
Hilbert Spaces

Definition. A complex inner product space (or pre-Hilbert space) is a complex vector
space X together with an inner product: a function from X ×X into C (denoted by 〈y, x〉)
satisfying:

(1) (∀x ∈ X) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.

(2) (∀α, β ∈ C) (∀x, y, z ∈ X), 〈z, αx+ βy〉 = α〈z, x〉 + β〈z, y〉.

(3) (∀x, y ∈ X) 〈y, x〉 = 〈x, y〉

Remarks.

(2) says the inner product is linear in the second variable;

(3) says the inner product is sesquilinear;

(2) and (3) imply 〈αx+ βy, z〉 = ᾱ〈x, z〉+ β̄〈y, z〉, so the inner product is conjugate linear
in the first variable.

Definition. For x ∈ X, let ‖x‖ =
√

〈x, x〉.

Cauchy-Schwarz Inequality. (∀x, y ∈ X) |〈y, x〉| ≤ ‖x‖ · ‖y‖, with equality iff x and y

are linearly dependent.

Proof. The result is obvious if 〈y, x〉 = 0. Suppose γ ≡ 〈y, x〉 6= 0. Then x 6= 0, y 6= 0.
Let z = γ|γ|−1y. Then 〈z, x〉 = γ̄|γ|−1〈y, x〉 = |γ| > 0. Let v = x‖x‖−1, w = z‖z‖−1. Then
‖v‖ = ‖w‖ = 1 and 〈w, v〉 > 0. Since 0 ≤ ‖v − w‖2 = 〈v, v〉 − 2Re〈w, v〉 + 〈w,w〉, it follows
that 〈w, v〉 ≤ 1 (with equality iff v = w, which happens iff x and y are linearly dependent).
So |〈y, x〉| = 〈z, x〉 = ‖x‖ · ‖z‖〈w, v〉 ≤ ‖x‖ · ‖z‖ = ‖x‖ · ‖y‖. �

Facts.

(1′) (∀x ∈ X)‖x‖ ≥ 0; ‖x‖ = 0 iff x = 0.

(2′) (∀α ∈ C)(∀x ∈ X) ‖αx‖ = |α| · ‖x‖.

(3′) (∀x, y ∈ X) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.
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Proof of (3′):

‖x+ y‖2 = ‖x‖2 + 2Re〈y, x〉 + ‖y‖2 ≤ ‖x‖2 + 2|〈y, x〉|+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖ · ‖y‖ + ‖y‖2.

Hence ‖ · ‖ is a norm on X; called the norm induced by the inner product 〈·, ·〉.

Definition. An inner product space which is complete with respect to the norm induced by
the inner product is called a Hilbert space.

Example. X = Cn. For x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Cn, let 〈y, x〉 =
∑n

j=1
yjxj .

Then ‖x‖ =
√∑n

j=1
|xj|2 is the l2-norm on Cn.

Examples of Hilbert spaces:

• any finite dimensional inner product space

• l2 = {(x1, x2, x3, . . .) : xk ∈ C,
∑∞

k=1
|xk|

2 <∞} with 〈y, x〉 =
∑∞

k=1
ykxk

• L2(A) for any measurable A ⊂ Rn, with inner product 〈g, f〉 =
∫

A
g(x)f(x)dx.

Incomplete inner product space

C([a, b]) with 〈g, f〉 =
∫ b

a
g(x)f(x)dx

C([a, b]) with this inner product is not complete; it is dense in L2([a, b]), which is

complete.

Parallelogram Law. Let X be an inner product space. Then (∀x, y ∈ X)

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proof. ‖x + y‖2 + ‖x − y‖2 = 〈x + y, x + y〉 + 〈x − y, x − y〉 = 〈x, x〉 + 〈x, y〉 + 〈y, x〉 +

〈y, y〉+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉 + 〈y, y〉 = 2(〈x, x〉 + 〈y, y〉) = 2(‖x‖2 + ‖y‖2). �

Polarization Identity. Let X be an inner product space. Then (∀x, y ∈ X)

〈y, x〉 =
1

4

(
‖y + x‖2 − ‖y − x‖2 − i‖y + ix‖2 + i‖y − ix‖2

)
.

