Hilbert Spaces

Definition. A complex inner product space (or pre-Hilbert space) is a complex vector space X together with an inner product: a function from $X \times X$ into \mathbb{C} (denoted by $\langle y, x \rangle$) satisfying:

1. $(\forall x \in X) \quad \langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ iff $x = 0$.
2. $(\forall \alpha, \beta \in \mathbb{C}) \quad (\forall x, y, z \in X), \quad \langle z, \alpha x + \beta y \rangle = \alpha \langle z, x \rangle + \beta \langle z, y \rangle$.
3. $(\forall x, y \in X) \quad \langle y, x \rangle = \overline{\langle x, y \rangle}$

Remarks.

(2) says the inner product is linear in the second variable;
(3) says the inner product is sesquilinear;
(2) and (3) imply $\langle \alpha x + \beta y, z \rangle = \bar{\alpha} \langle x, z \rangle + \bar{\beta} \langle y, z \rangle$, so the inner product is conjugate linear in the first variable.

Definition. For $x \in X$, let $\|x\| = \sqrt{\langle x, x \rangle}$.

Cauchy-Schwarz Inequality. $(\forall x, y \in X) \quad |\langle y, x \rangle| \leq \|x\| \cdot \|y\|$, with equality iff x and y are linearly dependent.

Proof. The result is obvious if $\langle y, x \rangle = 0$. Suppose $\gamma \equiv \langle y, x \rangle \neq 0$. Then $x \neq 0$, $y \neq 0$. Let $z = \gamma |\gamma|^{-1} y$. Then $\langle z, x \rangle = \gamma |\gamma|^{-1} \langle y, x \rangle = |\gamma| > 0$. Let $v = x \|x\|^{-1}$, $w = z \|z\|^{-1}$. Then $\|v\| = \|w\| = 1$ and $\langle w, v \rangle > 0$. Since $0 \leq \|v - w\|^2 = \langle v, v \rangle - 2 \Re \langle w, v \rangle + \langle w, w \rangle$, it follows that $\langle w, v \rangle \leq 1$ (with equality iff $v = w$, which happens iff x and y are linearly dependent). So $|\langle y, x \rangle| = \langle z, x \rangle = \|x\| \cdot \|z\| \langle w, v \rangle \leq \|x\| \cdot \|z\| = \|x\| \cdot \|y\|$. \square

Facts.

1' $(\forall x \in X) \|x\| \geq 0; \|x\| = 0$ iff $x = 0$.
2' $(\forall \alpha \in \mathbb{C})(\forall x \in X) \quad \|\alpha x\| = |\alpha| \cdot \|x\|$.
3' $(\forall x, y \in X) \quad \|x + y\| \leq \|x\| + \|y\|$.
Proof of (3'):
\[\|x + y\|^2 = \|x\|^2 + 2\Re \langle y, x \rangle + \|y\|^2 \leq \|x\|^2 + 2|\langle y, x \rangle| + \|y\|^2 \leq \|x\|^2 + 2\|x\| \cdot \|y\| + \|y\|^2.\]

Hence \(\|\cdot\|\) is a norm on \(X\); called the norm induced by the inner product \(\langle \cdot, \cdot \rangle\).

Definition. An inner product space which is complete with respect to the norm induced by the inner product is called a **Hilbert space.**

Example. \(X = \mathbb{C}^n\). For \(x = (x_1, \ldots, x_n)\) and \(y = (y_1, \ldots, y_n) \in \mathbb{C}^n\), let \(\langle y, x \rangle = \sum_{j=1}^n \overline{y}_j x_j\).

Then \(\|x\| = \sqrt{\sum_{j=1}^n |x_j|^2}\) is the \(l^2\)-norm on \(\mathbb{C}^n\).

Examples of Hilbert spaces:
- any finite dimensional inner product space
- \(l^2 = \{(x_1, x_2, x_3, \ldots) : x_k \in \mathbb{C}, \sum_{k=1}^\infty |x_k|^2 < \infty\}\) with \(\langle y, x \rangle = \sum_{k=1}^\infty \overline{y}_k x_k\)
- \(L^2(A)\) for any measurable \(A \subset \mathbb{R}^n\), with inner product \(\langle g, f \rangle = \int_A g(x)f(x)dx\).

Incomplete inner product space
\[C([a, b])\) with \(\langle g, f \rangle = \int_a^b \overline{g(x)}f(x)dx\)

\(C([a, b])\) with this inner product is not complete; it is dense in \(L^2([a, b])\), which is complete.

