
30 Ordinary Differential Equations

Linear ODE

Let I ⊂ R be an interval (open or closed, finite or infinite — at either end). Suppose
A : I → Fn×n and b : I → Fn are continuous. The DE

(∗) x′ = A(t)x+ b(t)

is called a first-order linear [system of] ODE[s] on I. Since f(t, x) ≡ A(t)x+b(t) is continuous
in t, x on I×Fn and, for any compact subinterval [c, d] ⊂ I, f is uniformly Lipschitz in x on
[c, d]×Fn (with Lipschitz constant maxc≤t≤d |A(t)|), we have global existence and uniqueness
of solutions of the IVP

x′ = A(t)x+ b(t), x(t0) = x0

on all of I (where t0 ∈ I, x0 ∈ Fn).

If b ≡ 0 on I, (∗) is called a linear homogeneous system (LH).

If b 6≡ 0 on I, (∗) is called a linear inhomogeneous system (LI).

Fundamental Theorem for LH. The set of all solutions of (LH) x′ = A(t)x on I forms
an n-dimensional vector space over F (in fact, a subspace of C1(I,Fn)).

Proof. Clearly x′1 = Ax1 and x′2 = Ax2 imply (c1x1 + c2x2)
′ = A(c1x1 + c2x2), so the set of

solutions of (LH) forms a vector space over F, which is clearly a subspace of C1(I,Fn). Fix
τ ∈ I, and let y1, . . . , yn be a basis for Fn. For 1 ≤ j ≤ n, let xj(t) be the solution of the
IVP x′ = Ax, x(τ) = yj. Then x1(t), . . . , xn(t) are linearly independent in C1(I,Fn); indeed,

n
∑

j=1

cjxj(t) = 0 in C1(I,Fn)

⇒
n

∑

j=1

cjxj(t) = 0 ∀ t ∈ I

⇒
n

∑

j=1

cjyj =
∑

cjxj(τ) = 0

⇒

cj = 0 j = 1, 2, . . . , n.

Now if x(t) is any solution of (LH), there exist unique c1, . . . , cn such that x(τ) = c1y1 +
· · ·+ cnyn. Clearly c1x1(t) + · · · + cnxn(t) is a solution of the IVP

x′ = A(t)x, x(τ) = c1y1 + · · · cnyn,

so by uniqueness, x(t) = c1x1(t) + · · ·+ cnxn(t) for all t ∈ I. Thus x1(t), . . . , xn(t) span the
vector space of all solutions of (LH) on I. So they form a basis, and the dimension is n. �
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Remark. Define the linear operator L : C1(I,Fn) → C0(I,Fn) by Lx =
(

d
dt
−A(t)

)

x, i.e.,
(Lx)(t) = x′(t)−A(t)x(t) for x(t) ∈ C1(I,Fn). L is called a linear differential operator . The
solution space in the previous theorem is precisely the null space of L. Thus the null space
of L is finite dimensional and has dimension n.

Definition. A set {ϕ1, . . . , ϕn} of solutions of (LH) x′ = Ax on I is said to be a fundamental
set of solutions if it is a basis for the vector space of all solutions. If Φ : I → Fn×n is an
n× n matrix function of t ∈ I whose columns form a fundamental set of solutions of (LH),
then Φ(t) is called a fundamental matrix for (LH) x′ = A(t)x. Checking columnwise shows
that a fundamental matrix satisfies

Φ′(t) = A(t)Φ(t).

Definition. If X : I → Fn×k is in C1(I,Fn×k), we say that X is an [n× k] matrix solution
of (LH) if X ′(t) = A(t)X(t). Clearly X(t) is a matrix solution of (LH) if and only if each
column of X(t) is a solution of (LH). (We will mostly be interested in the case k = n.)

Theorem. Let A : I → Fn×n be continuous, where I ⊂ R is an interval, and suppose
X : I → Fn×n is an n × n matrix solution of (LH) x′ = A(t)x on I, i.e., X ′(t) = A(t)X(t)
on I. Then det (X(t)) satisfies the linear homogeneous first-order scalar ODE

det (X(t))′ = tr (A(t))detX(t),

and so for all τ, t ∈ I,

detX(t) = (det (X(τ))) exp

∫ t

τ

tr (A(s))ds.

