Fourier Series

Let $\{e_j : 1 \leq j \leq n\}$ be the standard basis in \mathbb{R}^n . We say $f : \mathbb{R}^n \to \mathbb{C}$ is 2π -periodic in each variable if

$$f(x+2\pi e_j) = f(x) \qquad \forall x \in \mathbb{R}^n, \ 1 \le j \le n.$$

We can identify 2π -periodic functions with functions on a torus. Let $S^1 = \{e^{i\theta} : \theta \in \mathbb{R}\} \subset \mathbb{C}$, and $T^n = S^1 \times \cdots \times S^1 \subset \mathbb{C}^n$. To each function $\tilde{\phi} : T^n \to \mathbb{C}$ we can identify a 2π -periodic function $\phi : \mathbb{R}^n \to \mathbb{C}$ by $\phi(x_1, \ldots, x_n) = \tilde{\phi}(e^{ix_1}, \ldots, e^{ix_n})$. Conversely, each 2π -periodic function $\phi : \mathbb{R}^n \to \mathbb{C}$ induces a unique $\tilde{\phi} : T^n \to \mathbb{C}$ for which $\tilde{\phi}(e^{ix_1}, \ldots, e^{ix_n}) = \phi(x_1, \ldots, x_n)$. If $\phi : \mathbb{R}^n \to \mathbb{C}$ is 2π -periodic, ϕ is uniquely determined by its values $\phi(x)$ for $x \in [-\pi, \pi)^n$ or for $x \in [0, 2\pi)^n$. Let $\nu_n = (2\pi)^{-n}\lambda_n$, where λ_n is *n*-dimensional Lebesgue measure. Then ν_n induces a measure $\tilde{\nu}_n$ on T^n for which

$$\int_{T^n} \widetilde{\phi} \, d\widetilde{\nu}_n = \int_{[0,2\pi]^n} \phi \, d\nu_n$$

From here on, we blur the distinction between ϕ and $\tilde{\phi}$ and between ν_n and $\tilde{\nu}_n$, and we will abuse these notations. Note: $\nu_n(T^n) = \nu_n([0, 2\pi]^n) = 1$. Let $L^p(T^n)$ denote $L^p([0, 2\pi]^n)$ with measure ν_n $(1 \le p \le \infty)$. $L^2(T^n)$ is a Hilbert space with inner product

$$(\psi,\phi) = \int_{T^n} \bar{\psi}\phi \, d\nu_n = \int_{[0,2\pi]^n} \bar{\psi}\phi \, d\nu_n.$$

Theorem. $\{e^{ix\cdot\xi}:\xi\in\mathbb{Z}^n\}$ is an orthonormal system in $L^2(T^n)$.

Proof.

$$(e^{ix\cdot\eta}, e^{ix\cdot\xi}) = \int_{[0,2\pi]^n} e^{ix\cdot(\xi-\eta)} d\nu_n = \begin{cases} 1, & \xi = \eta \\ 0, & \xi \neq \eta \end{cases}.$$

Definition. A trigonometric polynomial is a finite linear combination of $\{e^{ix\cdot\xi} : \xi \in \mathbb{Z}^n\}$. Note: since $\{e^{ix\cdot\xi}, e^{-ix\cdot\xi}\}$ and $\{\cos(x\cdot\xi), \sin(x\cdot\xi)\}$ span the same two-dimensional space, we could use sines and cosines as our basic functions.

Definition. $C(T^n)$ is the space of all continuous 2π -periodic functions $\phi : \mathbb{R}^n \to \mathbb{C}$. Note that $C(T^n) \subsetneq C([0, 2\pi]^n)$.

We will use the uniform norm $\|\phi\|_u = \sup_x |\phi(x)|$ on $C(T^n)$. $C^k(T^n)$ (for $k \ge 0, k \in \mathbb{Z}$) is the space of all C^k 2π -periodic functions $\phi : \mathbb{R}^n \to \mathbb{C}$. Again $C^k(T^n) \subsetneq C^k([0, 2\pi]^n)$. We will use the norm $\|\phi\|_{C^k} = \sum_{|\alpha| \le k} \|\partial^{\alpha}\phi\|_u$.