Parallelogram Law. Let \(X\) be an inner product space. Then \((\forall x, y \in X)\)
\[\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).\]

Proof. \[\|x + y\|^2 + \|x - y\|^2 = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle = 2(\langle x, x \rangle + \langle y, y \rangle) = 2(\|x\|^2 + \|y\|^2).\] \(\square\)

Polarization Identity. Let \(X\) be an inner product space. Then \((\forall x, y \in X)\)
\[\langle y, x \rangle = \frac{1}{4} \left(\|y + x\|^2 - \|y - x\|^2 - i\|y + ix\|^2 + i\|y - ix\|^2 \right).\]

Proof. Expanding out the implied inner products, one shows easily that
\[\|y + x\|^2 - \|y - x\|^2 = 4\Re \langle y, x \rangle\) and \(\|y + ix\|^2 - \|y - ix\|^2 = -4\Im \langle y, x \rangle.\] \(\square\)

Note: In a real inner product space, \(\langle y, x \rangle = \frac{1}{4} (\|y + x\|^2 - \|y - x\|^2).\)

Remark. In an inner product space, the inner product determines the norm. The polarization identity shows that the norm determines the inner product. But not every norm on a vector space \(X\) is induced by an inner product.
Orthogonality. If \(\langle y, x \rangle = 0 \), we say \(x \) and \(y \) are orthogonal and write \(x \perp y \). For any subset \(A \subset X \), define \(A^\perp = \{ x \in X : \langle y, x \rangle = 0 \ \forall y \in A \} \). Since the inner product is linear in the second component and continuous, \(A^\perp \) is a closed subspace of \(X \). Also \((\text{span}(A))^\perp = A^\perp \), \(\overline{A}^\perp = A^\perp \), and \((\overline{\text{span}(A)})^\perp = A^\perp \).

The Pythagorean Theorem. If \(x_1, \ldots, x_n \in X \) and \(x_j \perp x_k \) for \(j \neq k \), then
\[
\left\| \sum_{j=1}^{n} x_j \right\|^2 = \sum_{j=1}^{n} \| x_j \|^2.
\]

Proof. If \(x \perp y \) then \(\| x + y \|^2 = \| x \|^2 + 2Re\langle y, x \rangle + \| y \|^2 = \| x \|^2 + \| y \|^2 \). Now use induction. □

Convex Sets. A subset \(A \) of a vector space \(X \) is called convex if \((\forall x, y \in A) \ (\forall t \in (0,1)) \ (1 - t)x + ty \in A \).

Examples.

1. Every subspace is convex.
2. In a normed linear space, \(B(x, \epsilon) \) is convex for \(\epsilon > 0 \) and \(x \in X \).
3. If \(A \) is convex and \(x \in X \), then \(A + x \equiv \{ y + x : y \in A \} \) is convex.

Theorem. Every nonempty closed convex subset \(A \) of a Hilbert space \(X \) has a unique element of smallest norm.

Proof. Let \(\delta = \inf\{ \| x \| : x \in A \} \). If \(x, y \in A \), then \(\frac{1}{2}(x + y) \in A \) by convexity, and by the parallelogram law,
\[
\| x - y \|^2 = 2(\| x \|^2 + \| y \|^2) - \| x + y \|^2 \leq 2(\| x \|^2 + \| y \|^2) - 4\delta^2.
\]
Clearly, if \(\|x\| = \|y\| = \delta \), then \(\|x - y\|^2 \leq 4\delta^2 - 4\delta^2 = 0 \), so \(x = y \). For existence, choose \(\{y_n\}_{n=1}^{\infty} \subset A \) for which \(\|y_n\| \rightarrow \delta \). As \(n, m \rightarrow \infty \),

\[
\|y_n - y_m\|^2 \leq 2(\|y_n\|^2 + \|y_m\|^2) - 4\delta^2 \rightarrow 0,
\]

so \(\{y_n\} \) is Cauchy. By completeness, \(\exists y \in X \) for which \(y_n \rightarrow y \), and since \(A \) is closed, \(y \in A \). Also \(\|y\| = \lim \|y_n\| = \delta \).

Corollary. If \(A \) is a nonempty closed convex set in a Hilbert space and \(x \in X \), then \(\exists \) a unique closest element of \(A \) to \(x \).

Proof. Let \(z \) be the unique smallest element of the nonempty closed convex set \(A - x = \{y - x : y \in A\} \), and let \(y = z + x \). Then \(y \in A \) is clearly the unique closest element of \(A \) to \(x \).