Proof. Let xij(t) denote the ijth element of X(t), and let X̂ij(t) denote the (n − 1) ×
(n − 1) matrix obtained from X(t) by deleting its ith row and jth column. The co-factor
representation of the determinant gives

det (X) =

n
∑

j=1

(−1)(i+j)xijdet (X̂ij), i = 1, 2, . . . , n .

Hence
∂

∂xij

det (X) = (−1)(i+j)det (X̂ij),

and so by the chain rule

(detX(t))′ =
n

∑

j=1

(−1)(1+j)x′1j(t)det (X̂ij(t)) + · · · +
n

∑

j=1

(−1)(n+j)x′nj(t)det (X̂ij(t))

=det

[

x′11 x′12 · · · x′1n

(remaining xij)

]

+ · · · + det

[

(remaining xij)

x′n1 x′n2 · · · x′nn

]

.
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Now by (LH)

[ x′11 x′12 · · · x′1n ] = [Σka1kxk1 · · ·Σka1kxkn]

= a11[x11 · · ·x1n] + a12[x21 · · ·x2n] + · · ·+ a1n[xn1 · · ·xnn].

Subtracting a12[x21 · · ·x2n]+ · · ·+a1n[xn1 · · ·xnn] from the first row of the matrix in the first
determinant on the RHS doesn’t change that determinant. A similar argument applied to
the other determinants gives

(detX(t))′ =det

[

a11[x11 · · ·x1n]

(remaining xij)

]

+ · · ·+ det

[

(remaining xij)

ann[xn1 · · ·xnn]

]

=(a11 + · · ·+ ann) detX(t) = tr (A(t))detX(t).

�

Corollary. Let X(t) be an n× n matrix solution of (LH) x′ = A(t)x. Then either

(∀ t ∈ I) detX(t) 6= 0 or (∀ t ∈ I) detX(t) = 0.

Corollary. Let X(t) be an n × n matrix solution of (LH) x′ = A(t)x. Then the following
statements are equivalent.

(1) X(t) is a fundamental matrix for (LH) on I.

(2) (∃ τ ∈ I) detX(τ) 6= 0 (i.e., columns of X are linearly independent at τ)

(3) (∀ t ∈ I) detX(t) 6= 0 (i.e., columns of X are linearly independent at every t ∈ I).

Definition. If X(t) is an n× n matrix solution of (LH) x′ = A(t)x, then det (X(t)) is often
called the Wronskian [of the columns of X(t)].

Remark. This is not quite standard notation for general LH systems x′ = A(t)x. It is used
most commonly when x′ = A(t)x is the first-order system equivalent to a scalar nth-order
linear homogeneous ODE.

Theorem. Suppose Φ(t) is a fundamental matrix for (LH) x′ = A(t)x on I.

(a) If c ∈ F
n, then x(t) = Φ(t)c is a solution of (LH) on I.

(b) If x(t) ∈ C1(I,Fn) is any solution of (LH) on I, then there exists a unique c ∈ Fn for
which x(t) = Φ(t)c.
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Proof. The theorem just restates that the columns of Φ(t) for a basis for the set of solutions
of (LH). �

Remark. The general solution of (LH) is Φ(t)c for arbitrary c ∈ Fn, where Φ(t) is a funda-
mental matrix.

Theorem. Suppose Φ(t) is a fundamental matrix (F.M.) for (LH) x′ = A(t)x on I.

(a) If C ∈ Fn×n is invertible, then X(t) = Φ(t)C is also a F.M. for (LH) on I.

(b) If X(t) ∈ C1(I,Fn×n) is any F.M. for (LH) on I, then there exists a unique invertible
C ∈ Fn×n for which X(t) = Φ(t)C.

Proof. For (a), observe that

X ′(t) = Φ′(t)C = A(t)Φ(t)C = A(t)X(t),

so X(t) is a matrix solution, and detX(t) = (det Φ(t))(detC) 6= 0.
For (b), set Ψ(t) = Φ(t)−1X(t). Then X = ΦΨ, so

Φ′Ψ + ΦΨ′ = (ΦΨ)′ = X ′ = AX = AΦΨ = Φ′Ψ,

which implies that ΦΨ′ = 0. Since Φ(t) is invertible for all t ∈ I, Ψ′(t) ≡ 0 on I. So Ψ(t) is
a constant invertible matrix C. Since C = Ψ = Φ−1X, we have X(t) = Φ(t)C. �

Remark. If B(t) ∈ C1(I,Fn×n) is invertible for each t ∈ I, then

d

dt
(B−1(t)) = −B−1(t)B′(t)B−1(t).