Fourier Coefficients

For $f \in L^1(T^n)$, define

$$\widehat{f}(\xi) = \int_{T^n} e^{-ix \cdot \xi} f(x) d\nu_n(x)$$

for $\xi \in \mathbb{Z}^n$. Then $|\widehat{f}(\xi)| \leq ||f||_1$. We regard \widehat{f} as a map $\widehat{f} : \mathbb{Z}^n \to \mathbb{C}$; then $\widehat{f} \in l^{\infty}(\mathbb{Z}^n)$ and $||\widehat{f}||_{\infty} \leq ||f||_1$. Since $\nu(T^n) = 1$, we have $L^2(T^n) \subset L^1(T^n)$ and $||f||_1 \leq ||f||_2$. For $f \in L^2(T^n)$, \widehat{f} can be expressed as an inner product: $\widehat{f}(\xi) = (e^{ix \cdot \xi}, f)$.

The Fourier series of f is the formal series $\sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) e^{ix \cdot \xi}$. We will study in what sense this series converges to f. A key role is played by what is called a summability kernel; this is a sequence Q_k with properties (1), (2), (3), (4) below. Define

$$Q_k(x) = a_k^{-1} \left(\prod_{j=1}^n \frac{1}{2} (1 + \cos x_j) \right)^k$$

where

$$a_k = \int_{T^n} \left(\prod_{j=1}^n \frac{1}{2} (1 + \cos x_j) \right)^k d\nu_n(x).$$

Lemma.

- (1) Q_k is a trigonometric polynomial.
- (2) $Q_k(x) \ge 0$
- (3) $\int_{T^n} Q_k(x) d\nu_n(x) = 1.$
- (4) For $0 < \delta < \pi$, set

$$\eta_k(\delta) = \max\{Q_k(x) : x \in [-\pi, \pi]^n \setminus (-\delta, \delta)^n\}.$$

Then $\lim_{k\to\infty} \eta_k(\delta) = 0.$

Proof. The first three properties are clear. To prove (4), we first show that the sequence a_k satisfies $a_k \ge (2(k+1))^{-n}$. In fact, since $1 + \cos x$ is non-negative on $[0, \pi]$ and concave on $[0, \frac{\pi}{2}]$, we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2}(1+\cos x)\right)^k dx = \frac{1}{\pi} \int_0^{\pi} \left(\frac{1}{2}(1+\cos x)\right)^k dx$$
$$\geq \frac{1}{\pi} \int_0^{\pi/2} \left(1-\frac{x}{\pi}\right)^k dx$$
$$= (k+1)^{-1}(1-2^{-k-1}) \ge (2(k+1))^{-1}.$$

Now if $x \in [-\pi, \pi]^n \setminus (-\delta, \delta)^n$, then

$$Q_k(x) \le a_k^{-1} \left(\frac{1}{2} (1 + \cos \delta)\right)^k \le (2(k+1))^n \left(\frac{1}{2} (1 + \cos \delta)\right)^k \to 0$$

Fourier Series

as $k \to \infty$.

Theorem. Given $f \in C(T^n)$, let

$$p_k(x) = (f * Q_k)(x) = \int_{T^n} f(x - y)Q_k(y)d\nu_n(y).$$

Then p_k is a trigonometric polynomial, and $||p_k - f||_u \to 0$ as $k \to \infty$.

