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Continuity and Differentiability of Solutions

We now study the dependence of solutions of initial value problems on the initial values and
on parameters in the differential equation. We begin with a fundamental estimate.

Definition. We say that x(t) is an ǫ-approximate solution of the DE x′ = f(t, x) on an
interval I if

|x′(t) − f(t, x(t))| ≤ ǫ ∀ t ∈ I.

Here we will consider only C1 functions x(t). See Coddington & Levinson to extend this
concept to piecewise C1 functions, etc.

Fundamental Estimate

Let f(t, x) be continuous in t and x, and uniformly Lipschitz continuous in x with Lipschitz
constant L. Suppose x1(t) is an ǫ1-approximate solution of x′ = f(t, x) and x2(t) is an
ǫ2-approximate solution of x′ = f(t, x) on an interval I with t0 ∈ I, and suppose |x1(t0) −
x2(t0)| ≤ δ. Then

|x1(t) − x2(t)| ≤ δeL|t−t0| +
ǫ1 + ǫ2

L
(eL|t−t0| − 1) ∀ t ∈ I.

Remarks.

(1) The first term on the RHS bounds the difference between the solutions of the IVPs
with initial values x1(t0) and x2(t0) at t0.

(2) The second term on the RHS accounts for the fact that x1(t) and x2(t) are only
approximate solutions. Note that this term is 0 at t = t0.

(3) If ǫ1 = ǫ2 = δ = 0, we recover the uniqueness theorem for Lipschitz f .

Proof. We may assume ǫ1, ǫ2, δ > 0 (otherwise, take limits as ǫ1 → 0+, ǫ2 → 0+, δ → 0+).
Also for simplicity, we may assume that t0 = 0 and t ≥ 0 (do time reversal for t ≤ 0). Set

u(t) = |x1(t) − x2(t)|2 = 〈x1 − x2, x2 − x2〉.

Then

u′ = 2Re〈x1 − x2, x
′
1 − x′

2〉 ≤ 2|x1 − x2| · |x′
1 − x′

2|
= 2|x1 − x2| |x′

1 − f(t, x1) − (x′
2 − f(t, x2)) + f(t, x1) − f(t, x2)|

≤ 2|x1 − x2|(ǫ1 + ǫ2 + L|x1 − x2|) = 2Lu + 2ǫ
√

u,

where ǫ = ǫ1 + ǫ2.
We want to use the Comparison Theorem to compare u to the solution v of

v′ = 2Lv + 2ǫ
√

v, v(0) = δ2 > 0.
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But
f̃(v) ≡ 2Lv + 2ǫ

√
v

is not Lipschitz for v ∈ [0,∞). However, for a fixed δ > 0, it is uniformly Lipschitz for
v ∈ [δ2,∞) since

df̃

dv
= 2L +

ǫ√
v

is bounded for v ∈ [δ2,∞),

and C1 functions with bounded derivatives are uniformly Lipschitz:

|f̃(v1) − f̃(v2)| =

∣∣∣∣∣

∫ v1

v2

df̃

dv
dv

∣∣∣∣∣ ≤ (sup | d

dv
f̃(v)|)|v1 − v2|.

Although u(t) may leave [δ2,∞), in the proof of the Comparison Theorem we only need f̃

to be Lipschitz to conclude that u > v cannot occur. Note that since v′ ≥ 0, v(t) stays in
[δ2,∞) for t ≥ 0. So the Comparison Theorem does apply, and we conclude that u ≤ v for
t ≥ 0. To solve for v, let v = w2. Then

2ww′ = (w2)′ = v′ = 2Lw2 + 2ǫw.

Since w > 0, we get w′ = Lw + ǫ, w(0) = δ, whose solution is

w = δeLt +
ǫ

L
(eLt − 1).

Since |x1 − x2| =
√

u ≤ √
v = w, the estimate follows. �

Corollary. For j ≥ 1, let xj(t) be a solution of x′
j = fj(t, xj), and let x(t) be a solution

of x′ = f(t, x) on an interval [a, b], where each fj and f are continuous in t and x and f is
Lipschitz in x. Suppose fj → f uniformly on [a, b] × F

n and xj(t0) → x(t0) as j → ∞ for
some t0 ∈ [a, b]. Then xj(t) → x(t) uniformly on [a, b].

