30 Ordinary Differential Equations

Linear ODE

Let I C R be an interval (open or closed, finite or infinite — at either end). Suppose
A: T —-F">""and b : I — F" are continuous. The DE

(%) ¥ = A(t)x + b(t)

is called a first-order linear [system of] ODE[s] on I. Since f(t,z) = A(t)xz+b(t) is continuous
int, z on I x F" and, for any compact subinterval [c,d] C I, f is uniformly Lipschitz in x on
[c, d] x F™ (with Lipschitz constant max.<;<q4 |A(t)|), we have global existence and uniqueness
of solutions of the IVP

= A(t)x + b(t), z(to) = xo

on all of I (where ty € I, zy € F™).

If b=0on I, (%) is called a linear homogeneous system (LH).

If b 0 on I, (x) is called a linear inhomogeneous system (LI).

Fundamental Theorem for LH. The set of all solutions of (LH) ' = A(t)x on I forms
an n-dimensional vector space over F (in fact, a subspace of C*(I,F")).

Proof. Clearly zf = Azy and 2, = Azy imply (c121 + coxa) = A(c121 + ca9), so the set of
solutions of (LH) forms a vector space over F, which is clearly a subspace of C*(I,F"). Fix
7 € 1, and let yi,...,y, be a basis for F”. For 1 < j < n, let x;(¢) be the solution of the
IVP 2/ = Az, 2(7) = y;. Then x1(t),...,z,(t) are linearly independent in C*(I,F"); indeed,

> cai(t)=0 in C'(I,F")
j=1

4

3

Now if z(t) is any solution of (LH), there exist unique ¢y, ..., ¢, such that z(7) = c;y; +
oo+ Y. Clearly ciz1(t) + -+ -+ + ¢z, (t) is a solution of the IVP

o =At)z, (1) =y + - G,

so by uniqueness, x(t) = c1z1(t) + - - - + ¢z, (t) for all t € I. Thus z4(t),. .., x,(t) span the
vector space of all solutions of (LH) on I. So they form a basis, and the dimension is n. [
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Remark. Define the linear operator L : C*(I,F") — C°(I,F") by Lz = (4 — A(t)) z, ie.,
(Lz)(t) = 2/ (t) — A(t)z(t) for z(t) € CY(I,F"). L is called a linear differential operator. The
solution space in the previous theorem is precisely the null space of L. Thus the null space

of L is finite dimensional and has dimension n.

Definition. A set {¢1,...,¢,} of solutions of (LH) ' = Ax on [ is said to be a fundamental
set of solutions if it is a basis for the vector space of all solutions. If & : I — F"*™ is an
n X n matrix function of ¢ € I whose columns form a fundamental set of solutions of (LH),
then ®(t) is called a fundamental matriz for (LH) 2’ = A(t)z. Checking columnwise shows
that a fundamental matrix satisfies

Definition. If X : [ — F>* is in C1(I,F™**), we say that X is an [n x k] matrix solution
of (LH) if X'(t) = A(t)X(t). Clearly X(¢) is a matrix solution of (LH) if and only if each
column of X (¢) is a solution of (LH). (We will mostly be interested in the case k = n.)

Theorem. Let A : I — F"™" be continuous, where I C R is an interval, and suppose
X : I — F™™ is an n X n matrix solution of (LH) 2’ = A(t)z on I, i.e., X'(t) = A(t)X(¢)
on I. Then det (X (¢)) satisfies the linear homogeneous first-order scalar ODE

det (X (1)) = tr (A(t))det X (1),

and so for all 7.t € I,

det X (£) = (det (X (7)) exp / i (A(s))ds.

