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Ordinary Differential Equations (ODEs)



Ordinary Differential Equations
(ODEs)

ODEs

Let F be R on C. Throughout this discussion, | - | will denote the Euclidean norm (i.e £2-
norm) on F" (so || - || is free to use for norms on function spaces). An ODE is an equation
of the form

g(t,z,2',...,z(™) =0

where g maps a subset of R x (F")™*! into F". A solution of this ODE on an interval I C R
is a function x : I — F" for which z’, 2", ..., 2™ exist at each t € I, and

(Vtel) g(t,z(t),2'(t),..., 2™ () =0.

We will focus on the case where 2™ can be solved for explicitly, i.e., the equation takes
the form
2™ = f(t,z ', ... ™),

and where the function f mapping a subset of Rx (F")™ into " is continuous. This equation
is called an m'™-order n x n system of ODE’s. Note that if 2 is a solution defined on an
interval I C R then the existence of (™ on I (including one-sided limits at the endpoints
of I) implies that 2 € C™ *(I), and then the equation implies 2™ € C(I), so x € C™(I).

Reduction to First-Order Systems

Every m'-order n x n system of ODE’s is equivalent to a first-order mn x mn system of
ODE’s. Defining
yi(t) =2V V() € for 1<j<m

and
Y1 ()
y(t) = : e ",
Ym (t)

the system
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is equivalent to the first-order mn x mn system

Yo
Ys
Ym
f(tayla"',ym) |

(see prob. 1 on Prob. Set 9).
Relabeling if necessary, we will focus on first-order n x n systems of the form =’ = f(t, z)
where f maps a subset of R x " into F" and f is continuous.

Ezample. Consider the n x n system z'(t) = f(t) where f : I — F" is continuous on an
interval I C R. (Here f is independent of z.) Then calculus shows that for a fixed ty € I,
the general solution of the ODE (i.e., a form representing all possible solutions) is

z(t) =c+ /totf(s)ds,

where ¢ € F" is an arbitrary constant vector (i.e., ¢i, ..., ¢, are n arbitrary constants in FF).

Provided f satisfies a Lipschitz condition (to be discussed soon), the general solution of
a first-order system =’ = f(t, z) involves n arbitrary constants in IF [or an arbitrary vector in
"] (whether or not we can express the general solution explicitly), so n scalar conditions [or
one vector condition| must be given to specify a particular solution. For the example above,
clearly giving z(t9) = zo (for a known constant vector xy) determines ¢, namely, ¢ = z,. In
general, specifying z(ty) = zo (these are called initial conditions (IC), even if ¢y is not the
left endpoint of the t-interval I') determines a particular solution of the ODE.

Initial-Value Problems (IVP’s) for First-order Systems
An IVP for the first-order system is the differential equation

DE: ¥ = f(t,z),
together with initial conditions

IC: z(to) = o -

A solution to the IVP is a solution z(t¢) of the DE defined on an interval I containing ¢,
which also satisfies the IC), i.e., for which z () = z.

Eramples:
(1) Let n = 1. The solution of the IVP:
DE : z' = 2?
I1C: z(1)=1

is z(t) = 5=, which blows up as t — 2. So even if f is C* on all of R x F", solutions

of an IVP do not necessarily exist for all time ¢.
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(2) Let n = 1. Consider the IVP:

For any ¢ > 0, define z.(t) = 0 for ¢t < ¢ and z.(t) = (t — ¢)? for t > c. Then every
z.(t) for ¢ > 0 is a solution of this IVP. So in general for continuous f(¢,z), IVP’s may
have non-unique solutions. (The difficulty here is that f(t,z) = 24/|z| is not Lipschitz
near x = 0.)

An Integral Equation Equivalent to an IVP

Suppose z(t) € C*(I) is a solution of the IVP:

DE : = f(t, )
1C : .’L'(t()) = Ty

defined on an interval I C R with ¢, € I. Then for all t € I,

z(t) = x(to)-i-/ z'(s)ds

to

— w0+ [ f(s2(s))ds,

to

so z(t) is also a solution of the integral equation

(IE)

z(t) = xo + /t f(s,z(s))ds (tel).