Remark. The domain on which fj is assumed to converge uniformly to f can be reduced:
exercise.

Proof. We have

|x′
j(t) − f(t, xj(t))| ≤ |x′

j(t) − fj(t, xj(t))| + |fj(t, xj(t)) − f(t, xj(t))|,

which can be made less than a given ǫ uniformly in t ∈ [a, b] by choosing j sufficiently large.
So x(t) is an exact solution and xj(t) is an ǫ-approximate solution of x′ = f(t, x) on [a, b].
By the Fundamental Estimate,

|xj(t) − x(t)| ≤ |xj(t0) − x(t0)|eL|t−t0| +
ǫ

L
(eL|t−t0| − 1),

and thus |xj(t) − x(t)| → 0 uniformly in [a, b]. �

Remark. Also fj(t, xj(t)) → f(t, x(t)) uniformly, so x′
j(t) → x′(t) uniformly. Thus xj → x

in C1([a, b]) (with norm ‖x‖C1 = ‖x‖∞ + ‖x′‖∞).
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Continuity with Respect to Parameters and Initial Conditions

Now consider a family of IVPs

x′ = f(t, x, µ), x(t0) = y,

where µ ∈ F
m is a vector of parameters and y ∈ F

n. Assume for each value of µ that f(t, x, µ)
is continuous in t and x and Lipschitz in x with Lipschitz constant L locally independent of
µ. For each fixed µ, y, this is a standard IVP, which has a solution on some interval about
t0: call it x(t, µ, y).

Theorem. If f is continuous in t, x, µ and Lipschitz in x with Lipschitz constant independent
of t and µ, then x(t, µ, y) is continuous in (t, µ, y) jointly.

Remark: See Coddington & Levinson for results saying that if x(t, µ0, y0) exists on [a, b],
then x(t, µ, y) also exists on [a, b] for µ, y near µ0, y0.

Proof. The argument of the Corollary shows that x is continuous in µ, y, uniformly in t.
Since each x(t, µ, y) is continuous in t for given µ, y, we can restate this result as saying that
the map (µ, y) 7→ x(t, µ, y) from a subset of F

m × F
n into (C([a, b]), ‖ · ‖∞) is continuous.

Standard arguments now show x is continuous in t, µ, y jointly. �

We have thus established continuity of solutions in their dependence on parameters and
initial values. We now want to study differentiability . By transforming problems of one
type into another type, we will be able to reduce our focus to a more restricted case. These
transformations are useful for other purposes as well, so we will take a detour to study these
transformations.

Transforming “initial conditions” into parameters
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Suppose f(t, x) maps an open subset D ⊂ R × F
n into F

n,
where f is continuous in t and x and locally Lipschitz in
x on D. Consider the IVP x′ = f(t, x), x(τ) = y, where
(τ, y) ∈ D. Think of τ as a variable initial time t0, and y as
a variable initial value x0. Viewing (τ, y) as parameters, let
x(t, τ, y) be the solution of this IVP.

Remark. One can show that if (t0, x0) ∈ D and x(t, t0, x0) exists in D on a time interval
[t0, t0 + b], then for (τ, y) in some sufficiently small open neighborhood O of (t0, x0), the
solution x(t, τ, y) exists on Iτ,t0 ≡ [min(τ, t0), max(τ, t0) + b] (which contains [t0, t0 + b] and
[τ, τ + b]), and moreover {(t, x(t, τ, y)) : t ∈ Iτ,t0 , (τ, y) ∈ O} is contained in some compact
subset of D.

Define

f̃(t, x, τ, y) = f(τ + t, x + y) and x̃(t, τ, y) = x(τ + t, τ, y) − y.

Then x̃(t, τ, y) is a solution of the IVP

x̃′ = f̃(t, x̃, τ, y), x̃(0) = 0
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with n + 1 parameters (τ, y) and fixed initial conditions. This IVP is equivalent to the
original IVP x′ = f(t, x), x(τ) = y.

Remarks.