Proof. Let x;(t) denote the ij™ element of X(t), and let X;;(¢) denote the (n — 1) x
(n — 1) matrix obtained from X (¢) by deleting its ith row and jth column. The co-factor
representation of the determinant gives

det (X) =) (1) aydet (Xy5), i=12,....n.

j=1

Hence

0

al‘ij

det (X) = (—1) ) det (X;;),

and so by the chain rule

n

(det X(8)) =) _(=1)af;(t)det (Xyy(1)) + -+ + i(—l)("”)x’nj(t)det (X (1))

Jj=1 J=1

/ / /
Ty Ty 00 Ty
=det

(remaining x;;)

+ -+ det

/ / /

'rnl xn2 xnn

(remaining ;;) ]
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Now by (LH)

[z 2l - 2, ] = [Epanw®r - ZpaipTio)
= anlrn - Te) an@e o xo] +o F a[Tar  Tog)

Subtracting aqa[®e; - - - Top| + - - -+ a1n[Tn1 - - - Tnp) from the first row of the matrix in the first
determinant on the RHS doesn’t change that determinant. A similar argument applied to
the other determinants gives

an[l’n e '1’1n]

(det X (t))" =det + -+ det

(remaining z;;) ]
(remaining x;;) A [T+ + T

=(a11 + -+ apy) det X (t) = tr (A(¢))det X ().

Corollary. Let X () be an n x n matrix solution of (LH) 2’ = A(t)xz. Then either

(Vtel) detX(t)#0 or (Vtel) detX(t)=0.

Corollary. Let X(¢) be an n x n matrix solution of (LH) 2’ = A(t)x. Then the following
statements are equivalent.

(1) X(t) is a fundamental matrix for (LH) on I.
(2) (37 €l)det X(1)#0 (i.e., columns of X are linearly independent at 7)
(3) (VteI)det X(t)#0 (i.e., columns of X are linearly independent at every ¢ € I).

Definition. If X (#) is an n X n matrix solution of (LH) ' = A(¢)z, then det (X(¢)) is often
called the Wronskian [of the columns of X (¢)].

Remark. This is not quite standard notation for general LH systems ' = A(t)z. It is used
most commonly when 2’ = A(t)x is the first-order system equivalent to a scalar n'"-order
linear homogeneous ODE.

Theorem. Suppose ®(t) is a fundamental matrix for (LH) 2/ = A(¢)x on I.
(a) If c € F™, then z(t) = ®(t)c is a solution of (LH) on I.

(b) If z(t) € C*(I,F") is any solution of (LH) on I, then there exists a unique ¢ € F" for
which z(t) = ®(t)ec.
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Proof. The theorem just restates that the columns of ®(t) for a basis for the set of solutions
of (LH). O

Remark. The general solution of (LH) is ®(t)c for arbitrary ¢ € F", where ®(¢) is a funda-
mental matrix.

Theorem. Suppose ®(t) is a fundamental matrix (F.M.) for (LH) 2’ = A(¢)x on [I.
(a) If C' € F™" is invertible, then X (¢) = ®(¢)C is also a F.M. for (LH) on I.
(b) If X(t) € C*(I,F™") is any F.M. for (LH) on I, then there exists a unique invertible
C € F™ for which X (t) = ®(¢)C.
Proof. For (a), observe that
X'(t) =d'(t)C = A@t)P(t)C = A(H) X (t),

so X (t) is a matrix solution, and det X (¢) = (det ®(¢))(det C') # 0.
For (b), set ¥(t) = ®(¢)"'X(t). Then X = ®¥, so

PV + PV = (V) = X' = AX = ADY = &'V,

which implies that ®U’ = 0. Since ®(t) is invertible for all t € I, W'(t)
a constant invertible matrix C. Since C'= ¥ = &' X we have X (t) =

=0on /. So ¥(t) is
(1)C. 0
Remark. If B(t) € CY(I,F™") is invertible for each ¢ € I, then
d
dt
The proof is to differentiate ] = BB~!:

0= 1) = S(BUBD) = B)(B (1) + BB (1)

(B7H(t)) = =B (t)B'(t)B~(1).

Adjoint Systems
Let ®(t) be a F.M. for (LH) 2’ = A(t)x. Then
(@) = 07100 = —0'APD T = D1 A
Taking conjugate transposes, (®*7!) = —A*®*~!. So ®*~1(t) is a F.M. for the adjoint
system (LH*) 2/ = —A*(t)x.