The proof is to differentiate I = BB−1:

0 =
d

dt
(I) =

d

dt
(B(t)B−1(t)) = B(t)

d

dt
(B−1(t)) +B′(t)B−1(t).

Adjoint Systems

Let Φ(t) be a F.M. for (LH) x′ = A(t)x. Then

(Φ−1)′ = −Φ−1Φ′Φ−1 = −Φ−1AΦΦ−1 = −Φ−1A.

Taking conjugate transposes, (Φ∗−1)′ = −A∗Φ∗−1. So Φ∗−1(t) is a F.M. for the adjoint
system (LH*) x′ = −A∗(t)x.

Theorem. If Φ(t) is a F.M. for (LH) x′ = A(t)x and Ψ(t) ∈ C1(I,Fn×n), then Ψ(t) is a
F.M. for (LH*) x′ = −A∗(t)x if and only if Ψ∗(t)Φ(t) = C, where C is a constant invertible
matrix.

Proof. Suppose Ψ(t) is a F.M. for (LH*). Since Φ∗−1(t) is also a F.M. for (LH*), ∃ an
invertible C ∈ Fn×n ∋ Ψ(t) = Φ∗−1(t)C∗, i.e., Ψ∗ = CΦ−1, Ψ∗Φ = C. Conversely, if
Ψ∗(t)Φ(t) = C (invertible), then Ψ∗ = CΦ−1, Ψ = Φ∗−1C∗, so Ψ is a F.M. for (LH*). �
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Normalized Fundamental Matrices

Definition. A F.M. Φ(t) for (LH) x′ = A(t)x is called normalized at time τ if Φ(τ) = I,
the identity matrix. (Convention: if not stated otherwise, a normalized F.M. usually means
normalized at time τ = 0.)

Facts:

(1) For a given τ , the F.M. of (LH) normalized at τ exists and is unique. (Proof. The jth

column of Φ(t) is the solution of the IVP x′ = A(t)x, x(τ) = ej .)

(2) If Φ(t) is the F.M. for (LH) normalized at τ , then the solution of the IVP x′ = A(t)x,
x(τ) = y is x(t) = Φ(t)y. (Proof. x(t) = Φ(t)y satisfies (LH) x′ = A(t)x, and
x(τ) = Φ(τ)y = Iy = y.)

(3) For any fixed τ, t, the solution operator St
τ for (LH), mapping x(τ) into x(t), is a linear

operator on Fn, and its matrix is the F.M. Φ(t) for (LH) normalized at τ , evaluated at
t.

(4) If Φ(t) is any F.M. for (LH), then for fixed τ , Φ(t)Φ−1(τ) is the F.M. for (LH) normal-
ized at τ . (Proof. It is a F.M. taking the value I at τ .) Thus:
(a) Φ(t)Φ−1(τ) is the matrix of the solution operator St

τ for (LH); and
(b) the solution of the IVP x′ = A(t)x, x(τ) = y is x(t) = Φ(t)Φ−1(τ)y.

Reduction of Order for (LH) x′ = A(t)x

If m (< n) linearly independent solutions of the n×n linear homogeneous system x′ = A(t)x
are known, then one can derive an (n − m) × (n − m) system for obtaining n − m more
linearly independent solutions. See Coddington & Levinson for details.

Inhomogeneous Linear Systems

We now want to express the solution of the IVP

x′ = A(t)x+ b(t), x(t0) = y

for the linear inhomogeneous system

(LI) x′ = A(t)x+ b(t)

in terms of a F.M. for the associated homogeneous system

(LH) x′ = A(t)x.
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Variation of Parameters

Let Φ(t) be any F.M. for (LH). Then for any constant vector c ∈ Fn, Φ(t)c is a solution of
(LH). We will look for a solution of (LI) of the form

x(t) = Φ(t)c(t)

(varying the “constants” — elements of c). Plugging into (LI), we want

(Φc)′ = AΦc + b,

or equivalently

Φ′c+ Φc′ = AΦc + b.