(1) f̃ is continuous in t, x, τ, y and locally Lipschitz in x in the open set

W ≡ {(t, x, τ, y) : (τ + t, x + y) ∈ D, (τ, y) ∈ D} ⊂ R × F
n × R × F

n.

(2) If f is Ck in t, x in D, then f̃ is Ck in t, x, τ, y in W.

Transforming Parameters into “Initial Conditions”

Suppose f(t, x, µ) is continuous in t, x, µ and locally Lipschitz in x on an open set W ⊂
R × F

n × F
m. Consider the IVP x′ = f(t, x, µ), x(t0) = x0, with solution x(t, µ). Introduce

a new variable z ∈ F
m. Set

x̃ =

[
x

z

]
∈ F

n+m and f̃(t, x̃) =

[
f(t, x, z)

0

]
∈ F

n+m.

Consider the IVP

x̃′ = f̃(t, x̃), x̃(t0) =

[
x0

µ

]
,

(i.e., x′ = f(t, x, z), z′ = 0, x(t0) = x0, z(t0) = µ), with solution x̃(t, µ). Then z(t) ≡ µ, so
the solution is

x̃(t, µ) =

[
x(t, µ)

µ

]
,

and the two IVPs are equivalent.

Remarks.

(1) If f is continuous in t, x, µ and locally Lipschitz in x and µ (jointly), then f̃ is continuous

in t, x̃ and locally Lipschitz in x̃. (However, for this specific f̃ , Lipschitz continuity in
z is not needed for uniqueness.)

(2) If f is Ck in t, x, µ, then f̃ is Ck in t, x̃.

(3) One can show that if (t0, x0, µ0) ∈ W and the solution x(t, µ0) exists in W on a time
interval [t0, t0 + b], then for µ in some sufficiently small open neighborhood U of µ0 in
F

m, the solution x(t, µ) exists on [t0, t0 + b], and, moreover, the set

{(t, x(t, µ), µ) : t ∈ [t0, t0 + b], µ ∈ U}

is contained in some compact subset of W.

(4) An IVP x′ = f(t, x, µ), x(τ) = y with parameters µ ∈ F
m and variable initial values

τ ∈ R, y ∈ F
n can be transformed similarly into either IVPs with variable IC and no

parameters in the DE or IVPs with fixed IC and variable parameters in the DE.
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The Equation of Variation

A main tool in proving the differentiability of x when f is Ck is the equation of variation,
commonly also called the linearization of the DE (or the linearized DE), or the perturbation

equation, etc. This is a linear DE for the (leading term of the) perturbation in the solution
x due to, e.g., a perturbation in the parameters. Or it can be viewed as a linear DE for the
derivative of x with respect, e.g., to the parameter(s).

The easiest case to describe is when there is one real parameter s in the DE; we will also
allow the initial value x(t0) to depend on s. Let x(t, s) be the solution of the IVP

x′ = f(t, x, s), x(t0) = x0(s),

where f is continuous in t, x, s and C1 in x, s, and x0(s) is C1 in s. If x(t, s) is differentiable
in s, then (formally) differentiating the DE and the IC with respect to s gives the following
IVP for ∂x

∂s
(t, s):

(
∂x

∂s

)′

= Dxf (t, x(t, s), s)
∂x

∂s
+ Dsf (t, x(t, s), s)

∂x

∂s
(t0) =

dx0

ds

where ′ denotes d
dt

, Dxf is the n × n Jacobian matrix ∂fi

∂xj
, and Dsf is the n × 1 derivative

∂fi

∂s
. Evaluating at a fixed s0, we get that ∂x

∂s
(t, s0) satisfies

(
∂x

∂s

∣∣∣∣
s0

)′

= Dxf(t, x(t, s0), s0)
∂x

∂s

∣∣∣∣
s0

+ Dsf(t, x(t, s0), s0),
∂x

∂s

∣∣∣∣
s0

(t0) =
dx0

ds

∣∣∣∣
s0

.

This is a linear DE for ∂x
∂s

∣∣
s0

of the form z′ = A(t)z + b(t), where both the coefficient matrix

A(t) = Dxf(t, x(t, s0), s0) and the inhomogeneous term b(t) = Dsf(t, x(t, s0), s0) are known
if f and x(t, s0) are known.