Theorem. If ®(¢) is a F.M. for (LH) 2/ = A(t)x and ¥(¢) € C'(I,F"*"), then ¥(t) is a
F.M. for (LH*) 2/ = —A*(¢)x if and only if U*(¢)®(¢) = C, where C is a constant invertible
matrix.

Proof. Suppose ¥(t) is a F.M. for (LH*). Since ®*~!(¢) is also a F.M. for (LH*), 3 an
invertible C' € F™" 5 U(t) = &*~1(t)C*, ie., U* = CP~!, ¥*® = (. Conversely, if
U*(t)®(t) = C (invertible), then ¥* = C®~! ¥ = &*~1C* so ¥ is a F.M. for (LH*). O
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Normalized Fundamental Matrices

Definition. A F.M. ®(t) for (LH) 2/ = A(t)x is called normalized at time 7 if (1) = I,
the identity matrix. (Convention: if not stated otherwise, a normalized F.M. usually means
normalized at time 7 = 0.)

Facts:

(1) For a given 7, the F.M. of (LH) normalized at 7 exists and is unique. (Proof. The ;!
column of ®(¢) is the solution of the IVP 2’ = A(t)z, z(7) =e;.)

(2) If ®(t) is the F.M. for (LH) normalized at 7, then the solution of the IVP 2’ = A(t)z,
z(1) = yis z(t) = ®(t)y. (Proof. z(t) = ®(t)y satisfies (LH) =’ = A(t)x, and
o(r) =®(r)y =1y =y.)

(3) For any fixed 7, ¢, the solution operator St for (LH), mapping x(7) into z(t), is a linear

operator on ", and its matrix is the F.M. ®(¢) for (LH) normalized at 7, evaluated at
t.

(4) If ®(t) is any F.M. for (LH), then for fixed 7, ®(¢)®~!(7) is the F.M. for (LH) normal-
ized at 7. (Proof. It is a F.M. taking the value I at 7.) Thus:
(a) ®(t)®~1(7) is the matrix of the solution operator St for (LH); and
(b) the solution of the IVP 2’ = A(t)z, (1) =y is z(t) = ®(¢t)® ! (7)y.

Reduction of Order for (LH) x' = A(t)x

If m (< n) linearly independent solutions of the n x n linear homogeneous system z’ = A(t)z
are known, then one can derive an (n — m) X (n — m) system for obtaining n — m more
linearly independent solutions. See Coddington & Levinson for details.

Inhomogeneous Linear Systems

We now want to express the solution of the IVP
= A(t)x +b(t), z(to))=vy
for the linear inhomogeneous system
(LI) ' = A(t)x + b(t)
in terms of a F.M. for the associated homogeneous system

(LH) 2’ = A(t)z.
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Variation of Parameters

Let ®(t) be any F.M. for (LH). Then for any constant vector ¢ € F" ®(¢)c is a solution of
(LH). We will look for a solution of (LI) of the form

(varying the “constants” — elements of ¢). Plugging into (LI), we want
(®c) = ADc + b,

or equivalently
d'c+ & = Adc + b.

Since ® = A®, this gives ®c = b, or ¢ = &~ 1b. So let

c(t) = ¢ —|—/ O 1(s5)b(s)ds

to

for some constant vector ¢y € F", and let x(t) = ®(¢)c(t). These calculations show that z(t)
is a solution of (LI). To satisfy the initial condition z(ty) = y, we take ¢y = ®~!(to)y, and

obtain
t

x(t) = ®(t)D ' (to)y —i—/ O(t)D ' (s)b(s)ds.

to

In words, this equation states that

soln of (LI) B soln of (LH) n soln of (LI)
with I.C. z(tg) =y [ | with L.C. z(to) =y with homog. I.C. z(to) =0 [~

Viewing y as arbitrary, we find that the general solution of (LI) equals the general solution
of (LH) plus a particular solution of (LI).