Conversely, suppose z(t) € C(I) is a solution of the integral equation (IE). Then f(¢,z(t)) €
C(I), so

2(1) =x0+/t F(s,2(s))ds € C'(I)

and z'(t) = f(¢,z(t)) by the Fundamental Theorem of Calculus. So z is a C* solution of the
DE on I, and clearly z(ty) = x¢, so z is a solution of the IVP. We have shown:

Proposition. On an interval I containing to, x is a solution of the IVP: DE : 2’ = f(t, x);
IC : z(ty) = mo (where f is continuous) with x € C*(I) if and only if z is a solution of the
integral equation (IE) on I with z € C(I).

The integral equation (IE) is a useful way to study the IVP. We can deal with the function
space of continuous functions on I without having to be concerned about differentiability:
continuous solutions of (IE) are automatically C'. Moreover, the initial condition is built
into the integral equation.

We will solve (IE) using a fixed-point formulation.
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Definition. Let (X, d) be a metric space, and suppose g : X — X. We say that g is a
contraction [on X| if there exists ¢ < 1 such that

(Va,y e X)) d(g(2),9(y)) < cd(z,y)
(c is sometimes called the contraction constant). A point z, € X for which
g(r.) =z
is called a fized point of g.

Theorem.(The Contraction Mapping Fixed-Point Theorem)

Let (X, d) be a complete metric space and g : X — X be a contraction (with contraction
constant ¢ < 1). Then ¢ has a unique fixed point z, € X. Moreover, for any zo € X, if we
generate the sequence {z} iteratively by functional iteration

Tgy1 = g(zg) for k>0
(sometimes called fized-point iteration), then xy — ..
Proof. Fix zy € X, and generate {zy} by 2x11 = g(zx) Then for k > 1,
d(Zrs1, k) = d(9(7k), 9(7k—1)) < cd(Tk, Tp—1).

By induction
d(l‘k_H, iCk) S de(ﬂil, .’Eo).

So for n < m,

m—1 m—1
AT, xn) < Zd(xj+1,xj) < (Z c’) d(zq,xo)
ji=n j=n
o o
S (Z(/J) d(I1,$0) = 1 cd(l‘1,.’l30).
J

n

Since ¢ — 0 as n — oo, {xx} is Cauchy. Since X is complete, xy — z, for some z; € X.
Since g is a contraction, clearly ¢ is continuous, so

g9(z,) = g(limzy) = limg(zy) = limzg 1 = z,,
so x, is a fixed point. If x and y are two fixed points of g in X, then
d(z,y) = d(9(z),9(y)) < cd(z,y),
so (1 —¢)d(z,y) <0, and thus d(z,y) = 0 and z = y. So g has a unique fixed point. [

Applications.

(1) Tterative methods for linear systems (see prob. 5 on Prob. Set 9).
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(2) The Inverse Function Theorem If ® : N — R" is a C' mapping on a neighborhood
N C R" of zy € R satisfying ®(z) = yo and ®'(xy) € R**" is invertible, then there
exist neighborhoods Ny C N of xy and M of 4y and a C* mapping ¥ : M, — N, for
which ®[Ny] = My and ® o U and ¥ o & are the identity mappings on My and Np,
respectively.

(In prob. 6 of Prob. Set 9, you will show that ® has a continuous right inverse defined
on some neighborhood of y,. Other arguments are required to show that ¥ € C! and
that W is a two-sided inverse; these are not discussed here.)

Remark. Applying the Contraction Mapping Fixed-Point Theorem (C.M.F.-P.T.) to a func-
tion usually requires two steps:

(1) showing there is a topologically complete set S for which ¢g(S) C S, and

(2) showing that g is a contraction on S.

To apply the C.M.F.-P.T. to the integral equation (IE), we need a further condition on
the function f(¢,z).

Definition. Let I C R be an interval and 2 C F*. We say that f(¢,z) mapping I x Q into
F™ is uniformly Lipschitz continuous with respect to x if there is a constant L (called the
Lipschitz constant) for which

Vte D(Vz,yeQ)  |ft2) - [ty < Lz -yl

We say that f isin (C,Lip) on I x Q if f is continuous on I x Q and f is uniformly Lipschitz
continuous with respect to x on I x ).