The theoretical view is this: if x(t, s) is C1 in s, then ∂x
∂s

∣∣
s0

satisfies this linear DE. We

want to prove that x(t, s) is C1. We start from this linear DE, which has a solution by
our previous theory. This “gets our hands on” what ought to be ∂x

∂s

∣∣
s0

. We then prove (see

theorem below) that
x(t, s0 + ∆s) − x(t, s0)

∆s

converges as ∆s → 0 to this solution, which therefore must be ∂x
∂s

∣∣
s0

. It follows (from

continuity with respect to parameters) that ∂x
∂s

is continuous in t and s. The original DE
implies ∂x

∂t
is continuous in t and s. We conclude then that x(t, s) is C1 with respect to t

and s jointly.
An alternate view of the equation of variation comes from the “tangent line approxima-

tion”: formally, for s near s0, we expect

x(t, s) ≈ x(t, s0) + (s − s0)
∂x

∂s
(t, s0),
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with error O(|s − s0|2). Setting ∆s = s − s0 and ∆x = x(t, s) − x(t, s0), we expect ∆x ≈
∂x
∂s

(t, s0)∆s. We could either multiply the linear DE above by ∆s, or proceed formally as
follows: suppose x(t, s) = x(t, s0) + ∆x(t, s) (which we abbreviate as x = xs0

+ ∆x), and
suppose |∆x| = O(|∆s|) where ∆s = s − s0. Substitute into the DE, and formally drop
terms of order |∆s|2:

(xs0
+ ∆x)′ = f(t, xs0

+ ∆x, s0 + ∆s)

= f(t, xs0
, s0) + Dxf(t, xs0

, s0)∆x + Dsf(t, xs0
, s0)∆s + O(|∆s|2)

ր
neglect

so, since x′
s0

= f(t, xs0
, s0),

(∆x)′ = Dxf(t, xs0
, s0)∆x + Dsf(t, xs0

, s0)∆s.

(This is equivalent to ∆s times
(

∂x
∂s

)′
= Dxf

(
∂x
∂s

)
+ Dsf , when we take ∆x to mean the

“tangent line approximation” ∂x
∂s

∆s.)

Example. Consider the IVP x′ = f(t, x, µ) where µ ∈ F
m with fixed IC x(t0) = x0. Then for

1 ≤ k ≤ m, (
∂x

∂µk

)′

= Dxf(t, x(t, µ), µ)
∂x

∂µk

+ Dµk
f(t, x(t, µ), µ)

is the equation of variation with respect to µk, with IC ∂x
∂µk

(t0) = 0. Put together in matrix
form,

(Dµx)′ = (Dxf)(Dµx) + Dµf, Dµx(t0) = 0.

Here, Dµx is the n×m Jacobian matrix ∂xi

∂µj
, Dµf is the n×m Jacobian matrix ∂fi

∂µj
, and as

above Dxf is the n × n Jacobian matrix ∂fi

∂xj
.

In the above example, the initial condition x(t0) = x0 was independent of the parameter
µ, so the initial condition for the derivative was homogeneous: ∂x

∂µk
(t0) = 0. If the initial

condition depends on the parameter, then of course it must be differentiated as well. For
example, in the case in which the initial value is the parameter, so that one is solving
x′ = f(t, x), x(t0) = y, the initial condition for the derivative becomes ∂x

∂yk
(t0) = ek.

Differentiability

We can now prove differentiability. From our discussion showing that dependence on param-
eters can be transformed into IC, it will suffice to prove the following.

Theorem. Suppose f is continuous in t, x and C1 in x, and x(t, y) is the solution of the
IVP x′ = f(t, x), x(t0) = y (say on an interval [a, b] containing t0 for y in some closed ball
B = {y ∈ F

n : |y − x0| ≤ r}). Then x is a C1 function of t and y on [a, b] × B.