Orthogonal Projections onto Closed Subspaces

The Projection Theorem. Let \(M \) be a closed subspace of a Hilbert space \(X \).

1. For each \(x \in X \), \(\exists \) unique \(u \in M \), \(v \in M^\perp \) such that \(x = u + v \). (So as vector spaces, \(X = M \oplus M^\perp \).)

Define the operators \(P : X \rightarrow M \) and \(Q : X \rightarrow M^\perp \) by \(P : x \mapsto u \) and \(Q : x \mapsto v \).

2. If \(x \in M \), \(Px = x \) and \(Qx = 0 \); if \(x \in M^\perp \), \(Px = 0 \) and \(Qx = x \).

3. \(P^2 = P \), Range\((P) = M \), Null Space\((P) = M^\perp \); \(Q^2 = Q \), Range\((Q) = M^\perp \), Null Space\((Q) = M \).

4. \(P, Q \in \mathcal{B}(X,X) \). \(\|P\| = 0 \) if \(M = \{0\} \); otherwise \(\|P\| = 1 \). \(\|Q\| = 0 \) if \(M^\perp = \{0\} \); otherwise \(\|Q\| = 1 \).

5. \(Px \) is the unique closest element of \(M \) to \(x \), and \(Qx \) is the unique closest element of \(M^\perp \) to \(x \).

6. \(P + Q = I \) (obvious by the definition of \(P \) and \(Q \)).

Proof Sketch. Given \(x \in X \), \(x + M \) is a closed convex set. Define \(Qx \) to be the smallest element of \(x + M \), and let \(Px = x - Qx \). Since \(Qx \in x + M \), \(Px \in M \). Let \(z = Qx \). Suppose \(y \in M \) and \(\|y\| = 1 \), and let \(\alpha = \langle y, z \rangle \). Then \(z - \alpha y \in x + M \), so \(\|z\|^2 \leq \|z - \alpha y\|^2 = \|z\|^2 - \alpha \langle z, y \rangle - \bar{\alpha} \langle y, z \rangle + |\alpha|^2 = \|z\|^2 - |\alpha|^2 \). So \(\alpha = 0 \). Thus \(z \in M^\perp \). Since clearly \(M \cap M^\perp = \{0\} \), the uniqueness of \(u \) and \(v \) in (1) follows. (2) is immediate from the definition. (3) follows from (1) and (2). For \(x, y \in X \), \(\alpha x + \beta y = (\alpha Px + \beta Py) + (\alpha Qx + \beta Qy) \), so by uniqueness in (1), \(P(\alpha x + \beta y) = \alpha Px + \beta Py \) and \(Q(\alpha x + \beta y) = \alpha Qx + \beta Qy \). By the Pythagorean Theorem, \(\|x\|^2 = \|Px\|^2 + \|Qx\|^2 \), so \(P, Q \in \mathcal{B}(X,X) \) and \(\|P\|, \|Q\| \leq 1 \). The rest of (4) follows from (2). Fix \(x \in X \). If \(y \in X \), then \(\|x - y\|^2 = \|Px - Py\|^2 + \|Qx - Qy\|^2 \).
If \(y \in M \), then \(\|x - y\|^2 = \|P x - y\|^2 + \|Q x\|^2 \), which is clearly minimized by taking \(y = P x \).
If \(y \in M^\perp \), then \(\|x - y\|^2 = \|P x\|^2 + \|Q x - y\|^2 \), which is clearly minimized by taking \(y = Q x \).
\(\square \)

Corollary. If \(M \) is a closed subspace of a Hilbert space \(X \), then \((M^\perp)^\perp = M\). In general, for any \(A \subset X \), \((A^\perp)^\perp = \text{span}\{A\}\), which is the smallest closed subspace of \(X \) containing \(A \), often called the **closed linear span** of \(A \).

Bounded Linear Functionals and Riesz Representation Theorem

Proposition. Let \(X \) be an inner product space, fix \(y \in X \), and define \(f_y : X \to C \) by \(f_y(x) = \langle y, x \rangle \). Then \(f_y \in X^* \) and \(\|f_y\| = \|y\| \).

Proof. \(|f_y(x)| = |\langle y, x \rangle| \leq \|x\| \cdot \|y\| \), so \(f_y \in X^* \) and \(\|f_y\| \leq \|y\| \). Since \(|f_y(y)| = |\langle y, y \rangle| = \|y\|^2 \), \(\|f_y\| \geq \|y\| \). So \(\|f_y\| = \|y\| \).
\(\square \)

Theorem. Let \(X \) be a Hilbert space.

