
Fourier Series

Let {ej : 1 ≤ j ≤ n} be the standard basis in Rn. We say f : Rn → C is 2π-periodic in each
variable if

f(x+ 2πej) = f(x) ∀x ∈ Rn, 1 ≤ j ≤ n.

We can identify 2π-periodic functions with functions on a torus. Let S1 = {eiθ : θ ∈ R} ⊂ C,

and T n = S1 × · · · × S1 ⊂ Cn. To each function φ̃ : T n → C we can identify a 2π-periodic
function φ : Rn → C by φ(x1, . . . , xn) = φ̃(eix1 , . . . , eixn). Conversely, each 2π-periodic

function φ : Rn → C induces a unique φ̃ : T n → C for which φ̃(eix1, . . . , eixn) = φ(x1, . . . , xn).
If φ : Rn → C is 2π-periodic, φ is uniquely determined by its values φ(x) for x ∈ [−π, π)n or
for x ∈ [0, 2π)n. Let νn = (2π)−nλn, where λn is n-dimensional Lebesgue measure. Then νn

induces a measure ν̃n on T n for which
∫

T n

φ̃ dν̃n =

∫

[0,2π]n
φ dνn.

From here on, we blur the distinction between φ and φ̃ and between νn and ν̃n, and we will
abuse these notations. Note: νn(T n) = νn([0, 2π]n) = 1. Let Lp(T n) denote Lp([0, 2π]n) with
measure νn (1 ≤ p ≤ ∞). L2(T n) is a Hilbert space with inner product

(ψ, φ) =

∫

T n

ψ̄φ dνn =

∫

[0,2π]n
ψ̄φ dνn.

Theorem. {eix·ξ : ξ ∈ Zn} is an orthonormal system in L2(T n).

Proof.

(eix·η, eix·ξ) =

∫

[0,2π]n
eix·(ξ−η) dνn =

{
1, ξ = η

0, ξ 6= η
.

�

Definition. A trigonometric polynomial is a finite linear combination of {eix·ξ : ξ ∈ Zn}.

Note: since {eix·ξ, e−ix·ξ} and {cos(x · ξ), sin(x · ξ)} span the same two-dimensional space, we
could use sines and cosines as our basic functions.

Definition. C(T n) is the space of all continuous 2π-periodic functions φ : Rn → C. Note
that C(T n) $ C([0, 2π]n).

We will use the uniform norm ‖φ‖u = supx |φ(x)| on C(T n). Ck(T n) (for k ≥ 0, k ∈ Z)
is the space of all Ck 2π-periodic functions φ : Rn → C. Again Ck(T n) $ Ck([0, 2π]n). We
will use the norm ‖φ‖Ck =

∑
|α|≤k ‖∂

αφ‖u.
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94 Fourier Series

Fourier Coefficients

For f ∈ L1(T n), define

f̂(ξ) =

∫

T n

e−ix·ξf(x)dνn(x)

for ξ ∈ Zn. Then |f̂(ξ)| ≤ ‖f‖1. We regard f̂ as a map f̂ : Zn → C; then f̂ ∈ l∞(Zn)

and ‖f̂‖∞ ≤ ‖f‖1. Since ν(T n) = 1, we have L2(T n) ⊂ L1(T n) and ‖f‖1 ≤ ‖f‖2. For

f ∈ L2(T n), f̂ can be expressed as an inner product: f̂(ξ) = (eix·ξ, f).

The Fourier series of f is the formal series
∑

ξ∈Zn f̂(ξ)eix·ξ. We will study in what sense
this series converges to f . A key role is played by what is called a summability kernel ; this
is a sequence Qk with properties (1), (2), (3), (4) below. Define

Qk(x) = a−1
k

(
n∏

j=1

1
2
(1 + cosxj)

)k

where

ak =

∫

T n

(
n∏

j=1

1
2
(1 + cosxj)

)k

dνn(x).

Lemma.

(1) Qk is a trigonometric polynomial.

(2) Qk(x) ≥ 0

(3)
∫

T n Qk(x)dνn(x) = 1.

(4) For 0 < δ < π, set

ηk(δ) = max{Qk(x) : x ∈ [−π, π]n\(−δ, δ)n}.

Then limk→∞ ηk(δ) = 0.

Proof. The first three properties are clear. To prove (4), we first show that the sequence ak

satisfies ak ≥ (2(k + 1))−n. In fact, since 1 + cosx is non-negative on [0, π] and concave on
[0, π

2
], we have

1

2π

∫ π

−π

(
1
2
(1 + cosx)

)k
dx =

1

π

∫ π

0

(
1
2
(1 + cosx)

)k
dx

≥
1

π

∫ π/2

0

(
1 −

x

π

)k

dx

= (k + 1)−1(1 − 2−k−1) ≥ (2(k + 1))−1.