Proof. By the previous theorem, x(t, y) is continuous in [a, b] × B, so

K ≡ {(t, x(t, y)) : t ∈ [a, b], y ∈ B}



Continuity and Differentiability of Solutions 27

is compact, and thus f is uniformly Lipschitz in x on K, say with Lipschitz constant L.
From the DE, ∂x

∂t
(t, y) = f(t, x(t, y)), and so ∂x

∂t
(t, y) is continuous on [a, b] × B. Now fix j

with 1 ≤ j ≤ n. If ∂x
∂yj

exists, it must satisfy the linear IVP

(∗) z′ = A(t, y)z on [a, b], z(t0) = ej ,

where A(t, y) = Dxf(t, x(t, y)). Let z(t, y) be the solution of the IVP (∗). Since A(t, y) is
continuous on the compact set [a, b] × B, it is bounded on [a, b] × B. Let M > 0 be such
a bound, i.e. |A(t, y)| ≤ M for all (t, y) ∈ [a, b] × B. The DE in (∗) is linear, with RHS
uniformly Lipschitz in z with Lipschitz constant M . By the global existence theorem for
linear systems and the continuity theorem, z(t, y) exists and is continuous on [a, b]×B. For
h ∈ R with |h| small [strictly speaking, for fixed y ∈ int(B), assume |h| < r − |y − x0| so
that Bh(y) ⊂ int(B)], set

θ(t, y, h) =
x(t, y + hej) − x(t, y)

h
.

By the Fundamental Estimate (applied to x′ = f(t, x) with δ = |h| and ǫ1 = ǫ2 = 0),

|x(t, y + hej) − x(t, y)| ≤ |x(t0, y + hej) − x(t0, y)|eL|b−a| = |h|eL|b−a|

so |θ(t, y, h)| ≤ eL|b−a|. Also by the DE,

θ′(t, y, h) =
f(t, x(t, y + hej)) − f(t, x(t, y))

h
.

Denote by ω(δ) the modulus of continuity of Dxf (with respect to x) on K, so that

ω(δ) = sup{|Dxf(t, x1) − Dxf(t, x2)| : (t, x1) ∈ K, (t, x2) ∈ K, |x1 − x2| ≤ δ}.

Since Dxf is continuous on the compact set K, it is uniformly continuous on K, so ω(δ) → 0
as δ → 0+. Clearly ω(δ) is an increasing function of δ. Also, whenever the line segment from
(t, x1) to (t, x2) stays in K,

|f(t, x2) − [f(t, x1) + Dxf(t, x1)(x2 − x1)]|

= |
∫ 1

0

(Dxf(t, x1 + s(x2 − x1)) − Dxf(t, x1))(x2 − x1)ds| ≤ ω(|x2 − x1|) · |x2 − x1|.

We apply this bound with x1 = x(t, y) and x2 = x(t, y + hej), for which the line segment is
in K if |h| is small enough, to obtain

|θ′(t, y, h) − A(t, y)θ(t, y, h)|

=
1

|h| |f(t, x(t, y + hej)) − f(t, x(t, y)) − Dxf(t, x(t, y))(x(t, y + hej) − x(t, y))|

≤ 1

|h|ω(|x(t, y + hej) − x(t, y)|)|x(t, y + hej) − x(t, y)| ≤ ω(|h|eL|b−a|)eL|b−a|

(since |x(t, y + hej) − x(t, y)| ≤ |h|eL|b−a|). Set

ǫ(h) = ω(|h|eL|b−a|)eL|b−a|;
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then ǫ(h) → 0 as h → 0. We have shown that θ(t, y, h) is an ǫ(h)-approximate solution
to z′ = A(t, y)z. Moreover, θ(t0, y, h) = ej . So by the Fundamental Estimate applied to (∗),
with Lipschitz constant M ,

|θ(t, y, h)− z(t, y)| ≤ ǫ(h)

M
(eM |b−a| − 1).

This shows that limh→0 θ(t, y, h) = z(t, y) (including the existence of the limit). Thus
∂x
∂yj

(t, y) = z(t, y), which is continuous in [a, b] × B. We conclude that x(t, y) is C1 in

t, y on [a, b] × B. �

We obtain as a corollary the main differentiability theorem.

Theorem. Suppose f(t, x, µ) is Ck in (t, x, µ) for some k ≥ 1, and x(t, µ, τ, y) is the solution
of the IVP x′ = f(t, x, µ), x(τ) = y. Then x(t, µ, τ, y) is a Ck function of (t, µ, τ, y).