1. If \(f \in X^* \), then \(\exists \) a unique \(y \in X \) \(\ni f = f_y \), i.e., \(f(x) = \langle y, x \rangle \ \forall \ x \in X \).

2. The map \(\psi : X \to X^* \) given by \(\psi : y \mapsto f_y \) is a conjugate linear isometry of \(X \) onto \(X^* \).

Proof.

1. If \(f \equiv 0 \), let \(y = 0 \). If \(f \in X^* \) and \(f \not\equiv 0 \), then \(M \equiv f^{-1}(\{0\}) \) is a proper closed subspace of \(X \), so \(\exists z \in M^\perp \ni \|z\| = 1 \). Let \(\alpha = \overline{f(z)} \) and \(y = \alpha z \). Given \(x \in X \),

\[
u \equiv f(x)z - f(z)x \in M, \text{ so } 0 = \langle z, u \rangle = f(x)\langle z, z \rangle - f(z)\langle z, x \rangle = f(x) - \langle \alpha z, x \rangle = f(x) - \langle y, x \rangle, \text{ i.e., } f(x) = \langle y, x \rangle.
\]

Uniqueness: if \(\langle y_1, x \rangle = \langle y_2, x \rangle \ \forall \ x \in X \), then (letting \(x = y_1 - y_2 \) \(\|y_1 - y_2\|^2 = 0 \), so \(y_1 = y_2 \).

(2) follows immediately from (1), the previous proposition, and the conjugate linearity of the inner product in the first variable.
\(\square \)

Corollary. \(X^* \) is a Hilbert space with the inner product \(\langle g, f \rangle = \overline{\langle \psi^{-1}(g), \psi^{-1}(f) \rangle} \) (i.e., \(\langle f_y, f_z \rangle = \langle y, x \rangle = \langle x, y \rangle \)).

Proof. Clearly \(\langle f, f \rangle \geq 0 \), \(\langle f, f \rangle = 0 \) iff \(\psi^{-1}(f) = 0 \) iff \(f = 0 \), and \(\overline{\langle g, f \rangle} = \langle g, f \rangle \).

Also \(\langle f_y, \alpha_1 f_{x_1} + \alpha_2 f_{x_2} \rangle = \langle f_y, \alpha_1 x_1 + \alpha_2 x_2 \rangle = \alpha_1 \langle y, x_1 \rangle + \alpha_2 \langle y, x_2 \rangle = \alpha_1 \langle f_y, f_{x_1} \rangle + \alpha_2 \langle f_y, f_{x_2} \rangle, \) so \(\langle \cdot, \cdot \rangle \) is an inner product on \(X^* \). Since \(\langle f_y, f \rangle = \langle y, g \rangle = \|y\|^2 = \|f_y\|^2, \langle \cdot, \cdot \rangle \) induces the norm on \(X^* \). Since \(X^* \) is complete, it is a Hilbert space.
\(\square \)

Remark. Part (1) of the Theorem above is often called [one of] the Riesz Representation Theorem[s].
Strong convergence/Weak convergence

Let X be a Hilbert space. We say $x_n \to x$ **strongly** if $\|x_n - x\| \to 0$ as $n \to \infty$. This is the usual concept of convergence in the metric induced by the norm, and is also called convergence in norm. We say $x_n \to x$ **weakly** if $\langle y, x_n \rangle \to \langle y, x \rangle$ as $n \to \infty$. (Other common notations for weak convergence are $x_n \rightharpoonup x$, $x_n \wto x$.) The Cauchy-Schwarz inequality shows that strong convergence implies weak convergence. Also, if $x_n \to x$ strongly, then $\|x_n\| \to \|x\|$ since $|\|x_n\| - \|x\|| \leq \|x_n - x\|$.

Example. (Weak convergence does not imply strong convergence if dim $X = \infty$). Let $X = l^2$. For $k = 1, 2, \ldots$, let $e_k = (0, \ldots, 0, 1, 0, \ldots)$ (so $\{e_k : k = 1, 2, \ldots\}$ is an orthonormal set in l^2).

Claim. $e_k \to 0$ weakly as $k \to \infty$.

Proof. Fix $y \in l^2$. Then $\sum_{k=1}^{\infty} |y_k|^2 < \infty$, so $y_k \to 0$. So $\langle y, e_k \rangle = \overline{y_k} \to 0$. \[\square\]

Note that $\|e_k\| = 1$, so e_k does not converge to zero strongly.