Now if x ∈ [−π, π]n\(−δ, δ)n, then

Qk(x) ≤ a−1
k

(
1
2
(1 + cos δ)

)k
≤ (2(k + 1))n

(
1
2
(1 + cos δ)

)k
→ 0
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as k → ∞. �

Theorem. Given f ∈ C(T n), let

pk(x) = (f ∗Qk)(x) =

∫

T n

f(x− y)Qk(y)dνn(y).

Then pk is a trigonometric polynomial, and ‖pk − f‖u → 0 as k → ∞.

Proof. Since Q̂k(ξ) = 0 for |ξ| sufficiently large,

pk(x) =

∫

T n

f(y)Qk(x− y)dνn(y) =

∫

T n

f(y)
∑

ξ

Q̂k(ξ)e
i(x−y)·ξdνn(y)

=
∑

ξ

f̂(ξ)Q̂k(ξ)e
ix·ξ

is a trigonometric polynomial. Given ǫ > 0, the uniform continuity of f implies that there
is δ > 0 such that

|x1 − x2|∞ < δ ⇒ |f(x1) − f(x2)| < ǫ.

Then

|pk(x) − f(x)| =

∣∣∣∣
∫

T n

(f(x− y) − f(x))Qk(y)dνn(y)

∣∣∣∣

≤

∫

T n

|f(x− y) − f(x)|Qk(y)dνn(y) = I1 + I2,

where I1 is the integral over y ∈ (−δ, δ)n and I2 is the integral over y ∈ [−π, π]n\(−δ, δ)n.
Now

I1 ≤

∫

(−δ,δ)n

ǫQk(y) dνn(y) ≤ ǫ, and

I2 ≤

∫

[−π,π]n\(−δ,δ)n

2‖f‖u ηk(δ) dνn ≤ 2‖f‖u ηk(δ) < ǫ

for k sufficiently large, so the result follows. �

Corollary. Trigonometric polynomials are dense in C(T n).

Remark. The proof of the Theorem above used only the properties (1)–(4) of the Qk.
Therefore the same result holds for any summability kernel. Another example for n = 1 is
the Féjer kernel, which is given by

Fk(x) = (k + 1)−1 sin2
(

1
2
(k + 1)x

)

sin2
(

1
2
x
) =

k∑

ξ=−k

(
1 −

|ξ|

k + 1

)
eixξ.

If we define Sk(f) =
∑k

ξ=−k f̂(ξ)eix·ξ and σk(f) = (k + 1)−1(S0(f) + · · · + Sk(f)), then
σk(f) = f ∗ Fk. It follows that for f ∈ C(T ), σk(f) → f uniformly. This is the classical
result that the Fourier series of f ∈ C(T ) is Cesàro summable to f .
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The partial sums Sk(f) themselves are obtained by convolving f with the “Dirichlet
kernel”: Sk(f) = f ∗Dk, where

Dk(x) =

k∑

ξ=−k

eixξ =
sin
((
k + 1

2

)
x
)

sin
(

1
2
x
) .

The Dirichlet kernel however, is not a summability kernel: Dk is not nonnegative (not
horrible), and more crucially it does not satisfy condition (4) of a summability kernel. This
is the reason that pointwise convergence of Fourier series is a delicate matter.

Corollary. Trigonometric polynomials are dense in L2(T n).

Proof. Given f ∈ L2(T n) and ǫ > 0, there exists g ∈ C(T n) such that ‖f − g‖2 <
1
2
ǫ and

there exists a trigonometric polynomial p such that ‖p− g‖u <
1
2
ǫ, so since νn(T n) = 1,

‖f − p‖2 ≤ ‖f − g‖2 + ‖g − p‖2 ≤ ‖f − g‖2 + ‖g − p‖u < ǫ.

�

Corollary. {eix·ξ : ξ ∈ Zn} is a complete orthonormal system in L2(T n).

Hence if f ∈ L2(T n), the Fourier series of f (any arrangement) converges to f in L2. Also,

the map F : L2(T n) → l2(Zn) given by f 7→ f̂ is a Hilbert space isomorphism and ‖f̂‖l2(Zn) =
‖f‖L2(T n).

Theorem. If f ∈ L1(T n), then pk → f in L1(T n), where pk = f ∗Qk and Qk is as above.

Proof. The proof is similar to the proof of the Theorem above, except we use continuity of
translation in L1 instead of uniform continuity. Given ǫ > 0, choose δ ∋ ‖f(x−α)−f(x)‖1 < ǫ

whenever |α|∞ < δ. By Fubini,
∫

T n

|pk(x) − f(x)|dνn(x) ≤

∫

T n

[
Qk(y)

∫

T n

|f(x− y) − f(x)|dνn(x)

]
dνn(y) = I1 + I2,

and

I1 ≤

∫
Qk(y) ǫ dνn(y) = ǫ

I2 ≤ 2‖f‖1 ηk(δ) → 0 as k → ∞.

�

Corollary. (Uniqueness Theorem). If f ∈ L1(T n) and (∀ ξ ∈ Zn)f̂(ξ) = 0, then f = 0

a.e. Thus if f, g ∈ L1(T n) and f̂ ≡ ĝ, then f = g a.e.