Proof. By the transformations described previously, it suffices to consider the solution
x(t, y) to the IVP x′ = f(t, x), x(t0) = y. The case k = 1 follows from the previous
theorem. Suppose k > 1 and the result is true for k − 1. Then ∂x

∂yj
satisfies (∗) above with

A(t, y) ∈ Ck−1, and ∂x
∂t

satisfies

w′ = Dtf(t, x(t, y)) + Dxf(t, x(t, y))f(t, x(t, y)), w(t0) = f(t0, x(t0, y)).

By induction, ∂x
∂t

and ∂x
∂yj

(for 1 ≤ j ≤ n) ∈ Ck−1; thus x ∈ Ck. �

Nonlinear Solution Operator

Consider the DE x′ = f(t, x) where f is continuous in t, x, Lipschitz in x. Let x(t, τ, y) be
the solution of the IVP x′ = f(t, x), x(τ) = y (say, on an interval t ∈ [a, b], where τ ∈ [a, b],
and we assume all solutions we consider exist on [a, b]). For a fixed pair τ (the “initial time”)
and t (the “final time”) in [a, b], define a map St

τ from an open set U ⊂ F
n into F

n by

St
τ (y) = x(t, τ, y),

so that St
τ maps the initial value y (at time τ) into the solution x(t, τ, y) at time t.
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By the continuity of x(t, τ, y) in (t, τ, y), St
τ is continuous on

the open set U ⊂ F
n. By uniqueness, St

τ is invertible, and
its inverse is Sτ

t (say, defined on W ≡ St
τ (U)), which is also

continuous. So St
τ : U → W is a homeomorphism (i.e., one-

to-one, onto, continuous, with continuous inverse). [Note:
the set W depends on t.] If f is Ck in t, x, then by our dif-
ferentiability theorem, St

τ : U → W is a Ck diffeomorphism
(i.e., St

τ and its inverse Sτ
t are both bijective and Ck).

Remarks.

(1) If f is at least C1, then the chain rule applied to I = Sτ
t ◦ St

τ (for fixed τ, t) implies
that the Jacobian matrix DyS

t
τ is invertible at each y ∈ U . We will see another way

to show this in the following material on linear systems. [Note: St
τ (y) = x(t, τ, y), so

for fixed τ, t, the ijth element of DyS
t
τ is ∂xi

∂yj
(t, τ, y).]
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(2) Conversely, the inverse function theorem implies that any injective Ck mapping on U
whose Jacobian matrix is invertible at each y ∈ U is a Ck diffeomorphism.

(3) Caution: For nonlinear f , St
τ is generally a nonlinear map.

Group Property of the Nonlinear Solution Operator

Consider the two-parameter family of operators {St
τ : τ, t ∈ [a, b]}. For simplicity, assume

they all are defined for all y ∈ F
n. (Otherwise, some consistent choice of domains must be

made, e.g., let Ua be an open subset of F
n, and define Uτ = Sτ

a (Ua) for τ ∈ [a, b]. Choose the
domain of St

τ to be Uτ . Then St
τ (Uτ ) = Ut.) This two-parameter family of operators has the

following “group properties”:

(1) Sτ
τ = I for all τ ∈ [a, b], and

(2) Sσ
t ◦ St

τ = Sσ
τ for all τ, t, σ ∈ [a, b].

Stated in words, mapping the value of a solution at time τ into its value at time t, and then
mapping this value at time t into the value of the solution at time σ is equivalent to mapping
the value at time τ directly into the value at time σ.

Special Case — Autonomous Systems

�

For an autonomous system x′ = f(x), if τ1, t1, τ2, t2 satisfy t1−τ1 = t2−τ2, then St1
τ1

= St2
τ2

(exercise). So we can define a one-parameter family of operators Sσ where Sσ = St
τ (for any

τ, t with t − τ = σ). The single parameter σ here is “elapsed time” (positive or negative)
t − τ , as opposed to the two parameters τ (“initial time”) and t (“final time”) above. The
two properties become

(1′) S0 = I

(2′) Sσ2
◦ Sσ1

= Sσ2+σ1
.