Remark. If dim $X < \infty$, then weak convergence \Rightarrow strong convergence (exercise).

Theorem. Suppose $x_n \to x$ weakly in a Hilbert space X. Then

(a) $\|x\| \leq \liminf_{k \to \infty} \|x_k\|

(b) If $\|x_k\| \to \|x\|$, then $x_k \to x$ strongly (i.e., $\|x_k - x\| \to 0$).

Proof.

(a) $0 \leq \|x - x_k\|^2 = \|x\|^2 - 2\Re\langle x, x_k \rangle + \|x_k\|^2$. By hypothesis, $\langle x, x_k \rangle \to \langle x, x \rangle = \|x\|^2$. So taking lim inf above, $0 \leq \|x\|^2 - 2\|x\|^2 + \liminf \|x_k\|^2$, i.e. $\|x\|^2 \leq \liminf \|x_k\|^2$.

(b) If $x_k \to x$ weakly and $\|x_k\| \to \|x\|$, then $\|x - x_k\|^2 = \|x\|^2 - 2\Re\langle x, x_k \rangle + \|x_k\|^2 \to \|x\|^2 - 2\|x\|^2 + \|x\|^2 = 0$. \[\square\]

Remark. The **Uniform Boundedness Principle** implies that if $x_k \to x$ weakly, then $\|x_k\|$ is bounded.

Orthogonal Sets

Definition. Let X be an inner product space. Let A be a set (not necessarily countable). A set $\{u_\alpha\}_{\alpha \in A} \subset X$ is called an **orthogonal** set if $\langle \forall \alpha \neq \beta \in A \rangle \langle u_\beta, u_\alpha \rangle = 0$. (Often it is also assumed that each $u_\alpha \neq 0$.)
Orthonormal Sets

Definition. Let X be an inner product space. A set $\{u_\alpha\}_{\alpha \in A}$ is called an orthonormal set if it is orthogonal and $(\forall \alpha \in A) \|u_\alpha\| = 1$. For each $x \in X$, define a function $\hat{x} : A \to \mathbb{C}$ by $\hat{x}(\alpha) = \langle u_\alpha, x \rangle$. The $\hat{x}(\alpha)$’s are called the Fourier coefficients of x with respect to the orthonormal set $\{u_\alpha\}_{\alpha \in A}$.

Theorem. If $\{u_1, \ldots, u_k\}$ is an orthonormal set in an inner product space X, and $x = \sum_{j=1}^{k} c_j u_j$, then $c_j = \langle u_j, x \rangle$ for $1 \leq j \leq k$ and $\|x\|^2 = \sum_{j=1}^{k} |c_j|^2$.

Proof. $\langle u_i, x \rangle = \sum c_j \langle u_i, u_j \rangle = c_i$. Now use the Pythagorean Theorem. □

Corollary. Every orthonormal set is linearly independent.

Example. If A is finite, say $A = \{1, 2, \ldots, n\}$, then for any $x \in X$, we know that the closest element of $\text{span}\{u_1, \ldots, u_n\}$ to x is $\sum_{k=1}^{n} \langle u_k, x \rangle u_k$.

Theorem. (Gram-Schmidt process) Let V be a subspace of an inner product space X, and suppose V has a finite or countable basis $\{x_n\}_{n \geq 1}$. Then V has a basis $\{u_n\}_{n \geq 1}$ which is orthonormal (we reserve the term “orthonormal basis” to mean something else); moreover we can choose $\{u_n\}_{n \geq 1}$ so that for all $m \geq 1$, $\text{span}\{u_1, \ldots, u_m\} = \text{span}\{x_1, \ldots, x_m\}$.

Proof Sketch. Define $\{u_n\}$ inductively. Start with $u_1 = \frac{x_1}{\|x_1\|}$. Having defined u_1, \ldots, u_{n-1}, let $v_n = x_n - \sum_{j=1}^{n-1} \langle u_j, x_n \rangle u_j$ and $u_n = \frac{v_n}{\|v_n\|}$. □

Definition. Let A be a nonempty set. For each $\alpha \in A$, let y_α be a nonnegative real number. Define $\sum_{\alpha \in A} y_\alpha = \sup\{\sum_{\alpha \in F} y_\alpha : F \subset A \text{ and } F \text{ is finite}\}$.

Proposition. If $\sum_{\alpha \in A} y_\alpha < \infty$, then $y_\alpha \neq 0$ for at most countably many α.