For simplicity, we will consider intervals I C R for which t; is the left endpoint. Virtually
identical arguments hold if ¢, is the right endpoint of I, or if ¢y is in the interior of I. (see
Coddington & Levinson)

Theorem (Local Existence and Uniqueness for (IE) for Lipschitz f)

Let I = [tg,to + B] and Q = B.(zo) = {x € F* : |z — xo| < r}, and suppose f(t,x) is in
(C,Lip) on I x Q. Then there ezisit o € (0, 3] for which there is a unique solution of the
integral equation

(IE) £(t) = 7o + / £(5),2(5))ds

in C(I,) where I, = [to,to + a. Moreover, we can choose « to be any positive number
satisfying

1
a < p, agﬁ, and a<z, where M:(t,i?gﬁg‘f(t"””

and L is the Lipschitz constant for f in I x €.
Proof. For any a € (0, 3], let || - ||co denote the max-norm on C(I,):

for zeC(l.), |z|lw= x| |z (t)] .
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Although this norm clearly depends on «, we do not include « in the notation. Let Z, denote
the constant function zy(t) = zo in C(I,). For p > 0 let

Xap ={z € C(la) : |7 = Zolloo < p}-

Then X, , is a complete metric space since it is a closed subset of the Banach space (C(1,), ||-
lo). For any a € (0, f], define g : X, , — C(I,) by

(9(2))(t) = o + / F(s,2(s))ds -

g is well-defined on X, , and g(z) € C(I,) for z € X, , since f is continuous on I x B, ().
Fixed points of g are solutions of the integral equation (IE).

Claim. Suppose a € (0,8], @ < 17, and o < % Then g maps X, , into itself and ¢ is a
contraction on X, ..

Proof of Claim: If z € X,,, then for t € I,,

(g@) (1) - o] < / F(s,2(s))|ds < Ma <,

50 g: Xor =+ X, f 2,y € Xy, then for t € 1,

[(9(2)(®) = (gD < [ [f(s,2(s)) = f(5,9(s))[ds

/ (5) — y(s)]ds

_y“ooa

AN
=
8

A
=~
2
]

S0
l9(x) = 9(¥)]loo < Lal|z — ylloo, and Lo < 1.

So by the C.M.F.-P.T., for «a satisfying 0 < a < 3, a < 47, and a < %, g has a
unique fixed point in X, ,, and thus the integral equation (IE) has a unique solution z,(t) in
Xoyr ={2 € C(1,) : ||z — Zo|lo < r}. This is almost the conclusion of the Theorem, except
we haven’t shown z, is the only solution in all of C'(1,). This uniqueness is better handled
by techniques we will study soon, but we can still eke out a proof here. (We could say that
f is only given on I x B,.(z), but f can have a continuous extension to I x F".) Fix such
an a. Then clearly for 0 < v < a, z,[r, is the unique fixed point of g on X, ,. Suppose
y € C(I,) is a solution of (IE) on I, (using perhaps an extension of f) with y #Z z, on I,.

Let

71 = inf{y € (0,a] : y(to + ) # z.(to +7)}-

By continuity, v, < «. Since y(ty) = o, continuity implies

v € (0,] y\I70 € Xy
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and thus y(t) = z.(t) on I,. So 0 <y < a. Since y(t) = z.(t) on I,,, y[r,, € X, Let

p= M, ; then p < Ma <r. Fortel,,

ww—wdzumwxn—mnsAWﬂaMQWBSAMq:m

s0 y|r,, € X,,,- By continuity, there exists 2 € (v1,a] > y[r,, € X,, . But then y(t) = x.(t)
on I,,, contradicting the definition of ;. O

The Picard Iteration

Although hidden in a few too many details, the main idea of the proof above is to study the
convergence of functional iteration of g. If we choose the initial iterate to be zo(t) = xo, we
obtain the classical Picard Iteration:

zo(t) = zo
T (t) = :Eo—i-ftf)f(:c,xk(s))ds for k>0

The argument in the proof of the C.M.F.-P.T. gives only uniform estimates of, e.g., zy1 —x:
|lZks1 — Tklloo < Lat||zk — T41]|oo, leading to the condition o < . For the Picard iteration
(and other iterations of similar nature, e.g., for Volterra integral equations of the second
kind), we can get better results using pointwise estimates of zy1 — 2. The condition o < %
turns out to be unnecessary (we will see another way to eliminate this assumption when we
study continuation of solutions). For the moment, we will set aside the uniqueness question
and focus on existence.

Theorem (Picard Global Existence for (IE) for Lipschitz f) Let I = [to,to|3], and
suppose f(t,x) is in (C,Lip) on I x F". Then there exists a solution x.(t) of the integral
equation (IE) in C(I).