Recall that ®(¢)®~!(t,) is the matrix of S} , and ®(¢)®~'(s) is the matrix of S’. So the above
formula for the solution of the IVP can be written just in terms of the solution operator:

Duhamel’s Principle. If St is the solution operator for (LH), then the solution of the IVP
o' = Az +b(t), x(to) = y is

i) =St + [ Stosds

to

Remark. So the effect of the inhomogeneous term b(¢) in (LI) is the same as adding an
additional IC b(s) at each time s € [to,t] and integrating these solutions S%(b(s)) of (LH)
with respect to s € [to, t].
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Constant Coefficient Systems
Consider the linear homogeneous constant-coefficient first-order system
(LHC) 2’ = Az,
where A € F"*" is a constant matrix. The F.M. of (LHC), normalized at 0, is ®(¢)

= et
This is justified as follows. Recall that
el = i 1 B’
= 7
=0
where B = 1. So ®(0) = I. Term by term differentiation is justified in the series for e/ :

B(t) = S =Y oAy

£ jladt
= 1 j—1 A4 — 1 k tA
= Z(._1)|t A =AY (A = A = Ad(t),
j=1 J ’ k=0

We can express e’ using the Jordan form of A: if P~'AP = J is in Jordan form where

P € F™ " is invertible (assume F = C if A has any nonreal eigenvalues), then A = PJP~!,
so et = tPTP™ — pet/ 1 If

J1 0
J= %
0 Js
where each Jj is a single Jordan block, then
etJl 0
eth
ot —
0 | els
Finally, if
Al 0
Ji = A
1
0 A
is [ x [, then
B 2 -1 T
Lt g =y
1t :
eth — 6>\t t
2
t
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The solution of the inhomogeneous IVP 2/ = Az + b(t), x(tg) =y is
t
z(t) = =04y +/ e~ (s)ds
to

since (e!)7! = e and ette™A = elt=94,

Another viewpoint

Suppose A € C™" is a constant diagonalizable matrix with eigenvalues \;,...,\, and
linearly independent eigenvectors vy, ...,v,. Then ;(t) = e%'v; is a solution of (LHC)
x' = Ax since

d

vy = a(eA"tUj) = NjeVtu; = eN ()
= eMAy; = A(eMh)) = Ag;.

Clearly ¢4, ..., ¢, are linearly independent at ¢ = 0 as ¢;(0) = v;. Thus

O(t) = [pa(t) 92(t) - - on(t)]

is a F.M. for (LHC). So the general solution of (LHC) (for diagonalizable A) is ®(t)c =
cieMtuy + -+ ¢ entu, for arbitrary scalars cq, . . ., cy.

Remark on Exponentials

Let B(t) be a C' n x n matrix function of ¢, and let A(t) = B’(t). Then

d Bty _ d 1 1
1 1
= A+§(AB+BA)+§(ABQ+BAB+BQA)+---.

Now, if for each ¢, A(t) and B(t) commute, then

%(63@) =A <[ + B+ %BQ + .- ) — B'(t)ePV.

Now suppose we start with a continuous n X n matrix function A(t), and for some t,, we
define B(t) = ftl; A(s)ds, so B'(t) = A(t). Suppose in addition that A(t) and B(t) commute

for all t. Then ®(t) = exp (fti A(s)ds) is the F.M. for (LH) 2/ = A(t)z, normalized at ¢,
since ®(tg) = I and P'(t) = A(t)P(t) as above.

Remark. A sufficient (but not necessary) condition guaranteeing that A(t) and fti A(s)ds
commute is that A(t) and A(s) commute for all ¢, s.
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Application to Nonlinear Solution Operator

Consider the nonlinear DE 2/ = f(¢, z) where f is C*, and let S! denote the solution operator.
For a fixed 7, let (¢, y) denote the solution of the IVP 2’ = f(¢,x), (1) = y. The equation
of variation for the n x n Jacobian matrix D,z is

% (Dyx(t,y)) = (Do f (t,2(t,9))) (Dya(t,y)),

and thus
d

=7 (det (Dya(t,y))) = tr (Do f (t,(t,y))) det (Dya(t,y)) -

This relation will be used and interpreted below. Solving, one obtains
t
det (Dya(t,y)) = det (Dya(r,y))exp </ tr (Daf (s,2(s,9))) dS)

= o ([ o 0uf Gatoas).

since

Dyx(t,y) = Dyy = 1.