Proof. For each k, it is clear that $A_k = \{\alpha : y_\alpha > k^{-1}\}$ is a finite set. But $\{\alpha : y_\alpha \neq 0\} = \bigcup_{k=1}^{\infty} A_k$. □

Definition. Let A be a nonempty set. Define $l^2(A)$ to be the set of functions $f : A \to \mathbb{C}$ for which $\sum_{\alpha \in A} |f(\alpha)|^2 < \infty$. Then $l^2(A)$ is a Hilbert space with inner product $\langle g, f \rangle = \sum_{\alpha \in A} g(\alpha) f(\alpha)$ and norm $\|f\|_2 = \sqrt{\langle f, f \rangle}$.

Bessel’s Inequality. Let $\{u_\alpha\}_{\alpha \in A}$ be an orthonormal set in a Hilbert space X, let $x \in X$, and let $\hat{x}(\alpha) = \langle u_\alpha, x \rangle$. Then $\sum_{\alpha \in A} |\hat{x}(\alpha)|^2 \leq \|x\|^2$.

Proof. By the previous Theorem, this is true for every finite subset of A. Take the sup. □

Corollary. Let $\{u_\alpha\}_{\alpha \in A}$, x be as above. Then
(1) $\hat{x} \in l^2(A)$ and $\|\hat{x}\|_2 \leq \|x\|

(2) $\{\alpha \in A : \hat{x}(\alpha) \neq 0\}$ is countable.

Theorem. Let X be a Hilbert space and let $\{u_\alpha\}_{\alpha \in A}$ be an orthonormal set. Define $F : X \to l^2(A)$ (F is for Fourier) by $F(x) = \hat{x}$ where $\hat{x}(\alpha) = \langle u_\alpha, x \rangle$. Then F is a bounded linear operator with $\|F\| = 1$, which maps X onto $l^2(A)$.

Proof. Clearly F is linear. By (1) of the Corollary, F is bounded and $\|F\| \leq 1$. If $x = u_\alpha$ for some $\alpha \in A$, $\|\hat{x}\|_2 = 1 = \|x\|$, so $\|F\| = 1$. Given $f \in l^2(A)$, $f(\alpha) \neq 0$ only for a countable set $A_f \subseteq A$; enumerate them $\alpha_1, \alpha_2, \alpha_3, \ldots$. Let $x_k = \sum_{j=1}^{k} f(\alpha_j)u_j$. Clearly $\hat{x}_k(\alpha) = f(\alpha)$ for $\alpha_1, \ldots, \alpha_k$ and $\hat{x}_k(\alpha) = 0$ otherwise. So

$$\|\hat{x}_k - f\|_2^2 = \sum_{j=k+1}^{\infty} |f(\alpha_j)|^2 \to 0 \quad \text{as} \quad k \to \infty.$$

Thus $\hat{x}_k \to f$ in $l^2(A)$, and in particular \hat{x}_k is a Cauchy sequence in $l^2(A)$. Since each x_k is a finite linear combination of the u_α’s, $\|x_j - x_k\| = \|\hat{x}_j - \hat{x}_k\|_2$, so $\{x_k\}$ is Cauchy in X, so $x_k \to x$ in X for some $x \in X$. For each $\alpha \in A$,

$$\hat{x}(\alpha) = \langle u_\alpha, x \rangle = \lim_{k \to \infty} \langle u_\alpha, x_k \rangle = \lim_{k \to \infty} \hat{x}_k(\alpha) = f(\alpha).$$

So $F(x) = f$ and F is onto. \hfill \Box

Theorem. Let X be a Hilbert space. Every orthonormal set in X is contained in a maximal orthonormal set (i.e., an orthonormal set not properly contained in any orthonormal set).

Proof. Zorn’s lemma. \hfill \Box

Corollary. Every Hilbert space has a maximal orthonormal set.

Theorem. Let $\{u_\alpha\}_{\alpha \in A}$ be an orthonormal set in a Hilbert space X. The following conditions are equivalent:

(a) $\{u_\alpha\}_{\alpha \in A}$ is a maximal orthonormal set.

(b) The set of finite linear combinations of the u_α’s is dense in X.

(c) $(\forall x \in X) \|x\|^2 = \sum_{\alpha \in A} |\hat{x}(\alpha)|^2$ (Parseval’s relation).

(d) $(\forall x, y \in X) \langle y, x \rangle = \sum_{\alpha \in A} y(\alpha)\hat{x}(\alpha)$.

(e) $(\forall x \in X)$ if $(\forall \alpha \in A) \langle u_\alpha, x \rangle = 0$ then $x = 0$.

Proof.