Since Φ′ = AΦ, this gives Φc′ = b, or c′ = Φ−1b. So let

c(t) = c0 +

∫ t

t0

Φ−1(s)b(s)ds

for some constant vector c0 ∈ Fn, and let x(t) = Φ(t)c(t). These calculations show that x(t)
is a solution of (LI). To satisfy the initial condition x(t0) = y, we take c0 = Φ−1(t0)y, and
obtain

x(t) = Φ(t)Φ−1(t0)y +

∫ t

t0

Φ(t)Φ−1(s)b(s)ds.

In words, this equation states that

{

soln of (LI)
with I.C. x(t0) = y

}

=

{

soln of (LH)
with I.C. x(t0) = y

}

+

{

soln of (LI)
with homog. I.C. x(t0) = 0

}

.

Viewing y as arbitrary, we find that the general solution of (LI) equals the general solution
of (LH) plus a particular solution of (LI).

Recall that Φ(t)Φ−1(t0) is the matrix of St
t0
, and Φ(t)Φ−1(s) is the matrix of St

s. So the above
formula for the solution of the IVP can be written just in terms of the solution operator:

Duhamel’s Principle. If St
τ is the solution operator for (LH), then the solution of the IVP

x′ = A(t)x+ b(t), x(t0) = y is

x(t) = St
t0
y +

∫ t

t0

St
s(b(s))ds.

Remark. So the effect of the inhomogeneous term b(t) in (LI) is the same as adding an
additional IC b(s) at each time s ∈ [t0, t] and integrating these solutions St

s(b(s)) of (LH)
with respect to s ∈ [t0, t].
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Constant Coefficient Systems

Consider the linear homogeneous constant-coefficient first-order system

(LHC) x′ = Ax,

where A ∈ F
n×n is a constant matrix. The F.M. of (LHC), normalized at 0, is Φ(t) = etA.

This is justified as follows. Recall that

eB ≡
∞

∑

j=0

1

j!
Bj

where B0 ≡ I. So Φ(0) = I. Term by term differentiation is justified in the series for etA :

Φ′(t) =
d

dt
(etA) =

∞
∑

j=0

1

j!

d

dt
(tA)j

=

∞
∑

j=1

1

(j − 1)!
tj−1Aj = A

∞
∑

k=0

1

k!
(tA)k = AetA = AΦ(t).

We can express etA using the Jordan form of A: if P−1AP = J is in Jordan form where
P ∈ Fn×n is invertible (assume F = C if A has any nonreal eigenvalues), then A = PJP−1,
so etA = etPJP−1

= PetJP−1. If

J =











J1 0
J2

. . .

0 Js











where each Jk is a single Jordan block, then

etJ =











etJ1 0
etJ2

. . .

0 etJs











.

Finally, if

Jk =











λ 1 0

λ
. . .
. . . 1

0 λ











is l × l, then

etJk = eλt

















1 t t2

2!
· · · tl−1

(l−1)!

1 t
. . .

...
. . .

. . . t
2!

t

0 1

















.
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The solution of the inhomogeneous IVP x′ = Ax+ b(t), x(t0) = y is

x(t) = e(t−t0)Ay +

∫ t

t0

e(t−s)Ab(s)ds

since (etA)−1 = e−tA and etAe−sA = e(t−s)A.

Another viewpoint

Suppose A ∈ Cn×n is a constant diagonalizable matrix with eigenvalues λ1, . . . , λn and
linearly independent eigenvectors v1, . . . , vn. Then ϕj(t) ≡ eλjtvj is a solution of (LHC)
x′ = Ax since

ϕ′
j =

d

dt
(eλjtvj) = λje

λjtvj = eλjt(λjvj)

= eλjtAvj = A(eλjtvj) = Aϕj.

Clearly ϕ1, . . . , ϕn are linearly independent at t = 0 as ϕj(0) = vj . Thus

Φ(t) = [ϕ1(t)ϕ2(t) · · ·ϕn(t)]

is a F.M. for (LHC). So the general solution of (LHC) (for diagonalizable A) is Φ(t)c =
c1e

λ1tv1 + · · ·+ cne
λntvn for arbitrary scalars c1, . . . , cn.