Proof. Since $\widehat{Q}_k(\xi) = 0$ for $|\xi|$ sufficiently large,

$$p_k(x) = \int_{T^n} f(y)Q_k(x-y)d\nu_n(y) = \int_{T^n} f(y)\sum_{\xi} \widehat{Q}_k(\xi)e^{i(x-y)\cdot\xi}d\nu_n(y)$$
$$= \sum_{\xi} \widehat{f}(\xi)\widehat{Q}_k(\xi)e^{ix\cdot\xi}$$

is a trigonometric polynomial. Given $\epsilon > 0$, the uniform continuity of f implies that there is $\delta > 0$ such that

$$|x_1 - x_2|_{\infty} < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon.$$

Then

$$|p_k(x) - f(x)| = \left| \int_{T^n} (f(x - y) - f(x))Q_k(y)d\nu_n(y) \right|$$

$$\leq \int_{T^n} |f(x - y) - f(x)|Q_k(y)d\nu_n(y) = I_1 + I_2,$$

where I_1 is the integral over $y \in (-\delta, \delta)^n$ and I_2 is the integral over $y \in [-\pi, \pi]^n \setminus (-\delta, \delta)^n$. Now

$$I_{1} \leq \int_{(-\delta,\delta)^{n}} \epsilon Q_{k}(y) \, d\nu_{n}(y) \leq \epsilon, \text{ and}$$

$$I_{2} \leq \int_{[-\pi,\pi]^{n} \setminus (-\delta,\delta)^{n}} 2\|f\|_{u} \eta_{k}(\delta) \, d\nu_{n} \leq 2\|f\|_{u} \eta_{k}(\delta) < \epsilon$$

for k sufficiently large, so the result follows.

Corollary. Trigonometric polynomials are dense in $C(T^n)$.

Remark. The proof of the Theorem above used only the properties (1)-(4) of the Q_k . Therefore the same result holds for any summability kernel. Another example for n = 1 is the Féjer kernel, which is given by

$$F_k(x) = (k+1)^{-1} \frac{\sin^2\left(\frac{1}{2}(k+1)x\right)}{\sin^2\left(\frac{1}{2}x\right)} = \sum_{\xi=-k}^k \left(1 - \frac{|\xi|}{k+1}\right) e^{ix\xi}.$$

If we define $S_k(f) = \sum_{\xi=-k}^k \widehat{f}(\xi) e^{ix\cdot\xi}$ and $\sigma_k(f) = (k+1)^{-1}(S_0(f) + \cdots + S_k(f))$, then $\sigma_k(f) = f * F_k$. It follows that for $f \in C(T)$, $\sigma_k(f) \to f$ uniformly. This is the classical result that the Fourier series of $f \in C(T)$ is Cesàro summable to f.

95

The partial sums $S_k(f)$ themselves are obtained by convolving f with the "Dirichlet kernel": $S_k(f) = f * D_k$, where

$$D_k(x) = \sum_{\xi = -k}^k e^{ix\xi} = \frac{\sin\left(\left(k + \frac{1}{2}\right)x\right)}{\sin\left(\frac{1}{2}x\right)}.$$

The Dirichlet kernel however, is *not* a summability kernel: D_k is not nonnegative (not horrible), and more crucially it does not satisfy condition (4) of a summability kernel. This is the reason that pointwise convergence of Fourier series is a delicate matter.

Corollary. Trigonometric polynomials are dense in $L^2(T^n)$.

Proof. Given $f \in L^2(T^n)$ and $\epsilon > 0$, there exists $g \in C(T^n)$ such that $||f - g||_2 < \frac{1}{2}\epsilon$ and there exists a trigonometric polynomial p such that $||p - g||_u < \frac{1}{2}\epsilon$, so since $\nu_n(T^n) = 1$,

$$||f - p||_2 \le ||f - g||_2 + ||g - p||_2 \le ||f - g||_2 + ||g - p||_u < \epsilon.$$

Corollary. $\{e^{ix\cdot\xi}:\xi\in\mathbb{Z}^n\}$ is a complete orthonormal system in $L^2(T^n)$.

Hence if $f \in L^2(T^n)$, the Fourier series of f (any arrangement) converges to f in L^2 . Also, the map $\mathcal{F} : L^2(T^n) \to l^2(\mathbb{Z}^n)$ given by $f \mapsto \hat{f}$ is a Hilbert space isomorphism and $\|\hat{f}\|_{l^2(\mathbb{Z}^n)} = \|f\|_{L^2(T^n)}$.