(a) \Rightarrow (b): Let $V = \text{span}\{u_\alpha : \alpha \in A\}$ and $M = \bar{V}$. Then M is a closed subspace. Since $\{u_\alpha\}$ is maximal, $V^\perp = \{0\}$, so $M^\perp = \{0\}$, so $M = X$.

(b) \Rightarrow (a): Let \tilde{V} be the linear span of the finite linear combinations of the u_α’s. Since \tilde{V} is dense in X, it contains the closures of its projections on X.

(c) \Rightarrow (d): By Parseval’s relation, $\langle x, y \rangle = \sum_{\alpha \in A} \langle u_\alpha, x \rangle \langle u_\alpha, y \rangle$.

(d) \Rightarrow (c): This is trivial.
Hilbert Spaces

Theorem. Norm Convergence of Fourier Series

or an

Corollary . complete orthonormal set

is an isometry

Caution

Parseval’s Equality holds for this

Hilbert Spaces

Definition. An orthonormal set \{u_\alpha\} in a Hilbert space \(X\) satisfying the conditions in the previous theorem is called a complete orthonormal set (or a complete orthonormal system) or an orthonormal basis in \(X\).

Caution. If \(X\) is infinite dimensional, an orthonormal basis is not a basis in the usual definition of a basis for a vector space (i.e., each \(x \in X\) has a unique representation as a finite linear combination of basis elements). Such a basis in this context is called a Hamel basis.

Definition. Let \(X\) and \(Y\) be inner product spaces. A map \(T : X \to Y\) which is linear, bijective, and preserves inner products (i.e., \((\forall x, y \in X) \langle x, y \rangle = \langle Tx, Ty \rangle\) — this implies \(T\) is an isometry \(\|x\| = \|Tx\|\)) is called a unitary isomorphism.

Corollary. If \(X\) is a Hilbert space and \(\{u_\alpha\}_{\alpha \in A}\) is an orthonormal basis of \(X\), then the map \(F : X \to l^2(A)\) mapping \(x \mapsto \widehat{x}\) (where \(\widehat{x}(\alpha) = \langle x, u_\alpha \rangle\)) is a unitary isomorphism.

Corollary. Every Hilbert space is unitarily isomorphic to \(l^2(A)\) for some \(A\).

Norm Convergence of Fourier Series

Theorem. Let \(X\) be a Hilbert space, \(\{u_\alpha\}_{\alpha \in A}\) be an orthonormal set in \(X\), and let \(x \in X\). Let \(\{\alpha_j\}_{j \geq 1}\) be any enumeration of \(\{\alpha \in A : \langle u_\alpha, x \rangle \neq 0\}\). Then \(\|x\|^2 = \sum_{j=1}^{\infty} |\langle u_\alpha, x \rangle|^2\) (i.e. Parseval’s Equality holds for this \(x\)) iff \(\lim_{n \to \infty} \left\|x - \sum_{j=1}^{n} \langle u_\alpha, x \rangle u_\alpha\right\| = 0\) (i.e. the Fourier series \(\sum_{j=1}^{\infty} \widehat{x}(\alpha_j) u_\alpha\) converges to \(x\) in norm).

Proof. Let \(M_n = \text{span}\{u_{\alpha_1}, \ldots, u_{\alpha_n}\}\) and let \(P_n\) be the orthogonal projection onto \(M_n\) (so \(I - P_n\) is the orthogonal projection onto \(M_n^\perp\)). Then \(P_n x = \sum_{j=1}^{n} \langle u_{\alpha_j}, x \rangle u_{\alpha_j}\) and \(\|P_n x\|^2 = \sum_{j=1}^{n} |\langle u_{\alpha_j}, x \rangle|^2\). Also \(\|x\|^2 = \|P_n x\|^2 + \|(I - P_n)x\|^2\), so \(\|x\|^2 - \|P_n x\|^2 = \|x - P_n x\|^2\). Hence \(\lim_{n \to \infty} \|P_n x\|^2 = \|x\|^2\) iff \(\lim_{n \to \infty} \|x - P_n x\|^2 = 0\), which is the desired conclusion. (Note: If \(\{\alpha \in A : \langle u_\alpha, x \rangle \neq 0\}\) is finite, say \(\{\alpha_1, \ldots, \alpha_n\}\), then Parseval holds iff \(\|P_n x\|^2 = \|x\|^2\) iff \(x = P_n x\), i.e., \(x = \sum_{j=1}^{n} \langle u_{\alpha_j}, x \rangle u_{\alpha_j} \in M_n\).