Remark on Exponentials

Let B(t) be a C1 n× n matrix function of t, and let A(t) = B′(t). Then

d

dt
(eB(t)) =

d

dt
(I +B +

1

2!
B ·B +

1

3!
B · B · B + · · · )

= A +
1

2!
(AB +BA) +

1

3!
(AB2 +BAB +B2A) + · · · .

Now, if for each t, A(t) and B(t) commute, then

d

dt
(eB(t)) = A

(

I +B +
1

2!
B2 + · · ·

)

= B′(t)eB(t).

Now suppose we start with a continuous n× n matrix function A(t), and for some t0, we
define B(t) =

∫ t

t0
A(s)ds, so B′(t) = A(t). Suppose in addition that A(t) and B(t) commute

for all t. Then Φ(t) ≡ exp
(

∫ t

t0
A(s)ds

)

is the F.M. for (LH) x′ = A(t)x, normalized at t0,

since Φ(t0) = I and Φ′(t) = A(t)Φ(t) as above.

Remark. A sufficient (but not necessary) condition guaranteeing that A(t) and
∫ t

t0
A(s)ds

commute is that A(t) and A(s) commute for all t, s.
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Application to Nonlinear Solution Operator

Consider the nonlinear DE x′ = f(t, x) where f is C1, and let St
τ denote the solution operator.

For a fixed τ , let x(t, y) denote the solution of the IVP x′ = f(t, x), x(τ) = y. The equation
of variation for the n× n Jacobian matrix Dyx is

d

dt
(Dyx(t, y)) = (Dxf (t, x(t, y))) (Dyx(t, y)) ,

and thus
d

dt
(det (Dyx(t, y))) = tr (Dxf (t, x(t, y))) det (Dyx(t, y)) .

This relation will be used and interpreted below. Solving, one obtains

det (Dyx(t, y)) = det (Dyx(τ, y)) exp

(
∫ t

τ

tr (Dxf (s, x(s, y))) ds

)

= exp

(
∫ t

τ

tr (Dxf (s, x(s, y))) ds

)

,

since

Dyx(τ, y) = Dyy = I.

In particular, det (Dyx(t, y)) 6= 0, so Dyx(t, y) is invertible. For τ and t fixed, Dyx(t, y) =
DyS

t
τ , so we have demonstrated again that DyS

t
τ is invertible at each y.

Rate of Change of Volume in a Flow

Consider an autonomous system x′ = f(x), where f is C1 and F = R, so x ∈ Rn. Fix t0,
and view the family of IVPs

x′ = f(x), x(t0) = y

for y in an open set U ⊂ Rn as a flow: at the initial time t0, there is a particle at each point
y ∈ U ; that particle’s location at time t ≥ t0 is given by x(t, y), where x(t, y) is the solution
of the IVP x′ = f(x), x(t0) = y (e.g., f can be thought of as a steady-state velocity field).
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For t ≥ t0, let U(t) = {x(t, y) : y ∈ U}.
Then U(t) = St

t0
(U) and St

t0
: U → U(t)

is (for fixed t) a C1 diffeomorphism (i.e.,
for fixed t, the map y 7→ x(t, y) is a C1

diffeomorphism on U). In particular,
detDyx(t, y) never vanishes. Assum-
ing, in addition, that U is connected,
detDyx(t, y) must either be always pos-

itive or always negative; since detDyx(t0, y) = det I = 1 > 0, detDyx(t, y) is always > 0.
Now the volume vol(U(t)) satisfies

vol(U(t)) =

∫

U(t)

1 dx =

∫

U

|detDyx(t, y)|dy =

∫

U

detDyx(t, y)dy.
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Assuming differentiation under the integral sign is justified (e.g., if U is contained in a
compact set K and St

t0
can be extended to y ∈ K), and using the relation derived in the

previous section,

d

dt
(vol (U(t))) =

∫

U

d

dt
(detDyx(t, y))dy =

∫

U

divf(x(t, y))detDyx(t, y)dy

=

∫

U(t)

divf(x)dx,

where the divergence of f is by definition

divf(x) =
∂f1

∂x1
+
∂f2

∂x2
+ · · · +

∂fn

∂xn

= tr (Dxf(x)) .