In particular, det (Dyx(t,y)) # 0, so Dyx(t,y) is invertible. For 7 and ¢ fixed, D,z(t,y) =
D, S, so we have demonstrated again that D,S? is invertible at each y.

Rate of Change of Volume in a Flow

Consider an autonomous system z’ = f(z), where f is C! and F = R, so # € R". Fix t,,
and view the family of IVPs

o= f(z), a(to) =y

for y in an open set Y C R™ as a flow: at the initial time ¢(, there is a particle at each point

y € U; that particle’s location at time ¢ > ¢, is given by z(¢,y), where z(t, y) is the solution

of the IVP o’ = f(z), xz(to) = y (e.g., f can be thought of as a steady-state velocity field).

For t > to, let U(t) = {x(t,y) : y € U}.

Then U(t) = S} (U) and S} : U — U(1)

\ {thxu(t) is (for fixed t) a C'! diffeomorphism (i.e.,

Y .:f_&(‘,\\!x(w) for fixed ¢, the map y — x(t,y) is a C*

K,’ diffeomorphism on ¢). In particular,

det Dyx(t,y) never vanishes. Assum-

o " t ing, in addition, that U is connected,

det D,z (t,y) must either be always pos-

itive or always negative; since det Dyz(tp,y) = detI =1 > 0, det D,x(t,y) is always > 0.
Now the volume vol(U(t)) satisfies

{to}XZx[
x € R" |

Vol(Z/{(t)):/ 1da::/\detDyx(t,y)\dy:/detDyx(t,y)dy.
U(t) u u
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Assuming differentiation under the integral sign is justified (e.g., if U is contained in a
compact set K and S} can be extended to y € K), and using the relation derived in the
previous section,

GOl @) = [ 5@t Dyalty)dy = [ divslatt.p)der Dyt )iy

:/ div f(z)dz,
ut)

where the divergence of f is by definition

ofi | 0f 9 fn

din(ﬂf):a—era—@ﬂL"'JraxnItl"(Dmf(l’))-

Thus the rate of change of the volume of ¢(t) is the integral of the divergence of f over U(t).
In particular, if div f(z) = 0, then < (vol ((t))) = 0, and volume is conserved.

Remark. The same argument applies when f = f(¢,x) depends on ¢ as well: just replace
divf(x) by div, f(t, x), the divergence of f (with respect to z):

div, f(t,z) = <8—xl+~-~+ax

(t,z)

Linear Systems with Periodic Coefficients

Let A:R — C™"™ be continuous and periodic with period w > 0:
(Vt € R) At +w) = A(t).
Note that in this case we take the scalar field to be F = C. Consider the periodic linear
homogeneous system
(PLH) ¥ =Alt)z, teR.
All solutions exist for all time ¢ € R because the system is linear and A is defined and
continuous for ¢t € R.

Lemma. If ®(¢) is a F.M. for (PLH), then so also is ¥(t) = ®(t + w).

Proof. For each t, ¥(¢) is invertible. Also, W'(t) = ' (t+w) = A(t+w)P(t+w) = A(t)¥(¢),
so U(t) is a matrix solution of (PLH). O

Theorem. To each F.M. ®(¢) for (PLH), there exists an invertible periodic C' matrix
function P : R — C™*™ and a constant matrix R € C™*" for which ®(t) = P(t)e'.