Theorem (Picard Local Existence for (IE) for Lipschitz f) Let I = [to,to + (] and

Q= B (xo) ={z € F* : |z — x| <1}, and suppose f(t,x) is in (C,Lip) on I x Q. Then
there exists a solution x,(t) of the integral equation (IE) in C(I,) where I, = [to,t + ],
o = min (ﬁ, ﬁ), and where M = max erxq | f(t, 7).

Proofs. We prove the two theorems together. For the global theorem, let X = C(I) (i.e.,
C(I,F")), and for the local theorem, let

X=Xo,r={r€C(lL) : ||z — zolc <7}

as before (where z4(t) = o). Then the map

(me=m+[f@amw

maps X into X in both cases, and X is complete. Let

zo(t) = x9, and xzgy1 =g(xg) or k>0.
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Let
M, = max |f(t, zo)] (global thm),
M, = max |f(t, zo)] (local thm).

Then for ¢ € I (global) or t € I, (local),

() — 20| < / (s, z0)lds < Mo(t — to)
las(t) — 1 ()] < / F(5,21(5)) — F (5, 20(5))|ds

< /|x1 — zo(s)|ds

MyL(t — to)?
< MOL/(S_tO)d %
to .

By induction, suppose |zx(t) — zx_1(t)| < M L’“lw. Then
@ = a0 < [ 170 - Ss.ani(9)s

< L/t 24 (5) — 1 (5)]ds

t _t)k: (t_t)k-l—l
< mprk [ By it
= /to KT T 1)
So
M. 0 t—t k+1
St o] < oS LW
=0
M,
— _(eL(t to) 1)
L
< %(e“—l)

where 7 = (3 (global) or v = « (local). Hence the series 2o + Y, o(zr+1(t) — 2 (¢)), which
has zy1 as its N partial sum, converges absolutely and uniformly on I (global) or I,
(local) by the Weierstrass M-test. Let x.(t) € C(I) (global) or € C(I,) (local) be the limit
function. Since

[f (£, 2 (1)) — (£, 2.(2))] < Ll (t) — 2.(2)];
f(t, zx(t)) converges uniformly to f(¢,z.(t)) on I (global) or I, (local), and thus
t

g(z.)(t) = zo+ f(s ,(s))ds

= hm 330+/f8.’13k dS

= hm xk+1(t) = 2.(t),
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for all ¢ € I (global) or I, (local). Hence x,(t) is a fixed point of g in X, and thus also a
solution of the integral equation (IE) in C'(I) (global) or C(1,) (local.) O

Corollary. The solution z,(t) of (IE) satisfies
M,
(1) — o] < 20 eH0) 1)

fort € I (global) ort € I, (local), where My = maxes |f (¢, o)| (global, My = max,—p_ | f (¢, zo)|
(local).

Proof. This is established in the proof above. O

Remark. In each of the statements of the last three Theorems, we could replace “solution of
the integral equation (IE)” with “solution of the IVP: DE : 2’ = f(t,x); IC : z(ty) = zo”
because of the equivalence of these two problems.

Ezxamples.

(1) Consider a linear system z' = A(t)x + b(t), where A(t) € C**" and b(t) € C* are in
C(I) (where I = [ty,to+ 5]). Then f isin (C,Lip) on I x F:

$6.0) = 1(t)] < 40 = A0y < (max 14O ) 2 -

Hence there is a solution of the IVP: 2’ = A(t)x + b(t), z(ty) = zo in C'(I).

(2) (n=1) Consider the IVP: 2’ = z?, 2(0) = 7y > 0. Then f(¢,z) = z? is not in (C, Lip)
on I x R It is, however, in (C,Lip) on I x ©Q where Q = B,(zy) = [xg — 7,20 + 7]

for each fixed r. For a given 7 > 0, M = (29 +r)? and o = I = oz in the local
1

7.—- S0 the local theorem guarantees a
0

solution in [0, ﬁ} The actual solution z,(t) = (z5' —t)~* exists in [O, %)

theorem is maximized for » = x(, where a =

Local Existence for Continuous f

A condition similar to the Lipschitz condition is needed to guarantee that the Picard iterates
converge; it is also needed for uniqueness, which we will return to shortly. It is, however,
still possible to prove a local existence theorem assuming only that f is continuous, without
assuming the Lipschitz condition. We will need the following form of Ascoli’s Theorem:

Theorem (Ascoli) Let X andY be metric spaces with X compact. Let { fr} be an equicon-
tinuous sequence of functions f : X =Y, i.e.,

(Ve>0)(36>0) suchthat (Vk>1)Vzi,z0 € X)
dx(T1,72) <6 = dy (fr(z1), fr(z2)) <€

(in particular, each fy is continuous), and suppose for each x € X, {fi(x): k> 1} is a
compact subset of Y. Then there is a subsequence { f, };";1 and a continuous f : X — Y
such that

fv; = [ uniformly on X.
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Remark. If Y =", the condition (Vz € X) {fi(x) : £ > 1} is compact is equivalent to the
sequence {fi} being pointwise bounded, i.e.,

(Vz € X)(3M,) suchthat (Vk>1) |fi(z)| < M,.

Ezample. Suppose fi : [a,b] — R is a sequence of C' functions, and suppose there exists
M > 0 such that
(VE>1) [ felloo + I filloo <M

(where || f|lco = max,<z<p |f(x)]). Then for a <z < 2o < b,

T2

fulas) = fua)| < [ 1file)do < Mo = ],
T1

so {fx} is equicontinuous (take ¢ = 57), and || fi||c < M certainly implies { fi} is pointwise

bounded. So by Ascoli’s Theorem, some subsequence of {fx} converges uniformly to a

continuous function f : [a,b] — R.

Theorem. The Cauchy-Peano Existence Theorem
Let I = [ty,to + B] and Q = B,(z9) = {z € F* : |z — zo| < r}, and suppose f(t,x) is
continuous on I x Q. Then there exists a solution x,(t) of the integral equation

(IE) z(t) = xo —i—/t f(s,z(s))ds

in C(I,) where I, = [ty,to + ], @ = min (ﬁ, ﬁ), and M = maxggyerxa |f(t, )| (and thus
7.(t) is a C' solution of the IVP: ' = f(t,z); x(ty) = x¢ in ).

Proof. The idea of the proof is to construct continuous approximate solutions explicitly (we
will use the piecewise linear interpolants of grid functions generated by Euler’s method), and
use Ascoli’s Theorem to take the uniform limit of some subsequence. For each integer k£ > 1,
define z4(t) € C(I,) as follows: partition [tg, ¢y + « into k equal subintervals (for 0 < ¢ < k,
let 2, =ty + £% (note: t, depends on k too)), set zx(to) = T, and for £ = 1,2,...,k define
zk(t) in (tg—1,ts| inductively by zx(t) = zg(te—1) + f(te—1, Tk (te—1))(t — te—1). For this to be
well-defined we must check that |zx(t—1) — xo| < r for 2 < £ < k (it is obvious for £ = 1);
inductively, we have

-1
2 (te—1) — 20| < Z |2k (ti) — 2k (ti=1)]
i=1
-1
= > | f(timy, meltion))] - [t — tica)
=1

-1
< MZ(tz —ti 1)
i—1

= M(tgfl—t()) SM&ST
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by the choice of a. So zx(t) € C(I,) is well defined. A similar estimate shows that for
t, T € [ty, to + @],
g (t) — ()| < M|t — 7).

This implies that {z} is equicontinuous; it also implies that
(VE>1)(Vt e I,) |zp(t) —xo] < Ma <,

so {zy} is pointwise bounded (in fact, uniformly bounded). So by Ascoli’s Theorem, there
exists 7.(t) € C(I,) and a subsequence {x,}32, converging uniformly to z.(t). It remains
to show that z,(t) is a solution of (IE) on I,. Since each zx(t) is continuous and piecewise
linear on I,
¢
zi(t) = zo +/ zy.(s)ds
to

(where x}(t) is piecewise constant on I, and is defined for all ¢ except t, (1 < ¢ < k — 1),
where we define it to be z},(¢;)). Define

Ag(t) =z (t) = f(t,zx(t)) on I,

(note that Ag(t,) =0 for 0 < £ < k — 1 by definition). We claim that Ag(¢) — 0 uniformly
on I, as k — oo. Indeed, given k, we have for 1 < ¢ < k and t € (t;_1,1,) (including ¢ if
¢ =k), that

|23, (8) — f(t 2k ()] = | f(te—1, zh(te—r) — f(2, 21 (2))]-

Noting that [t —#,_| < ¢ and
o'
k() — zp(be-1)| < Mt —te| < ME?