Corollary. Let \(\{u_\alpha\}_{\alpha \in A}\) be an orthonormal set in a Hilbert space \(X\). Then \(\{u_\alpha\}\) is an orthonormal basis iff for each \(x \in X\) and each enumeration \(\{\alpha_j\}_{j \geq 1}\) of \(\{\alpha \in A : \langle u_\alpha, x \rangle \neq 0\}\), \(\lim_{n \to \infty} \left\|x - \sum_{j=1}^{n} \langle u_{\alpha_j}, x \rangle u_{\alpha_j}\right\| = 0\).
Cardinality of Orthonormal Bases

Proposition. $l^2(A)$ is unitarily isomorphic to $l^2(B)$ iff card(A) = card(B).

Proposition. Any pair of orthonormal bases in a Hilbert space have the same cardinality.

Proposition. A Hilbert space X is separable iff it has a countable orthonormal basis.

Remark. For a separable Hilbert space X, one can show directly without invoking Zorn’s lemma that X has a countable complete orthonormal set.

Proof. Clear if dim $X < \infty$. Suppose dim $X = \infty$. Let z_1, z_2, \ldots be a countable dense subset. Apply Gram-Schmidt (dropping zero vectors along the way) to get an orthonormal sequence u_1, u_2, \ldots whose finite linear combinations include z_1, z, \ldots, and thus are dense. □

Theorem. (Orthogonal projection in terms of orthonormal bases.) Let X be a Hilbert space, and let M be a closed subspace of X. Let $\{v_\beta\}_{\beta \in \mathcal{B}}$ be a complete orthonormal set in M, and let $\{w_\gamma\}_{\gamma \in \mathcal{C}}$ be a complete orthonormal set in M^\perp. Then $\{v_\beta\} \cup \{w_\gamma\}$ is a complete orthonormal set in X. The orthogonal projection of X onto M is $P_X = \sum_{\beta \in \mathcal{B}} (v_\beta, x)v_\beta$, and the orthogonal projection of X onto M^\perp is $Q_X = \sum_{\gamma \in \mathcal{C}} (w_\gamma, x)w_\gamma$.

Proof. Follows directly from $X = M \oplus M^\perp$ and the projection theorem. □

Example. (Orthogonal Polynomials in weighted L^2 spaces.) Fix $a, b \in \mathbb{R}$ with $-\infty < a < b < \infty$. Let $w \in C(a, b)$ with $w(x) > 0$ on (a, b) and $\int_a^b w(x)dx < \infty$. The function w is called the weight function. For example, take $w(x) = (1 - x^2)^{-1/2}$ on $(-1, 1)$. Define

$$L_w^2(a, b) = \left\{ f : f \text{ is measurable on } (a, b) \text{ and } \int_a^b |f(x)|^2 w(x)dx < \infty \right\}$$

and define $\langle g, f \rangle_w = \int_a^b g(x)f(x)w(x)dx$ for $f, g \in L_w^2(a, b)$. Then (after identifying f and g when $f = g$ a.e.), $L_w^2(a, b)$ is a Hilbert space.

Claim. Polynomials are dense in $L_w^2(a, b)$.

Proof. First note that if $f \in L^\infty(a, b)$, then $f \in L_w^2(a, b)$ since $\int_a^b |f(x)|^2 w(x)dx \leq \|f\|^2_w \int_a^b w(x)dx$, and thus $\|f\|_w \leq M\|f\|_\infty$, where $M = \left(\int_a^b w(x)dx\right)^{1/2} < \infty$. Given $f \in L_w^2(a, b)$, $\exists g \in C[a, b]$ for which $\|f - g\|_w < \frac{1}{2}\epsilon$ (exercise). By the Weierstrass Approximation Theorem, polynomials are dense in $(C[a, b], \|\cdot\|_\infty)$, so \exists a polynomial p for which $\|g - p\|_\infty < (2M)^{-1}\epsilon$. Then $\|f - p\|_w \leq \|f - g\|_w + \|g - p\|_w < \frac{1}{2}\epsilon + M\|g - p\|_\infty < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$. □

Applying the Gram-Schmidt process to the linearly independent set $\{1, x, x^2, \ldots\}$ using the inner product of $L_w^2(a, b)$ produces a sequence of polynomials which are orthonormal in $L_w^2(a, b)$.

Theorem. The orthogonal polynomials in $L_w^2(a, b)$ are a complete orthonormal set in $L_w^2(a, b)$.

Proof. Finite linear combinations are dense. □