Proof. Expanding out the implied inner products, one shows easily that

‖y + x‖2 − ‖y − x‖2 = 4Re〈y, x〉 and ‖y + ix‖2 − ‖y − ix‖2 = −4ℑ〈y, x〉. �

Note: In a real inner product space, 〈y, x〉 = 1

4
(‖x+ y‖2 − ‖x− y‖2).

Remark. In an inner product space, the inner product determines the norm. The polarization
identity shows that the norm determines the inner product. But not every norm on a vector
space X is induced by an inner product.
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Theorem. Suppose (X, ‖ · ‖) is a normed linear space. The norm ‖ · ‖ is induced by an
inner product iff the parallelogram law holds in (X, ‖ · ‖).

Proof Sketch. (⇒): see above. (⇐): Use the polarization identity to define 〈·, ·〉. Then
immediately 〈x, x〉 = ‖x‖2, 〈y, x〉 = 〈x, y〉, and 〈y, ix〉 = i〈y, x〉. Use the parallelogram law
to show 〈z, x + y〉 = 〈z, x〉 + 〈z, y〉. Then show 〈y, αx〉 = α〈y, x〉 successively for α ∈ N,
α−1 ∈ N, α ∈ Q, α ∈ R, and finally α ∈ C. � �

Continuity of the Inner Product. Let X be an inner product space with induced norm
‖ · ‖. Then 〈·, ·〉 : X ×X → C is continuous.

Proof. Since X × X and C are metric spaces, it suffices to show sequential continuity.
Suppose xn → x and yn → y. Then by the Schwarz inequality,

|〈yn, xn〉 − 〈y, x〉| = |〈yn, xn − x〉 + 〈yn − y, x〉| ≤ ‖xn − x‖ · ‖yn‖ + ‖x‖ · ‖yn − y‖ → 0. �

Orthogonality. If 〈y, x〉 = 0, we say x and y are orthogonal and write x ⊥ y. For any
subset A ⊂ X, define A⊥ = {x ∈ X : 〈y, x〉 = 0 ∀ y ∈ A}. Since the inner product is linear
in the second component and continuous, A⊥ is a closed subspace of X. Also

(span(A))⊥ = A⊥, Ā⊥ = A⊥, and (span(A))⊥ = A⊥.

The Pythagorean Theorem. If x1, . . . , xn ∈ X and xj ⊥ xk for j 6= k, then

∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥

2

=

n∑

j=1

‖xj‖
2.

Proof. If x ⊥ y then ‖x+y‖2 = ‖x‖2 +2Re〈y, x〉+‖y‖2 = ‖x‖2 +‖y‖2. Now use induction.
�

Convex Sets. A subset A of a vector space X is called convex if (∀x, y ∈ A) (∀ t ∈ (0, 1))
(1 − t)x+ ty ∈ A.

Examples.

(1) Every subspace is convex.

(2) In a normed linear space, B(x, ǫ) is convex for ǫ > 0 and x ∈ X.

(3) If A is convex and x ∈ X, then A + x ≡ {y + x : y ∈ A} is convex.

Theorem. Every nonempty closed convex subset A of a Hilbert space X has a unique
element of smallest norm.