Proof. By the lemma, there is an invertible matrix C' € C™*" such that ®(t + w) = ®(¢)C.
Since C' is invertible, it has a logarithm, i.e. there exists a matrix W &€ C"*" such that
e =C. Let R=1W. Then C = e“%. Define P(t) = ®(t)e . Then P(t) is invertible for
all t, P(t) is C', and ®(¢) = P(t)e'. Finally,
Pt4+w) = O(t4w)e W
= d(t)Ce e = d(t)e™ = P(t),
so P(t) is periodic. O
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Linear Scalar n'-order ODEs

Let I = [a,b] be an interval in R, and suppose a;(t) are in C(/,F) for j = 0,1,...,n, with
an(t) # 0Vt € I. Consider the n*t-order linear differential operator L : C"(I) — C(I) given
by

Lu = an(t)% +- 4 al(t)fi—lz + ap(t)u,
and the n*"-order homogeneous equation (nLH) Lu = 0, t € I. Consider the equivalent n xn
first-order system (LH) 2’ = A(t)x, t € I, where

0 1 5,
A(t) = 0 . and x = u” e F".
—a .. _Gn-1 :
an an u(nfl)

Fix ty € I. Appropriate initial conditions for (nLH) are

U/(tO) C1
Uu <:t0) _ :L’(to) _ C — §:2
w1 (1) .,

Recall that u is a C™ solution of (nLH) if and only if z is a C' solution of (LH), with a
similar equivalence between associated IVP’s. If ®(¢) is a F.M. for (LH), with A(¢) as given
above, then ®(t) has the form

801 SOQ e 9077/

o] HoA
n-1)  (n-1 n-1
A D g

where each ¢;(t) satisfies (nLH).

Definition. If ¢;(t),...,¢,(t) are solutions of (nLH), then the Wronskian of ¢1,..., ¢, (a
scalar function of t) is defined to be

uoo

’1 t ;1 t

W (@1, ..., n)(t) =det v : v : (= det O(¢)).
A el

Since ®(t) is a matrix solution of (LH), we know

det (®(t)) = det (P(ty)) exp/ tr (A(s))ds,

to
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SO
ds.

Wipr, - on)(t) = Wlpr,..., n)(to) exp /t Sy

to a’n(s)

In particular, for solutions ¢, ..., ¢, of (nLH),

either  W(p1,...,0n)(t) =0o0n I, or Vtel) W(pr,...,on)(t) #0.

Theorem. Let ¢4, ..., y, be n solutions of (nLH) Lu = 0. Then they are linearly indepen-
dent on I (i.e., as elements of C™(I)) if and only if W (¢, ..., ¢,)(t) # 0 on I.

Proof. If ¢y, ..., ¢, are linearly dependent in C"(I), then there exist scalars ¢y, ..., ¢, such
that
C1
cp1(t) + -+ cppn(t) =0 on I, with ¢ = : # 0;
Cn

thus ®(t)c =0on I, so W(ep1,...,on)(t) = det ®(¢) = 0 on I. Conversely, if det (¢) = 0 on
I, then the solutions

Y1 Pn
|| e
e P
of (LH) are linearly dependent (as elements of C'(I,F")), so there exist scalars ci,...,c,

such that

t
01[¢1,<)]+~-~+cn =0on [,

where not all ¢; = 0. In particular, cip1(t) +- - -+ crn(t) =0o0n I, s0 ¢4, ..., ¢, are linearly
dependent in C™(I). O

©n(t) ]

Corollary. The dimension of the vector space of solutions of (nLH) (a subspace of C"(I))
is n, i.e., dim N (L) = n, where NV(L) denotes the null space of L : C"(I) — C(I).

The differential operator L (normalized so that a,(t) = 1) is itself determined by n
linearly independent solutions of (nLH) Lu = 0:

Fact. Suppose ¢1(t),...,on(t) € C™(I) with W (1, ...,0n)(t) # 0 (Vt € I). Then there
exists a unique n'" order linear differential operator

dr dn! d
L= % + an,1<t)W + -t Cbl(t)a + CLQ(t)
(with a,(t) = 1 and each a;(t) € C(I)) for which ¢1,...,¢, form a fundamental set of
solutions of (nLH) Lu = 0, namely,

W(@h ) ()Onuu)
W(@h s 7@”)

Lu =
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where
Spl P Spn U
© o U
W(p1, ..., on,u) = det : : :

Sketch. In this formula for Lu, expanding the determinant in the last column shows that L
is an n' order linear differential operator with continuous coefficients a;(t) and a,(t) = 1.
Clearly @1, ..., ¢, are solutions of Lu = 0. For uniqueness (with a,(tf) = 1), note that if

©1, - - ., P, are linearly independent solutions of Lu = 0 for some L, then
o A0
oy | | =]
: (n)
1 (1) on " (t)
Since W (p1,...,pn)(t) #0 (Vt € I), O(t) is invertible Vt € I, so
ao(t) (1)
L =@
an-1(t) i (1)

is uniquely determined by ¢1, ..., @,.