Thus the rate of change of the volume of U(t) is the integral of the divergence of f over U(t).
In particular, if divf(x) ≡ 0, then d

dt
(vol (U(t))) = 0, and volume is conserved.

Remark. The same argument applies when f = f(t, x) depends on t as well: just replace
divf(x) by divxf(t, x), the divergence of f (with respect to x):

divxf(t, x) =

(

∂f1

∂x1
+ · · · +

∂fn

∂xn

)
∣

∣

∣

∣

(t,x)

.

Linear Systems with Periodic Coefficients

Let A : R → Cn×n be continuous and periodic with period ω > 0:

(∀ t ∈ R) A(t+ ω) = A(t).

Note that in this case we take the scalar field to be F = C. Consider the periodic linear
homogeneous system

(PLH) x′ = A(t)x, t ∈ R.

All solutions exist for all time t ∈ R because the system is linear and A is defined and
continuous for t ∈ R.

Lemma. If Φ(t) is a F.M. for (PLH), then so also is Ψ(t) ≡ Φ(t+ ω).

Proof. For each t, Ψ(t) is invertible. Also, Ψ′(t) = Φ′(t+ω) = A(t+ω)Φ(t+ω) = A(t)Ψ(t),
so Ψ(t) is a matrix solution of (PLH). �

Theorem. To each F.M. Φ(t) for (PLH), there exists an invertible periodic C1 matrix
function P : R → Cn×n and a constant matrix R ∈ Cn×n for which Φ(t) = P (t)etR.

Proof. By the lemma, there is an invertible matrix C ∈ C
n×n such that Φ(t+ ω) = Φ(t)C.

Since C is invertible, it has a logarithm, i.e. there exists a matrix W ∈ Cn×n such that
eW = C. Let R = 1

ω
W . Then C = eωR. Define P (t) = Φ(t)e−tR. Then P (t) is invertible for

all t, P (t) is C1, and Φ(t) = P (t)etR. Finally,

P (t+ ω) = Φ(t+ ω)e−(t+ω)R

= Φ(t)Ce−ωRe−tR = Φ(t)e−tR = P (t),

so P (t) is periodic. �
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Linear Scalar nth-order ODEs

Let I ≡ [a, b] be an interval in R, and suppose aj(t) are in C(I,F) for j = 0, 1, . . . , n, with
an(t) 6= 0 ∀ t ∈ I. Consider the nth-order linear differential operator L : Cn(I) → C(I) given
by

Lu = an(t)
dnu

dtn
+ · · · + a1(t)

du

dt
+ a0(t)u,

and the nth-order homogeneous equation (nLH) Lu = 0, t ∈ I. Consider the equivalent n×n
first-order system (LH) x′ = A(t)x, t ∈ I, where

A(t) =











0 1
. . .

. . .

0 1
−a0

an
· · · −an−1

an











and x =















u

u′

u′′

...
u(n−1)















∈ F
n.

Fix t0 ∈ I. Appropriate initial conditions for (nLH) are










u(t0)
u′(t0)

...
u(n−1)(t0)











= x(t0) = ζ ≡











ζ1
ζ2
...
ζn











.

Recall that u is a Cn solution of (nLH) if and only if x is a C1 solution of (LH), with a
similar equivalence between associated IVP’s. If Φ(t) is a F.M. for (LH), with A(t) as given
above, then Φ(t) has the form

Φ =











ϕ1 ϕ2 · · · ϕn

ϕ′
1 ϕ′

2 · · · ϕ′
n

...
...

...

ϕ
(n−1)
1 ϕ

(n−1)
2 · · · ϕ

(n−1)
n











,

where each ϕj(t) satisfies (nLH).

Definition. If ϕ1(t), . . . , ϕn(t) are solutions of (nLH), then the Wronskian of ϕ1, . . . , ϕn (a
scalar function of t) is defined to be

W (ϕ1, . . . , ϕn)(t) = det











ϕ1(t) ϕn(t)
ϕ′

1(t) · · · ϕ′
n(t)

...
...

ϕ
(n−1)
1 (t) ϕ

(n−1)
n (t)











(= det Φ(t)).