Proof. Let δ = inf{‖x‖ : x ∈ A}. If x, y ∈ A, then 1

2
(x + y) ∈ A by convexity, and by the

parallelogram law,

‖x− y‖2 = 2(‖x‖2 + ‖y‖2) − ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) − 4δ2.
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Uniqueness follows: if ‖x‖ = ‖y‖ = δ, then ‖x−y‖2 ≤ 4δ2−4δ2 = 0, so x = y. For existence,
choose {yn}

∞
n=1 ⊂ A for which ‖yn‖ → δ. As n,m→ ∞,

‖yn − ym‖
2 ≤ 2(‖yn‖

2 + ‖ym‖
2) − 4δ2 → 0,

so {yn} is Cauchy. By completeness, ∃ y ∈ X for which yn → y, and since A is closed, y ∈ A.
Also ‖y‖ = lim ‖yn‖ = δ. �

Corollary. If A is a nonempty closed convex set in a Hilbert space and x ∈ X, then ∃ a
unique closest element of A to x.

Proof. Let z be the unique smallest element of the nonempty closed convex set A − x =
{y− x : y ∈ A}, and let y = z + x. Then y ∈ A is clearly the unique closest element of A to
x. �

Orthogonal Projections onto Closed Subspaces

The Projection Theorem. Let M be a closed subspace of a Hilbert space X.

(1) For each x ∈ X, ∃ unique u ∈ M , v ∈ M⊥ such that x = u+ v. (So as vector spaces,
X = M ⊕M⊥.)

Define the operators P : X →M and Q : X →M⊥ by P : x 7→ u and Q : x 7→ v.

(2) If x ∈M , Px = x and Qx = 0; if x ∈M⊥, Px = 0 and Qx = x.

(3) P 2 = P , Range(P ) = M , Null Space(P ) = M⊥; Q2 = Q, Range(Q) = M⊥, Null
Space(Q) = M .

(4) P,Q ∈ B(X,X). ‖P‖ = 0 if M = {0}; otherwise ‖P‖ = 1. ‖Q‖ = 0 if M⊥ = {0};
otherwise ‖Q‖ = 1.

(5) Px is the unique closest element of M to x, and Qx is the unique closest element of
M⊥ to x.

(6) P +Q = I (obvious by the definition of P and Q).

Proof Sketch. Given x ∈ X, x + M is a closed convex set. Define Qx to be the smallest
element of x + M , and let Px = x − Qx. Since Qx ∈ x + M , Px ∈ M . Let z = Qx.
Suppose y ∈ M and ‖y‖ = 1, and let α = 〈y, z〉. Then z − αy ∈ x + M , so ‖z‖2 ≤
‖z − αy‖2 = ‖z‖2 − α〈z, y〉 − ᾱ〈y, z〉 + |α|2 = ‖z‖2 − |α|2. So α = 0. Thus z ∈ M⊥. Since
clearly M ∩M⊥ = {0}, the uniqueness of u and v in (1) follows. (2) is immediate from the
definition. (3) follows from (1) and (2). For x, y ∈ X, αx+βy = (αPx+βPy)+(αQx+βQy),
so by uniqueness in (1), P (αx+ βy) = αPx+ βPy and Q(αx+ βy) = αQx+ βQy. By the
Pythagorean Theorem, ‖x‖2 = ‖Px‖2 + ‖Qx‖2, so P,Q ∈ B(X,X) and ‖P‖, ‖Q‖ ≤ 1. The
rest of (4) follows from (2). Fix x ∈ X. If y ∈ X, then ‖x−y‖2 = ‖Px−Py‖2+‖Qx−Qy‖2.
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If y ∈M , then ‖x−y‖2 = ‖Px−y‖2 +‖Qx‖2, which is clearly minimized by taking y = Px.
If y ∈M⊥, then ‖x−y‖2 = ‖Px‖2+‖Qx−y‖2, which is clearly minimized by taking y = Qx.
�

Corollary. If M is a closed subspace of a Hilbert space X, then (M⊥)⊥ = M . In general,
for any A ⊂ X, (A⊥)⊥ = span{A}, which is the smallest closed subspace of X containing A,
often called the closed linear span of A.

Bounded Linear Functionals and Riesz Representation Theorem

Proposition. Let X be an inner product space, fix y ∈ X, and define fy : X → C by
fy(x) = 〈y, x〉. Then fy ∈ X∗ and ‖fy‖ = ‖y‖.