Theorem. If $f \in L^1(T^n)$, then $p_k \to f$ in $L^1(T^n)$, where $p_k = f * Q_k$ and Q_k is as above.

Proof. The proof is similar to the proof of the Theorem above, except we use continuity of translation in L^1 instead of uniform continuity. Given $\epsilon > 0$, choose $\delta \ni ||f(x-\alpha)-f(x)||_1 < \epsilon$ whenever $|\alpha|_{\infty} < \delta$. By Fubini,

$$\int_{T^n} |p_k(x) - f(x)| d\nu_n(x) \le \int_{T^n} \left[Q_k(y) \int_{T^n} |f(x-y) - f(x)| d\nu_n(x) \right] d\nu_n(y) = I_1 + I_2,$$

and

$$I_1 \leq \int Q_k(y) \epsilon \, d\nu_n(y) = \epsilon$$

$$I_2 \leq 2 \|f\|_1 \eta_k(\delta) \to 0 \text{ as } k \to \infty.$$

Corollary. (Uniqueness Theorem). If $f \in L^1(T^n)$ and $(\forall \xi \in \mathbb{Z}^n) \widehat{f}(\xi) = 0$, then f = 0 a.e. Thus if $f, g \in L^1(T^n)$ and $\widehat{f} \equiv \widehat{g}$, then f = g a.e.

Proof. If
$$\hat{f} \equiv 0$$
, then $p_k(x) = \sum_{\xi} \hat{f}(\xi) \hat{Q}_k(\xi) e^{ix \cdot \xi} = 0$, and $p_k \to f$ in L^1 .

Theorem. (Riemann-Lebesgue Lemma). If $f \in L^1(T^n)$, then $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Proof. This follows from the analogous result for the Fourier transform, which will be proved later. The statement for the Fourier transform is that if $f \in L^1(\mathbb{R}^n)$, then $\int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x) dx \to 0$ as $|\xi| \to \infty$, $\xi \in \mathbb{R}^n$. The Fourier series version stated here follows by applying the \mathbb{R}^n version to $f(x)\chi_{[-\pi,\pi]^n}(x) \in L^1(\mathbb{R}^n)$ and restricting to $\xi \in \mathbb{Z}^n$. \Box

Absolutely Convergent Fourier Series

Theorem. Suppose $f \in L^1(T^n)$ and $\hat{f} \in l^1(\mathbb{Z}^n)$. Then the Fourier series of f converges absolutely and uniformly to a $g \in C(T^n)$, and g = f a.e.

Proof. Let $g(x) = \sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) e^{ix \cdot \xi}$. Since $\widehat{f} \in l^1(\mathbb{Z}^n)$, this series converges uniformly and absolutely, and $g \in C(T^n)$. By the Dominated Convergence Theorem,

$$\widehat{g}(\xi) = \int_{T^n} e^{-ix\cdot\xi} \left(\sum_{\eta \in \mathbb{Z}^n} \widehat{f}(\eta) e^{ix\cdot\eta} \right) d\nu_n(x)$$
$$= \sum_{\eta \in \mathbb{Z}^n} \widehat{f}(\eta) \int_{T^n} e^{-ix\cdot\xi} e^{ix\cdot\eta} d\nu_n(x) = \widehat{f}(\xi),$$

so g = f a.e.

Decay of Fourier Coefficients \leftrightarrow Smoothness of f

Lemma. Suppose $\alpha(\xi) \in l^1(\mathbb{Z}^n)$ and $i\xi_j\alpha(\xi) \in l^1(\mathbb{Z}^n)$. Let $f = \sum_{\xi} \alpha(\xi)e^{ix\cdot\xi}$ and $g = \sum_{\xi} i\xi_j\alpha(\xi)e^{ix\cdot\xi}$. Then $f, g \in C(T^n)$, $\partial_{x_j}f$ exists everywhere, and $\partial_{x_j}f = g$.

