)"2/(1)) = Re((VV (x(1)), 2'(1))) < 0.

The following stability result is derived from the existence of a Lyapunov function.
Theorem. If DE (with f € C') has a Lyapunov function, then all solutions to DE are

bounded, i.e., if z(¢) is a solution to DE on I, then there is an R > 0 such that |z(t)| < R
forallt € I.

Proof. Let z(t) be a solution to DE on I. Then
t

V(x(t)) = V(x(t)) +/t %V(fﬂ(t))dt < V(z(to)).

The result follows since the set {x € F* : V(z) < V(x(ty))} is compact. O
We also have the following result on asymptotic stability.

Theorem. Suppose that the autonomous DE 2/ = f(x) (with f € C') has a Lyapunov
function V' for which

Re(VV (2)? f(z)) <0 whenever z # 0 with Re(VV (x) f(z)) = 0 when z = 0.
Then every solution to DE is asymptotically stable to zero.

Proof. Suppose to the contrary that there is a solution x(¢) to DE on I that is not asymp-
totically stable to zero. Then w(t) := V(z(t)) is decreasing and non-negative. Hence, there
is an € > 0 such that u(t) | e. That is, for all ¢ € I, z(t) resides in the compact set

C:={zeF":0<e<V(x)<V(z(ty))}.

Since 0 ¢ C, C'is compact, and z — Re(VV (2)! f(2)) is continuous, there exists a > 0 such
that

sup Re(VV (2)" f(2)) < —a.

But then
d

V(z(t)) = V(z(ty)) +/t ZV(a(t)dt < V(w(te) —alt —t)) V>t

This contradicts the fact that V(x) > 0 for all z. Hence z(¢) must be asymptotic to zero.
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A Lyapunov Function for Autonomous Linear Homogeneous Systems

In general, building a Lyapunov function in a specific instance is far from a straight forward
task. We walk through the process in the case of an autonomous linear homogeneous systems:

(CLH) : ¥ =Ar  where A € F™*™,

We begin by developing some auxiliary variational properties of the spectral abscissa map-
ping.
Definition.[The Spectral Abscissa] The spectral abscissa is the mapping a : F™" — R
given by

a(A) ;= max{Re(A) : det (A — A\I) = 0},

that is, it the maximum of the real part of the spectrum of A.

Our next result shows that the spectral abscissa of a matrix can be approximated to any
degree of accuracy by the eigenvalues of a Hermitian matrix.

Definition.

(1) The general linear group on F" is defined to be the set

GL(n,F) :={A € F”" : det (A) #0} .

(2) H™ is the subspace of C"*" of Hermitian matrices, and H” C H" is the cone of
positive semidefinite Hermitian matrices whose interior relative to H" is the set of
positive definite Hermitian matrices H’l . The cone H'} defines a partial ordering “=”
on ‘H" by

AXB<+= B-AcH.

(3) S™ is the subspace of R"*" of symmetric matrices, and ST C S™ is the cone of positive
semidefinite symmetric matrices whose interior relative to S™ is the set of positive
definite symmetric matrices S . The cone 87 defines a partial ordering “=” on S"
by

AXB+= B-AcS!.

Lemma. The mapping # : C**" — H" given by H(M) = (M + M*) is the orthogonal
projection of C"*" onto the subspace H" in the Frobenius inner product. Similarly, the
mapping S : R™" — 8" given by S(M) = (M + M7) is the orthogonal projection of R™*"
onto the subspace S™.

Lemma. [Spectral Abscissa Approximation I] Given A € C"*" we have

(1) a(A)=inf{y : X € GL(n,C") and H(XAX ") =71, }.
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Remark. The same result holds over real matrices, i.e. given A € R"*", we have

(2) a(A)=inf {7y : X € GL(n,R") and S(XAX ") < ~I,}.

Remark. Note that if M € H", then M < ~[ if and only if A < v for all A € o(M). Indeed,
since M is unitarily diagonalizable, we have o(yI — M) ={y— X : A € o(M)}.

Proof. First suppose that X € GL(n,C") is such that H(XAX ') <X ~I,. Then, for every
u € C™ with |u| = 1, we have
2y = 2y[ul? > uT XAX 1y + o X AR Xy
= u T XAX '+ uf XAX 1y = 2Re(u? X AX u).

Let A € 0(A) = 0(XAX 1), and let u be a unit eigenvector for X AX ! associated with the
eigenvalue A\. Then the previous inequality tells us that

v > Re(u? XAX1u) = Re()).

Hence, the infimum on the right-hand side of (1) exceeds a(A).

Next we show that for every 7 > a(A) there exists X € GL(n,C) such that H(XAX 1) <
~I which establishes the result. To this end, let A = Q¥TQ be the Shur form of A, i.e., Q
is unitary and 7" is upper triangular:

AMotig tiz .oty
0 Ay tos ... to
- | 2 ‘23 2
0o ... An

Let 0 > 0 and set Ds = diag (8,0%,6%,...,8"). Then

Ny Oty 0%ty3 ... 0"y, |

0 o Otag ... "%y,
Dy'TDs = | : 3 :

0 5t(n_1)n

0 ... A

Set X5 = D;'Q so that X; ' = Q¥ D;s and X;AX; ' = D;'TDs. Hence

i Reg)\l) gtlg %tlg e %tln i
%tlg Re()\g) gtgg e 6Tt2n
H(XsAX) = : : — diag (Re(\y), ..., Re(An)).
Efl 3¢
2 (771_1) T 7 l(n—1)n
| 6Tt1n . Re()\n)_
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Therefore, o(H(X;AX; 1)) — {Re(\), - .. , Re(An) }. Consequently, if a(A) < v, there exists
§ > 0 such that a(H(XsAX; ")) < v for all § € (0,9), or equivalently, H(XsAX; ') < yI. O

Next observe that M € H™ satisfies
Iy eRst. M 2y <= WHMW <yWHIW VW e ™",

Here, the implication “<” is obvious since we can take W = I. The reverse implication
follows since M < ~I if and only if (vI — M) is positive semi-definite which implies that
WH (~I — M)W is also Hermitian positive semidefinite for all W € C™*™. Therefore, we have

HXAX Y <41
<~
XIH(XAX X 24X X
<~
XIXA+ APXHX <oy XHX
<~
PA+ AP <29yP  with0 < P=X"X.

By combining this observation with the preceding lemma, we obtain the following result.
Theorem.[Spectral Abscissa Approximation II] Given A € C™*"| we have
(3) a(A)=inf{y : 0 < P € H" and PA+ A"P < 2yP}.

Suppose that a(A) < 0. This theorem tells us that to every v € («(A),0) there is a
positive definite matrix P, satisfying

P, A+ AP, < 24P,
It is now straightforward to show that the function V(x) = 2# P,z is a Lyapunov function
for (CLH). Moreover we have the following theorem.

Theorem.|Exponential Stability of (CLH)] Let A € C"*" be such that a(A) < 0. Then,
given a(A) < v < 0, there exists 0 < P € H" such that

PA+ A"P <2yP.
Moreover, for every solution xz(¢) to (CLH),

[2(t)] < VK(P) |z(to) [ Wt > 1,

where £(P) is the condition number for the matrix P.

Remark. If A € R™", is such that a(A) < 0, then, given a(A) < v < 0, there exists
0 < P € 8" such that
PA+ A"P <2yP.

Moreover, for every solution z(t) to (CLH),

[2(t)] < VK(P) |z(to) [ Wt > 1,

where £(P) is the condition number for the matrix P.