Remark. A first-order system (LH) 2’ = A(t)z is uniquely determined by any F.M. ®(t).
Since ®'(t) = A(t)P(t), A(t) = O'(t)P(1).

Linear Inhomogeneous n'"-order scalar equations
For simplicity, normalize the coefficients a;(t) so that a,(¢) =1 in L. Consider

(L) Lu=u" +a,_1(O)u™V + -+ ag(t)u = B(¢).

Let
U 0 0 1
u :
xr = , b(t) = , and A(t) = R :
| 0 0 C
u(n_l) ﬁ(t) —ag e —Cp_1

then x(t) satisfies (LI) 2/ = A(t)z + b(t). We can apply our results for (LI) to obtain
expressions for solutions of (nLI).

Theorem. If 1, .., p, is a fundamental set of solutions of (nLH) Lu = 0, then the solution
Y(t) of (nLI) Lu = B(t) with initial condition u®(ty) = (441 (k=0,...,n— 1) is

(
b0 =)+ o) [ e )

P15 - - 79071)(5)
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where ¢(t) is the solution of (nLH) with the same initial condition at ty, and W is the
determinant of the matrix obtained from

801 “ .. 9077/
0l o

ot)y=| " .
n—1 n—1
R o

by replacing the £ column of ®(¢) by the n-th unit coordinate vector e,,.

Proof. We know

t

o) = D08ty + 0(1) [ @ ()0(s)ds,
to
where 2o = [¢1, -+ G and b(s) = [0 --- 3(s)]", solves the IVP &/ = A(t)x, z(ty) = .
The first component of x(t) is +(¢), and the first component of ®(t)®~1(¢y)xg is the solution
©(t) of (nLH) described above. By Cramer’s Rule, the k™ component of ®~1(s)e,, is

Wk(@lv .- '790n)(5)
W (g1, n)(s)

Thus the first component of ®(¢) ftz O1(s)b(s)ds is

a0+t [ @ 5)ea(e)ds = S alt) [ P2 g
to 1 to 1y+++5Pn

Linear n'"-order scalar equations with constant coefficients

For simplicity, take a,, =1 and F = C. Consider
LU/ = u(n) + an_lu(n_l) + - + aou’

where ag, ..., a,_1 are constants. Then

_ao ... _anfl
has characteristic polynomial

PA) = A" F ap A" ag ) Fag.
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Moreover, since A is a companion matrix, each distinct eigenvalue of A has only one Jordan
block in the Jordan form of A. Indeed, for any A,

-2 1 0
A= X =
1
—Q (-an,1 — )\)

has rank > n — 1, so the geometric multiplicity of each eigenvalue is 1 = dim(N (A — \I)).

Now if Ay is a root of p(\) having multiplicity my (as a root of p(\)), then terms of the
form t7ert for 0 < j < my, — 1 appear in elements of e/ (where P'AP = J is in Jordan
form), and thus also appear in !4 = Pe/ P~1 the F.M. for (LH) 2/ = Ax, normalized at 0.
This explains the well-known result:

Theorem. Let \y,...,\, be the distinct roots of p(A) = A" + a, A" ' + -+ +ag =0, and
suppose A has multiplicity my for 1 < k <'s. Then a fundamental set of solutions of

Lu=u" + ap_1u™ Y + - + aqu = 0,

where a; € C, is ‘
{tje)"“tzlgk:gs,()gjgmk—l}.

The standard proof is to show that these functions are linearly independent and then plug
in and verify that they are solutions: write

d m1 d ms
L=[——2\ =)
(dt 1) (dt )

d e
(@ — )\k) (t]e)‘kt) =0 for 0<7<m—1.

and use