Proof. |fy(x)| = |〈y, x〉| ≤ ‖x‖ · ‖y‖, so fy ∈ X∗ and ‖fy‖ ≤ ‖y‖. Since |fy(y)| = |〈y, y〉| =
‖y‖2, ‖fy‖ ≥ ‖y‖. So ‖fy‖ = ‖y‖. �

Theorem. Let X be a Hilbert space.

(1) If f ∈ X∗, then ∃ a unique y ∈ X ∋ f = fy, i.e., f(x) = 〈y, x〉 ∀x ∈ X.

(2) The map ψ : X → X∗ given by ψ : y 7→ fy is a conjugate linear isometry of X onto
X∗.

Proof.

(1) If f ≡ 0, let y = 0. If f ∈ X∗ and f 6≡ 0, then M ≡ f−1({0}) is a proper closed
subspace of X, so ∃ z ∈ M⊥ ∋ ‖z‖ = 1. Let α = f(z) and y = αz. Given x ∈ X,
u ≡ f(x)z − f(z)x ∈ M , so 0 = 〈z, u〉 = f(x)〈z, z〉 − f(z)〈z, x〉 = f(x) − 〈αz, x〉 =
f(x) − 〈y, x〉, i.e., f(x) = 〈y, x〉. Uniqueness: if 〈y1, x〉 = 〈y2, x〉 ∀x ∈ X, then (letting
x = y1 − y2) ‖y1 − y2‖

2 = 0, so y1 = y2.

(2) follows immediately from (1), the previous proposition, and the conjugate linearity of
the inner product in the first variable. �

Corollary. X∗ is a Hilbert space with the inner product 〈g, f〉 = 〈ψ−1(g), ψ−1(f)〉 (i.e.,
〈fy, fx〉 = 〈y, x〉 = 〈x, y〉).

Proof. Clearly 〈f, f〉 ≥ 0, 〈f, f〉 = 0 iff ψ−1(f) = 0 iff f = 0, and 〈g, f〉 = 〈f, g〉.
Also 〈fy, α1fx1

+ α2fx2
〉 = 〈fy, fᾱ1x1+ᾱ2x2

〉 = 〈y, ᾱ1x1 + ᾱ2x2〉 = α1〈y, x1〉 + α2〈y, x2〉 =

α1〈fy, fx1
〉 + α2〈fy, fx2

〉, so 〈·, ·〉 is an inner product on X∗. Since 〈fy, fy〉 = 〈y, y〉 = ‖y‖2 =
‖fy‖

2, 〈·, ·〉 induces the norm on X∗. Since X∗ is complete, it is a Hilbert space. �

Remark. Part (1) of the Theorem above is often called [one of] the Riesz Representation
Theorem[s].
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Strong convergence/Weak convergence

Let X be a Hilbert space. We say xn → x strongly if ‖xn − x‖ → 0 as n → ∞. This
is the usual concept of convergence in the metric induced by the norm, and is also called
convergence in norm. We say xn → x weakly if (∀ y ∈ X) 〈y, xn〉 → 〈y, x〉 as n → ∞.
(Other common notations for weak convergence are xn ⇀ x, xn

w
→x.) The Cauchy-Schwarz

inequality shows that strong convergence implies weak convergence. Also, if xn → x strongly,
then ‖xn‖ → ‖x‖ since |‖xn‖ − ‖x‖| ≤ ‖xn − x‖.

Example. (Weak convergence does not imply strong convergence if dimX = ∞). Let

X = l2. For k = 1, 2, . . ., let ek = (0, . . . , 0, 1, 0, . . .)
ւ kth entry

(so {ek : k = 1, 2, . . .} is an
orthonormal set in l2).

Claim. ek → 0 weakly as k → ∞.

Proof. Fix y ∈ l2. Then
∑∞

k=1
|yk|

2 <∞, so yk → 0. So 〈y, ek〉 = yk → 0. �

Note that ‖ek‖ = 1, so ek does not converge to zero strongly.