Since Φ(t) is a matrix solution of (LH), we know

det (Φ(t)) = det (Φ(t0)) exp

∫ t

t0

tr (A(s))ds,
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so

W (ϕ1, . . . , ϕn)(t) = W (ϕ1, . . . , ϕn)(t0) exp

∫ t

t0

−
an−1(s)

an(s)
ds.

In particular, for solutions ϕ1, . . . , ϕn of (nLH),

either W (ϕ1, . . . , ϕn)(t) ≡ 0 on I, or (∀ t ∈ I) W (ϕ1, . . . , ϕn)(t) 6= 0.

Theorem. Let ϕ1, . . . , ϕn be n solutions of (nLH) Lu = 0. Then they are linearly indepen-
dent on I (i.e., as elements of Cn(I)) if and only if W (ϕ1, . . . , ϕn)(t) 6= 0 on I.

Proof. If ϕ1, . . . , ϕn are linearly dependent in Cn(I), then there exist scalars c1, . . . , cn such
that

c1ϕ1(t) + · · ·+ cnϕn(t) ≡ 0 on I, with c ≡







c1
...
cn






6= 0;

thus Φ(t)c = 0 on I, so W (ϕ1, . . . , ϕn)(t) = det Φ(t) = 0 on I. Conversely, if det Φ(t) = 0 on
I, then the solutions







ϕ1
...

ϕ
(n−1)
1






, · · · ,







ϕn

...

ϕ
(n−1)
n







of (LH) are linearly dependent (as elements of C1(I,Fn)), so there exist scalars c1, . . . , cn
such that

c1

[

ϕ1(t)
...

]

+ · · ·+ cn

[

ϕn(t)
...

]

≡ 0 on I,

where not all cj = 0. In particular, c1ϕ1(t)+ · · ·+cnϕn(t) ≡ 0 on I, so ϕ1, . . . , ϕn are linearly
dependent in Cn(I). �

Corollary. The dimension of the vector space of solutions of (nLH) (a subspace of Cn(I))
is n, i.e., dimN (L) = n, where N (L) denotes the null space of L : Cn(I) → C(I).

The differential operator L (normalized so that an(t) ≡ 1) is itself determined by n

linearly independent solutions of (nLH) Lu = 0:

Fact. Suppose ϕ1(t), . . . , ϕn(t) ∈ Cn(I) with W (ϕ1, . . . , ϕn)(t) 6= 0 (∀ t ∈ I). Then there
exists a unique nth order linear differential operator

L =
dn

dtn
+ an−1(t)

dn−1

dtn−1
+ · · ·+ a1(t)

d

dt
+ a0(t)

(with an(t) ≡ 1 and each aj(t) ∈ C(I)) for which ϕ1, . . . , ϕn form a fundamental set of
solutions of (nLH) Lu = 0, namely,

Lu =
W (ϕ1, . . . , ϕn, u)

W (ϕ1, . . . , ϕn)
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where

W (ϕ1, . . . , ϕn, u) = det











ϕ1 · · · ϕn u

ϕ′
1 ϕ′

n u′

...
...

...

ϕ
(n)
1 · · · ϕ

(n)
n u(n)











.

Sketch. In this formula for Lu, expanding the determinant in the last column shows that L
is an nth order linear differential operator with continuous coefficients aj(t) and an(t) ≡ 1.
Clearly ϕ1, . . . , ϕn are solutions of Lu = 0. For uniqueness (with an(t) ≡ 1), note that if
ϕ1, . . . , ϕn are linearly independent solutions of Lu = 0 for some L, then

ΦT (t)











a0(t)
a1(t)

...
an−1(t)











= −







ϕ
(n)
1 (t)
...

ϕ
(n)
n (t)






.

Since W (ϕ1, . . . , ϕn)(t) 6= 0 (∀ t ∈ I), Φ(t) is invertible ∀ t ∈ I, so






a0(t)
...

an−1(t)






= −(ΦT )−1(t)







ϕ
(n)
1 (t)
...

ϕ
(n)
n (t)







is uniquely determined by ϕ1, . . . , ϕn.

Remark. A first-order system (LH) x′ = A(t)x is uniquely determined by any F.M. Φ(t).
Since Φ′(t) = A(t)Φ(t), A(t) = Φ′(t)Φ−1(t).