Proof. If f̂ ≡ 0, then pk(x) =
∑

ξ f̂(ξ)Q̂k(ξ)e
ix·ξ = 0, and pk → f in L1. �

Theorem. (Riemann-Lebesgue Lemma). If f ∈ L1(T n), then f̂(ξ) → 0 as |ξ| → ∞.

Proof. This follows from the analogous result for the Fourier transform, which will be proved
later. The statement for the Fourier transform is that if f ∈ L1(Rn), then

∫
Rn e

−ix·ξf(x) dx→
0 as |ξ| → ∞, ξ ∈ Rn. The Fourier series version stated here follows by applying the Rn

version to f(x)χ[−π,π]n(x) ∈ L1(Rn) and restricting to ξ ∈ Zn. �
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Absolutely Convergent Fourier Series

Theorem. Suppose f ∈ L1(T n) and f̂ ∈ l1(Zn). Then the Fourier series of f converges
absolutely and uniformly to a g ∈ C(T n), and g = f a.e.

Proof. Let g(x) =
∑

ξ∈Zn f̂(ξ)eix·ξ. Since f̂ ∈ l1(Zn), this series converges uniformly and
absolutely, and g ∈ C(T n). By the Dominated Convergence Theorem,

ĝ(ξ) =

∫

T n

e−ix·ξ

(∑

η∈Zn

f̂(η)eix·η

)
dνn(x)

=
∑

η∈Zn

f̂(η)

∫

T n

e−ix·ξeix·ηdνn(x) = f̂(ξ),

so g = f a.e. �

Decay of Fourier Coefficients ↔ Smoothness of f

Lemma. Suppose α(ξ) ∈ l1(Zn) and iξjα(ξ) ∈ l1(Zn). Let f =
∑

ξ α(ξ)eix·ξ and g =∑
ξ iξjα(ξ)eix·ξ. Then f, g ∈ C(T n), ∂xj

f exists everywhere, and ∂xj
f = g.

Proof. The two series of continuous functions converge absolutely and uniformly to f and g,
respectively. Since ∂xj

(α(ξ)eix·ξ) = iξjα(ξ)eix·ξ, the result follows from a standard theorem
in analysis. �

Theorem. Suppose f ∈ L1(T n) and (1 + |ξ|m)f̂(ξ) ∈ l1(Zn) for some integer m ≥ 0. Then
the Fourier series of f converges absolutely and uniformly to a g ∈ Cm(T n), and f = g a.e.

Proof. By the theorem above, we only have to show that g ∈ Cm(T n). For each ν with

|ν| ≤ m, (iξ)ν f̂(ξ) ∈ l1(Zn), so
∑

ξ(iξ)
ν f̂(ξ)eix·ξ converges absolutely and uniformly to some

gν ∈ C(T n). By the Lemma and induction, gν = ∂νg. �

Theorem. Suppose f ∈ Cm(T n).

(a) For |ν| ≤ m, ∂̂ν
xf(ξ) = (iξ)ν f̂(ξ).

(b) (1 + |ξ|m)f̂(ξ) ∈ l2(Zn) and ‖(1 + |ξ|m)f̂(ξ)‖l2(Zn) ≤ cn,m‖f‖Cm(T n) for some constant
cn,m depending only on n,m.

(c) |f̂(ξ)| ≤ cn,m(1 + |ξ|)−m‖f‖Cm(T n) for ξ ∈ Zn.

Proof.
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(a) follows by integration by parts. Set x′ = (x2, . . . , xn), so x = (x1, x
′). Then

∂̂f

∂x1
(ξ) =

∫

T n−1

[∫

T

e−ix·ξ ∂f

∂x1
(x) dν1(x1)

]
dνn−1(x

′)

=

∫

T n−1

[
(iξ1)

∫

T

e−ix·ξf(x) dν1(x1)

]
dνn−1(x

′)

= (iξ1)f̂(ξ).

Iterate for higher derivatives.

(b) Part (a) gives for 1 ≤ j ≤ n:

‖ξm
j f̂‖l2(Zn) = ‖∂̂m

xj
f‖l2(Zn) = ‖∂m

xj
f‖L2(T n) ≤ ‖∂m

xj
f‖u.

Adding gives
‖(1 + |ξ1|

m + · · · + |ξn|
m)|f̂(ξ)|‖l2(Zn) ≤ ‖f‖Cm(T n),

and (b) follows.

(c) is immediate from (b) and the fact that ‖ · ‖∞ ≤ ‖ · ‖2 on functions on Zn. �

In comparing the last two theorems, we see that in order to conclude that a given f ∈
L1(T n) is Cm, it suffices to know that (1+ |ξ|)mf̂ ∈ l1, and in the other direction, if f is Cm,

then (1 + |ξ|)mf̂ ∈ l2. Thus the space of Fourier coefficients of Cm functions lies between

(1 + |ξ|)−ml1 and (1 + |ξ|)−ml2. So faster decay of f̂ corresponds to more smoothness of f .