Remark. If dimX <∞, then weak convergence ⇒ strong convergence (exercise).

Theorem. Suppose xn → x weakly in a Hilbert space X. Then

(a) ‖x‖ ≤ lim infk→∞ ‖xk‖

(b) If ‖xk‖ → ‖x‖, then xk → x strongly (i.e., ‖xk − x‖ → 0).

Proof.

(a) 0 ≤ ‖x − xk‖
2 = ‖x‖2 − 2Re〈x, xk〉 + ‖xk‖

2. By hypothesis, 〈x, xk〉 → 〈x, x〉 = ‖x‖2.
So taking lim inf above, 0 ≤ ‖x‖2 − 2‖x‖2 + lim inf ‖xk‖

2, i.e. ‖x‖2 ≤ lim inf ‖xk‖
2.

(b) If xk → x weakly and ‖xk‖ → ‖x‖, then ‖x − xk‖
2 = ‖x‖2 − 2Re〈xk, x〉 + ‖xk‖

2 →
‖x‖2 − 2‖x‖2 + ‖x‖2 = 0. �

Remark. The Uniform Boundedness Principle implies that if xk → x weakly, then ‖xk‖ is
bounded.

Orthogonal Sets

Definition. Let X be an inner product space. Let A be a set (not necessarily countable).
A set {uα}α∈A ⊂ X is called an orthogonal set if (∀α 6= β ∈ A) 〈uβ, uα〉 = 0. (Often it is
also assumed that each uα 6= 0.)
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Orthonormal Sets

Definition. Let X be an inner product space. A set {uα}α∈A is called an orthonormal set

if it is orthogonal and (∀α ∈ A) ‖uα‖ = 1. For each x ∈ X, define a function x̂ : A → C

by x̂(α) = 〈uα, x〉. The x̂(α)’s are called the Fourier coefficients of x with respect to the
orthonormal set {uα}α∈A.

Theorem. If {u1, . . . , uk} is an orthonormal set in an inner product space X, and x =∑k
j=1

cjuj, then cj = 〈uj, x〉 for 1 ≤ j ≤ k and ‖x‖2 =
∑l

j=1
|cj|

2

Proof. 〈ui, x〉 =
∑
cj〈ui, uj〉 = ci. Now use the Pythagorean Theorem. �

Corollary. Every orthonormal set is linearly independent.

Example. If A is finite, say A = {1, 2, . . . , n}, then for any x ∈ X, we know that the closest
element of span{u1, . . . , un} to x is

∑n
k=1

〈uk, x〉uk.

Theorem. (Gram-Schmidt process) Let V be a subspace of an inner product space X,
and suppose V has a finite or countable basis {xn}n≥1. Then V has a basis {un}n≥1 which
is orthonormal (we reserve the term “orthonormal basis” to mean something else); moreover
we can choose {un}n≥1 so that for all m ≥ 1, span{u1, . . . , um} = span{x1, . . . , xm}.

Proof Sketch.. Define {un} inductively. Start with u1 = x1

‖x1‖
. Having defined u1, . . . , un−1,

let vn = xn −
∑n−1

j=1
〈uj, xn〉uj and un = vn

‖vn‖
. �

Theorem. Let V be a finite dimensional subspace of a Hilbert space X. Let {u1, . . . , un}
be a basis for V which is orthonormal, and let P be the orthogonal projection of X onto V .
Then Px =

∑n
j=1

〈uj, x〉uj and ‖x‖2 = ‖Px‖2 + ‖Qx‖2 =
∑n

j=1
|〈uj, x〉|

2 + ‖Qx‖2.

Definition. Let A be a nonempty set. For each α ∈ A, let yα be a nonnegative real number.
Define

∑
α∈A yα = sup{

∑
α∈F yα : F ⊂ A and F is finite}.