the uniform continuity of f (being continuous on the compact set I x Q) implies that

rtna}x|Ak(t)| —0 as k— oo.
€la

Thus, in particular, A, (¢) — 0 uniformly on /,. Now

¢
Ty () = xo-l—/ . (s)ds
to
t t

= xzo+ [ f(s,mx,(s))ds+ [ A, (s)ds.

to to

Since xy; — x, uniformly on I,, the uniform continuity of f on I x Q now implies that
[,z (t)) = f(t,2.(t)) uniformly on I,, so taking the limit as j — oo on both sides of this
equation for each t € I, we obtain that z, satisfies (IE) on I, O

Remark. In general, the choice of a subsequence of {z;} is necessary: there are examples
where the sequence {z;} does not converge. (See Problem 12, Chapter 1 of Coddington &
Levinson.)
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Uniqueness

Uniqueness theorems are typically proved by comparison theorems for solutions of scalar
differential equations, or by inequalities. The most fundamental of these inequalities is
Gronwall’s inequality, which applies to real first-order linear scalar equations.

Recall that a first-order linear scalar initial value problem

IVP: u' = a(t)u+b(t), wu(ty) = ug

t t
can be solved by multiplying by the integrating factor e fio® (i.e., e Jeo o#)95) " and then
integrating from ¢, to ¢. That is,

d

= (e amun) = e Foeao),

implies that
t
~ fia = / i ~fiya
e Motu(t) —uy = e tou(s) | ds
(t) 0 to ds ( )

t t
= /e_ﬁoab(s)ds
to

which in turn implies that

t t +
u(t) = ugedn ® + / els ab(s)ds.

to

Since f(t) < g(t) on [c, d] implies fcd ft)dt < fcdg(t)dt, the identical argument with “="
replaced by “<” gives

Theorem (Gronwall’s Inequality - differential form) Let I = [ty,t1]. Suppose a: I —
R and b: I — R are continuous, and suppose u.: I — R is in C*(I) and satisfies

u'(t) < a(t)u(t) +b(t) for tel, and wu(ty) = uo.

Then .
u(t) < upetio® +/ els %b(s)ds.

to
Remarks.

(1) Thus a solution of the differential inequality is bounded above by the solution of the
equality (i.e., differential equation v’ = au + b).

(2) The result clearly still holds if u is only continuous and piecewise C', and a(t) and b(t)
are only piecewise continuous.
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(3) There is also an integral form of Gronwall’s inequality (i.e., the hypothesis is an integral
inequality): if ¢, ¢, € C(I) are real-valued with & > 0 on I, and

o(t) < (1) +/ a(s)e(s)ds for tel,

then
wws¢@+/eﬁw@www

to

In particular, if ¢(t) = ¢ (a constant), then ¢(t) < cetio®, (The differential form is
applied to the C! function u(t) = ftz a(s)p(s)ds in the proof — see problem 4 on Prob.
Set. 9.)

(4) For a(t) > 0, the differential form is also a consequence of the integral form: integrating
' <a(t)u+b(t) from t, to ¢

gives
uws¢@+[a@wwm
where .
¢@=m+lmwm

so integration by parts gives

u(?)

IN

B(t) + /t eli 2a(s)y(s)ds

o
= .. = uoefto a + / efs ab(S)dS.
to

(5) Caution: a differential inequality implies an integral inequality, but not vice versa:

f[<g# <4

(6) The integral form doesn’t require ¢ € C* (just ¢ € C(I)), but is restricted to a > 0.
The differential form has no sign restriction on a(t), but it requires a stronger hypothesis
(in view of (5) and the requirement that u be continuous and piecewise C').

Uniqueness for Locally Lipschitz f

We start with a one-sided local uniqueness theorem for the initial value problem

IVP: = f(t,z); =z(to) = zo.
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Theorem. Suppose for some o > 0 and some r > 0, f(t,z) is in (C,Lip) on I, + B, (o),
and suppose z(t) and y(t) both map I, into B,(zy) and both are C' solutions of (IVP) on
I, = [to,to + ]. Then z(t) = y(t) fort € I,.