Proof. The two series of continuous functions converge absolutely and uniformly to f and g, respectively. Since $\partial_{x_j}(\alpha(\xi)e^{ix\cdot\xi}) = i\xi_j\alpha(\xi)e^{ix\cdot\xi}$, the result follows from a standard theorem in analysis.

Theorem. Suppose $f \in L^1(T^n)$ and $(1 + |\xi|^m)\widehat{f}(\xi) \in l^1(\mathbb{Z}^n)$ for some integer $m \ge 0$. Then the Fourier series of f converges absolutely and uniformly to a $g \in C^m(T^n)$, and f = g a.e.

Proof. By the theorem above, we only have to show that $g \in C^m(T^n)$. For each ν with $|\nu| \leq m$, $(i\xi)^{\nu} \widehat{f}(\xi) \in l^1(\mathbb{Z}^n)$, so $\sum_{\xi} (i\xi)^{\nu} \widehat{f}(\xi) e^{ix \cdot \xi}$ converges absolutely and uniformly to some $g_{\nu} \in C(T^n)$. By the Lemma and induction, $g_{\nu} = \partial^{\nu} g$.

Theorem. Suppose $f \in C^m(T^n)$.

- (a) For $|\nu| \le m$, $\widehat{\partial_x^{\nu} f}(\xi) = (i\xi)^{\nu} \widehat{f}(\xi)$.
- (b) $(1+|\xi|^m)\widehat{f}(\xi) \in l^2(\mathbb{Z}^n)$ and $||(1+|\xi|^m)\widehat{f}(\xi)||_{l^2(\mathbb{Z}^n)} \leq c_{n,m}||f||_{C^m(T^n)}$ for some constant $c_{n,m}$ depending only on n, m.
- (c) $|\widehat{f}(\xi)| \leq c_{n,m} (1+|\xi|)^{-m} ||f||_{C^m(T^n)}$ for $\xi \in \mathbb{Z}^n$.

Proof.

(a) follows by integration by parts. Set $x' = (x_2, \ldots, x_n)$, so $x = (x_1, x')$. Then

$$\frac{\widehat{\partial f}}{\partial x_1}(\xi) = \int_{T^{n-1}} \left[\int_T e^{-ix \cdot \xi} \frac{\partial f}{\partial x_1}(x) \, d\nu_1(x_1) \right] \, d\nu_{n-1}(x') \\
= \int_{T^{n-1}} \left[(i\xi_1) \int_T e^{-ix \cdot \xi} f(x) \, d\nu_1(x_1) \right] \, d\nu_{n-1}(x') \\
= (i\xi_1) \widehat{f}(\xi).$$

Iterate for higher derivatives.

(b) Part (a) gives for $1 \le j \le n$:

$$\|\xi_{j}^{m}\widehat{f}\|_{l^{2}(\mathbb{Z}^{n})} = \|\widehat{\partial_{x_{j}}^{m}f}\|_{l^{2}(\mathbb{Z}^{n})} = \|\partial_{x_{j}}^{m}f\|_{L^{2}(T^{n})} \le \|\partial_{x_{j}}^{m}f\|_{u}.$$

Adding gives

$$||(1+|\xi_1|^m+\cdots+|\xi_n|^m)|\widehat{f}(\xi)|||_{l^2(\mathbb{Z}^n)} \leq ||f||_{C^m(T^n)},$$

and (b) follows.

(c) is immediate from (b) and the fact that $\|\cdot\|_{\infty} \leq \|\cdot\|_2$ on functions on \mathbb{Z}^n .

In comparing the last two theorems, we see that in order to conclude that a given $f \in L^1(T^n)$ is C^m , it suffices to know that $(1+|\xi|)^m \hat{f} \in l^1$, and in the other direction, if f is C^m , then $(1+|\xi|)^m \hat{f} \in l^2$. Thus the space of Fourier coefficients of C^m functions lies between $(1+|\xi|)^{-m}l^1$ and $(1+|\xi|)^{-m}l^2$. So faster decay of \hat{f} corresponds to more smoothness of f.