Proposition. If
∑

α∈A yα <∞, then yα 6= 0 for at most countably many α.

Proof. For each k, it is clear that Ak ≡ {α : yα > k−1} is a finite set. But {α : yα 6= 0} =
∪∞

k=1Ak. �

Definition. Let A be a nonempty set. Define l2(A) to be the set of functions f : A → C

for which
∑

α∈A |f(α)|2 < ∞. Then l2(A) is a Hilbert space with inner product 〈g, f〉 =∑
α∈A g(α)f(α) and norm ‖f‖2 =

√
〈f, f〉.

Bessel’s Inequality. Let {uα}α∈A be an orthonormal set in a Hilbert space X, let x ∈ X,
and let x̂(α) = 〈uα, x〉. Then

∑
α∈A |x̂(α)|2 ≤ ‖x‖2.

Proof. By the previous Theorem, this is true for every finite subset of A. Take the sup. �

Corollary. Let {uα}α∈A, x be as above. Then
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(1) x̂ ∈ l2(A) and ‖x̂‖2 ≤ ‖x‖

(2) {α ∈ A : x̂(α) 6= 0} is countable.

Theorem. Let X be a Hilbert space and let {uα}α∈A be an orthonormal set. Define
F : X → l2(A) (F is for Fourier) by F (x) = x̂ where x̂(α) = 〈uα, x〉. Then F is a bounded
linear operator with ‖F‖ = 1, which maps X onto l2(A).

Proof. Clearly F is linear. By (1) of the Corollary, F is bounded and ‖F‖ ≤ 1. If x = uα for
some α ∈ A, ‖x̂‖2 = 1 = ‖x‖, so ‖F‖ = 1. Given f ∈ l2(A), f(α) 6= 0 only for a countable
set Af ⊂ A; enumerate them α1, α2, α3, . . .. Let xk =

∑k
j=1

f(αj)uj. Clearly x̂k(α) = f(α)
for α1, . . . , αk and x̂k(α) = 0 otherwise. So

‖x̂k − f‖2
2 =

∞∑

j=k+1

|f(αj)|
2 → 0 as k → ∞.

Thus x̂k → f in l2(A), and in particular x̂k is a Cauchy sequence in l2(A). Since each xk is
a finite linear combination of the uα’s, ‖xj − xk‖ = ‖x̂j − x̂k‖2, so {xk} is Cauchy in X, so
xk → x in X for some x ∈ X. For each α ∈ A,

x̂(α) = 〈uα, x〉 = lim
k→∞

〈uα, xk〉 = lim
k→∞

x̂k(α) = f(α).

So F (x) = f and F is onto. �

Theorem. Let X be a Hilbert space. Every orthonormal set in X is contained in a maximal
orthonormal set (i.e., an orthonormal set not properly contained in any orthonormal set).

Proof. Zorn’s lemma. �

Corollary. Every Hilbert space has a maximal orthonormal set.

Theorem. Let {uα}α∈A be an orthonormal set in a Hilbert space X. The following condi-
tions are equivalent:

(a) {uα}α∈A is a maximal orthonormal set.

(b) The set of finite linear combinations of the uα’s is dense in X.

(c) (∀x ∈ X) ‖x‖2 =
∑

α∈A |x̂(α)|2 (Parseval’s relation).

(d) (∀x, y ∈ X) 〈y, x〉 =
∑

α∈A ŷ(α)x̂(α).

(e) (∀x ∈ X) if (∀α ∈ A) 〈uα, x〉 = 0 then x = 0.

Proof.

(a) ⇒ (b): Let V = span{uα : α ∈ A} and M = V̄ . Then M is a closed subspace. Since
{uα} is maximal, V ⊥ = {0}, so M⊥ = {0}, so M = X.
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(b) ⇒ (c): Clear if x = 0. Given x 6= 0, and given ǫ > 0 (WLOG assume ǫ < ‖x‖), choose
y ∈ V ∋ ‖x− y‖ < ǫ, say y ∈ span{uα1

, . . . , uαk
}. Let z = x̂(α1)uα1

+ · · ·+ x̂(αk)uαk
.