Linear Inhomogeneous nth-order scalar equations

For simplicity, normalize the coefficients aj(t) so that an(t) ≡ 1 in L. Consider

(nLI) Lu = u(n) + an−1(t)u
(n−1) + · · · + a0(t)u = β(t).

Let

x =











u

u′

...
u(n−1)











, b(t) =











0
...
0
β(t)











, and A(t) =











0 1
. . .

. . .

0 1
−a0 · · · −an−1











;

then x(t) satisfies (LI) x′ = A(t)x + b(t). We can apply our results for (LI) to obtain
expressions for solutions of (nLI).

Theorem. If ϕ1, . . . , ϕn is a fundamental set of solutions of (nLH) Lu = 0, then the solution
ψ(t) of (nLI) Lu = β(t) with initial condition u(k)(t0) = ζk+1 (k = 0, . . . , n− 1) is

ψ(t) = ϕ(t) +

n
∑

k=1

ϕk(t)

∫ t

t0

Wk(ϕ1, . . . , ϕn)(s)

W (ϕ1, . . . , ϕn)(s)
β(s)ds
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where ϕ(t) is the solution of (nLH) with the same initial condition at t0, and Wk is the
determinant of the matrix obtained from

Φ(t) =











ϕ1 · · · ϕn

ϕ′
1 · · · ϕ′

n
...

...

ϕ
(n−1)
1 · · · ϕ

(n−1)
n











by replacing the kth column of Φ(t) by the n-th unit coordinate vector en.

Proof. We know

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)b(s)ds,

where x0 = [ζ1, · · · ζn]T and b(s) = [0 · · · β(s)]T , solves the IVP x′ = A(t)x, x(t0) = x0.
The first component of x(t) is ψ(t), and the first component of Φ(t)Φ−1(t0)x0 is the solution
ϕ(t) of (nLH) described above. By Cramer’s Rule, the kth component of Φ−1(s)en is

Wk(ϕ1, . . . , ϕn)(s)

W (ϕ1, . . . , ϕn)(s)
.

Thus the first component of Φ(t)
∫ t

t0
Φ−1(s)b(s)ds is

[ϕ1(t) · · ·ϕn(t)]

∫ t

t0

Φ−1(s)enβ(s)ds =
n

∑

k=1

ϕk(t)

∫ t

t0

Wk(ϕ1, . . . , ϕn)(s)

W (ϕ1, . . . , ϕn)(s)
β(s)ds.

�

Linear nth-order scalar equations with constant coefficients

For simplicity, take an = 1 and F = C. Consider

Lu = u(n) + an−1u
(n−1) + · · ·+ a0u,

where a0, . . . , an−1 are constants. Then

A =











0 1
. . .

. . .

0 1
−a0 · · · −an−1











has characteristic polynomial

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0.
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Moreover, since A is a companion matrix, each distinct eigenvalue of A has only one Jordan
block in the Jordan form of A. Indeed, for any λ,

A− λI =











−λ 1 0
. . .

. . .

1
−a0 (−an−1 − λ)











has rank ≥ n− 1, so the geometric multiplicity of each eigenvalue is 1 = dim(N (A− λI)).
Now if λk is a root of p(λ) having multiplicity mk (as a root of p(λ)), then terms of the

form tjeλkt for 0 ≤ j ≤ mk − 1 appear in elements of etJ (where P−1AP = J is in Jordan
form), and thus also appear in etA = PetJP−1, the F.M. for (LH) x′ = Ax, normalized at 0.
This explains the well-known result:

Theorem. Let λ1, . . . , λs be the distinct roots of p(λ) = λn + an−1λ
n−1 + · · ·+ a0 = 0, and

suppose λk has multiplicity mk for 1 ≤ k ≤ s. Then a fundamental set of solutions of

Lu = u(n) + an−1u
(n−1) + · · · + a0u = 0,

where ak ∈ C, is
{tjeλkt : 1 ≤ k ≤ s, 0 ≤ j ≤ mk − 1}.

The standard proof is to show that these functions are linearly independent and then plug
in and verify that they are solutions: write

L =

(

d

dt
− λ1

)m1

· · ·

(

d

dt
− λs

)ms

,

and use
(

d

dt
− λk

)mk
(

tjeλkt
)

= 0 for 0 ≤ j ≤ mk − 1.