Proof. Set
u(t) = la(t) —y@)° = (@(t) — y(t), 2(t) — y(2))
(in the Euclidean inner product on F*). Then v : I, — [0,00) and u € C'(I,) and for ¢ € I,,

ul

(z—y, 2" —y)+{@" =y, z—y)
2Re(x —y, o' — ') <2z —y, 2’ — ¢')]
2(z —y, (f(t,2) — f(t,9))]

z =yl - |f(t2) = f(ty)|

2Lz — y|* = 2Lu .

IN A

Thus v' < Lu on I, and u(ty) = x(to) — y(to) = xo — zo = 0. By Gronwall’s inequality,
u(t) < uper® = 0 on I, so since u(t) > 0, u(t) = 0 on I,. O
Corollary.

(i) The same result holds if I, = [ty — «, tg]-

(ii) The same result holds if I, = [ty — o, to + af.

Proof. For (i), let Z(¢) = z(2t — t), §(t) = y(2to — t), and f(t,z) = —f(2to — t,x). Then f

is in (C, Lip) on [to, to + a] X B.(xy), and = and y both satisfy the IVP

2= f(t,z); 2'(to) =2 on [to,to+ .

So by the Theorem, z(t) = y(t) for t € [to, to+ ], i.e., z(t) = y(t) for t € [ty —a, t]. Now (ii)
follows immediately by applying the Theorem in [tg, ¢y + «] and applying (ii) in [ty — «, to).
Il

Remark. The idea used in the proof of (i) is often called “time-reversal.” The important
part is that z(t) = z(c — t), etc., for some constant ¢, so that z'(t) = —2'(c — t), etc. The
choice of ¢ = 2¢; is convenient but not essential.

The main uniqueness theorem is easiest to state in its two-sided version (i.e., where tg
is in the interior of the interval of definition of a solution of the IVP). One-sided versions
(where % is the left endpoint or right endpoint of the interval of definition of a solution of
the IVP) are true and have the same proof, but require a more delicate statement. (Exercise:
State one-sided theorems corresponding to the upcoming theorem precisely.)

Definition. Let D be an open set in R x . We say that f(¢,z) mapping D into F" is
locally Lipschitz continuous with respect to x if for each (t1,x1) € D there exists

a>0, r>0, and L >0
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for which [t; — o, t1 + o] X B,(z1) C D and

Vieth—at+a)(Vo,y € Be(x1)) [f(t2) = f(ty)| < Llz -yl

(i.e., f is uniformly Lipschitz continuous with respect to z in [t; — «,t; + o] X B,(z1)). We
will say f € (C,Lip,,.) (not a standard notation) on D if f is continuous on D and locally
Lipschitz continuous with respect to  on D.

Ezample. Let D be an open set of R x F*. Suppose f(¢,z) maps D into F, f is continuous
on D, and for 1 < 1,57 <n, gg; exists and is continuous in D. (Briefly, we say f is continuous

on D and C' with respect to z on D.) Then f € (C,Lip,,.) on D. (Exercise.)
Main Uniqueness Theorem. Let D be an open set in R x F" | and suppose f € (C,Lip,,)

on D. Suppose (to, o) € D, I C R is some interval containing ty (which may be open or
closed at either end), and suppose z(t) and y(t) are both solutions of the initial value problem

IVP: = f(t,x): xz(to) = o
in C1(I) which satisfy (t,z(t)) € D and (t,y(t)) € D fort € I. Then z(t) = y(t) on I.
Proof. We first show z(t) = y(t) on {t € [ : t > to}. If not, let
tiy=inf{tel:t>t and z(t)#y(t)}.

Then z(t) = y(t) on [to,?1) so by continuity z(¢,) = y(t1) (if t; = to, this is obvious). By
continuity and the openness of D (as (t1,z(t1)) € D), there exist @ > 0 and r > 0 such
that [t; — o, t; + ] X B.(x1) C D, f is uniformly Lipschitz continuous with respect to z in
[t1 — a,t; + a] X By(z1), and z(t) € B.(z1) and y(t) € B,(x;) for all tin I N [t; — a, t; + af.
By the previous theorem, x(t) = y(t) in I N [t; — a, {1 + «], contradicting the definition of
t1. Hence z(t) = y(t) on {t € I : t > to}. Similarly, z(t) = y(¢t) on {t € I : t < ty}. Hence
z(t) = y(t) on I. 0O

Remark. ty is allowed to be the left or right endpoint of 1.