Then z minimizes ‖x − w‖ over w ∈ span{uα1
, . . . , uαk

} so ‖x − z‖ ≤ ‖x − y‖ < ǫ.

Thus ‖x‖ < ‖z‖ + ǫ, so (‖x‖ − ǫ)2 < ‖z‖2 and ‖z‖2 =
∑k

j=1
|x̂(αj)|

2 ≤
∑

α∈A |x̂(α)|2.

Let ǫ→ 0 to get ‖x‖2 ≤
∑

α∈A |x̂(α)|2. The other inequality is Bessel’s inequality.

(c) ⇒ (d): Use polarization. Only countably many terms in the sum are nonzero.

(d) ⇒ (e): Suppose (∀α ∈ A) 〈x, uα〉 = 0. Then x̂(α) ≡ 0, so ‖x‖2 = 〈x, x〉 = 0, so x = 0.

(e) ⇒ (a): If {uα} is not maximal, then ∃x 6= 0 ∋ 〈x, uα〉 = 0 for all α ∈ A. �

Definition. An orthonormal set {uα} in a Hilbert space X satisfying the conditions in the
previous theorem is called a complete orthonormal set (or a complete orthonormal system)
or an orthonormal basis in X.

Caution. If X is infinite dimensional, an orthonormal basis is not a basis in the usual
definition of a basis for a vector space (i.e., each x ∈ X has a unique representation as a
finite linear combination of basis elements). Such a basis in this context is called a Hamel
basis.

Definition. Let X and Y be inner product spaces. A map T : X → Y which is linear,
bijective, and preserves inner products (i.e., (∀x, y ∈ X) 〈x, y〉 = 〈Tx, Ty〉 — this implies T
is an isometry ‖x‖ = ‖Tx‖) is called a unitary isomorphism.

Corollary. If X is a Hilbert space and {uα}α∈A is an orthonormal basis of X, then the map
F : X → l2(A) mapping x 7→ x̂ (where x̂(α) = 〈x, uα〉) is a unitary isomorphism.

Corollary. Every Hilbert space is unitarily isomorphic to l2(A) for some A.

Norm Convergence of Fourier Series

Theorem. Let X be a Hilbert space, {uα}α∈A be an orthonormal set in X, and let x ∈ X.
Let {αj}j≥1 be any enumeration of {α ∈ A : 〈uα, x〉 6= 0}. Then ‖x‖2 =

∑
j≥1

|〈uαj
, x〉|2 (i.e.

Parseval’s Equality holds for this x) iff limn→∞

∥∥∥x−
∑n

j=1
〈uαj

, x〉uαj

∥∥∥ = 0 (i.e. the Fourier

series
∑∞

j=1
x̂(αj)uαj

converges to x in norm).

Proof. Let Mn = span{uα1
, . . . , uαn

} and let Pn be the orthogonal projection onto Mn (so
I − Pn is the orthogonal projection onto M⊥

n ). Then Pnx =
∑n

j=1
〈uαj

, x〉uαj
and ‖Pnx‖

2 =∑n
j=1

|〈uαj
, x〉|2. Also ‖x‖2 = ‖Pnx‖

2 +‖(I−Pn)x‖2, so ‖x‖2−‖Pnx‖
2 = ‖x−Pnx‖

2. Hence

‖x‖2 =
∑

j≥1
|〈uαj

, x〉|2 iff limn→∞ ‖Pnx‖
2 = ‖x‖2 iff limn→∞ ‖x − Pnx‖

2 = 0, which is the
desired conclusion. (Note: If {α ∈ A : 〈uα, x〉 6= 0} is finite, say {α1, . . . , αn}, then Parseval
holds iff ‖Pnx‖

2 = ‖x‖2 iff x = Pnx, i.e., x =
∑n

j=1
〈uαj

, x〉uαj
∈Mn.)

Corollary. Let {uα}α∈A be an orthonormal set in a Hilbert space X. Then {uα} is an
orthonormal basis iff for each x ∈ X and each enumeration {αj}j≥1 of {α ∈ A : 〈uα, x〉 6= 0},
limn→∞ ‖x−

∑n
j=1

〈uαj
, x〉uαj

‖ = 0.
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Cardinality of Orthonormal Bases

Proposition. l2(A) is unitarily isomorphic to l2(B) iff card(A) = card(B).

Proposition. Any pair of orthonormal bases in a Hilbert space have the same cardinality.

Proposition. A Hilbert space X is separable iff it has a countable orthonormal basis.

Remark. For a separable Hilbert space X, one can show directly without invoking Zorn’s
lemma that X has a countable complete orthonormal set.

Proof. Clear if dimX < ∞. Suppose dimX = ∞. Let z1, z2, . . . be a countable dense
subset. Apply Gram-Schmidt (dropping zero vectors along the way) to get an orthonormal
sequence u1, u2, . . . whose finite linear combinations include z1, z, . . ., and thus are dense. �

Theorem. (Orthogonal projection in terms of orthonormal bases.) Let X be a Hilbert
space, and let M be a closed subspace of X. Let {vβ}β∈B be a complete orthonormal set in
M , and let {wγ}γ∈C be a complete orthonormal set in M⊥. Then {vβ} ∪ {wγ} is a complete
orthonormal set in X. The orthogonal projection of X onto M is Px =

∑
β∈B〈vβ, x〉vβ, and

the orthogonal projection of X onto M⊥ is Qx =
∑

γ∈C〈wγ, x〉wγ.

Proof. Follows directly from X = M ⊕M⊥ and the projection theorem. �

Example. (Orthogonal Polynomials in weighted L2 spaces.) Fix a, b ∈ R with −∞ < a <

b < ∞. Let w ∈ C(a, b) with w(x) > 0 on (a, b) and
∫ b

a
w(x)dx < ∞. The function w is

called the weight function. For example, take w(x) = (1 − x2)−1/2 on (−1, 1). Define

L2
w(a, b) =

{
f : f is measurable on (a, b) and

∫ b

a

|f(x)|2w(x)dx <∞

}

and define 〈g, f〉w =
∫ b

a
g(x)f(x)w(x)dx for f, g ∈ L2

w(a, b). Then (after identifying f and g
when f = g a.e.), L2

w(a, b) is a Hilbert space.

Claim. Polynomials are dense in L2
w(a, b).

Proof. First note that if f ∈ L∞(a, b), then f ∈ L2
w(a, b) since

∫ b

a
|f(x)|2w(x)dx ≤

‖f‖2
∞

∫ b

a
w(x)dx, and thus ‖f‖w ≤ M‖f‖∞, where M =

(∫ b

a
w(x)dx

) 1

2

< ∞. Given

f ∈ L2
w(a, b), ∃ g ∈ C[a, b] for which ‖f − g‖w < 1

2
ǫ (exercise). By the Weierstrass Approx-

imation Theorem, polynomials are dense in (C[a, b], ‖ · ‖∞), so ∃ a polynomial p for which
‖g−p‖∞ < (2M)−1ǫ. Then ‖f−p‖w ≤ ‖f−g‖w +‖g−p‖w <

1

2
ǫ+M‖g−p‖∞ < 1

2
ǫ+ 1

2
ǫ = ǫ.

�

Applying the Gram-Schmidt process to the linearly independent set {1, x, x2, . . .} using the
inner product of L2

w(a, b) produces a sequence of polynomials which are orthonormal in
L2

w(a, b).

Theorem. The orthogonal polynomials in L2
w(a, b) are a complete orthonormal set in

L2
w(a, b).

Proof. Finite linear combinations are dense. �


