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Non-Square Matrices

There is a useful variation on the concept of eigenvalues and eigenvectors which is defined
for both square and non-square matrices. Throughout this discussion, for A € C™*™ let
||A|| denote the operator norm induced by the Euclidean norms on C* and C™ (which we
denote by || - ||), and let ||A||r denote the Frobenius norm of A. Note that we still have

(Az,y)on = y# Az = (2, Ay)en for € C", ye C™.

From A € C™™ one can construct the square matrices A¥A € C™" and AA¥ ¢
C™ ™ Both of these are Hermitian positive semi-definite. In particular A% A and AA¥ are
diagonalizable with real non-negative eigenvalues. Except for the multiplicities of the zero
eigenvalue, these matrices have the same eigenvalues; in fact, we have:

Proposition. Let A € C™*” and B € C**™ with m < n. Then the eigenvalues of BA
(counting multiplicity) are the eigenvalues of AB, together with n —m zeroes. (Remark: For
n = m, this was problem 4 on Problem Set 5.)

Proof. Consider the (n+m) x (n 4+ m) matrices

AB 0 0 O
01—|:B 0:| and CQ—[B BA:|

These are similar since S™1C,S = C5 where

I A | I -A
S—[O I] and S —[0 I}'

But the eigenvalues of C; are those of AB along with n zeroes, and the eigenvalues of C; are
those of BA along with m zeroes. The result follows. O

So for any m,n, the eigenvalues of AZA and AAH differ by |n — m| zeroes. Let p =
min(m,n) and let Ay > A\p > -+ > ), (> 0) be the joint eigenvalues of A” A and AA¥.

Definition. The singular values of A are the numbers
01202220, 20,

where 0; = \/A;. (When n > m, one often also defines singular values 0,,41 = --- = 0, = 0.)

It is a fundamental result that one can choose orthonormal bases for C* and C™ so that
A maps one into the other, scaled by the singular values. Let ¥ = diag (o4, ..., 0,) € C™*"
be the “diagonal” matrix whose ii entry is o; (1 < i < p).

Singular Value Decomposition (SVD)

If A € C™*", then there exists unitary matrices U € C™*™, V € C**" such that A = UXV#,
where 3 € C™*" is the diagonal matrix of singular values.
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Proof. As in the square case, ||A|*> = || A% A||. But
|AY Al =M\ =02, so ||A|l =01

So we can choose z € C* with ||z|| = 1 and ||Az|| = 0,. Write Az = o,y where ||y|| = 1.
Complete z and y to unitary matrices

Vi= (2,8, ,02] € C™" and Uy = [y, U, - ,1im] € C™™.

Since U AV} = A, is the matrix of A in these bases it follows that

H
_ g1 w
w0

for some w € C* ! and B € Cm1Ux(n-1)  Now observe that

)

< tad- || 7]
= 0,(s? +ww) %
since ||A;|| = ||A|| = o1 by the invariance of || - || under unitary multiplication.
It follows that (o7 + w*w)% < 0y, so w = 0, and thus
. g1 0
w-[7 8]

Now apply the same argument to B and repeat to get the result. For this, observe that

U% 0 H H AH
0 BEB =A7A = VA" AV)

is unitarily similar to A” A, so the eigenvalues of BB are Ay > --- > )\, (> 0). Observe
also that the same argument shows that if A € R™*" then U and V' can be taken to be real
orthogonal matrices. O

This proof given above is direct, but it masks some of the key ideas. We now sketch an
alternative proof that reveals more of the underlying structure of the SVD decomposition.

Alternative Proof of SVD: Let {v,...,v,} be an orthonormal basis of C" consisting
of eigenvectors of AfA associated with \; > Ay > --- > X, (> 0), respectively, and let
V =[vy---v,] € C*™™™. Then V is unitary, and

VEAR AV = A = diag (M, - .., \y) € R
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For 1 <i<n,
||AU1||2 = (EFVvlr{lefﬂ/ez = /\1 = 02'2 .

Choose the integer r such that
012"'20-1'>0-r+1:"':0-n:0

(r turns out to be the rank of A). Then for 1 < i < r, Av; = o;u; for a unique u; € C™ with
|lui]] = 1. Moreover, for 1 <i,j <,

1 1
uZHuj = UZHAHAUJ' =—-¢l'A ej = 0;j.
0,035 0035
So we can append vectors U1, ..., U, € C™ (if necessary) so that U = [uy - - - u,,] € C™*™
is unitary. It follows easily that AV = UX, so A = UXV Y. O

The ideas in this second proof are derivable from the SVD of A,
A=Uxv?
(no matter how it is constructed). The key insite in this derivation of the SVD is the relation
AV =UX .
Interpreting this equation columnwise gives

Av; = ou; (1 <i<p),

and

Av; =0 fori>mif n>m,
where {vy,...,v,} are the columns of V and {us, ..., un,} are the columns of U. So A maps
the orthonormal vectors {vi,...,v,} into the orthogonal directions {uy,...,u,} with the

singular values o1 > - -- > g, as scale factors. (Of course if o; = 0 for an ¢ < p, then Av =0,
and the direction of u is not represented in the range of A.)

The vectors vy, ..., v, are called the right singular vectors of A, and w4, ..., u,, are called
the left singular vectors of A. Observe that

AFA=VYHEYVHE and ¥HY = diag(o?,...,0%) € R™"

even if m < n. So
VEAT AV = A = diag (A, -+ - \n),
and thus the columns of V' form an orthonormal basis consisting of eigenvectors of A% A €
Cv". Similarly AA” = USSHEUH 50
(m—nzeroesifm>n)

——
UTAARY = S5 = diag (02,...,02, 0,...,0 )eR™m,

and thus the columns of U form an orthonormal basis of C™ consisting of eigenvectors of
AA" e Ccmxm,
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Caution. We cannot choose the bases of eigenvectors {vy, ..., v,} of A¥ A (corresponding to
Aty ooy Ag) and {uq, ..., upy} of AA® (corresponding to Ay, ..., A, [0, ..., 0]) independently:
we must have Av; = o;u; for o; > 0.

In general, the SVD is not unique. ¥ is uniquely determined but if A# A has multiple
eigenvalues, then one has freedom in the choice of bases in the corresponding eigenspace,
so V (and thus U) is not uniquely determined. One has complete freedom of choice of
orthonormal bases of N(A¥ A) and N'(AA"): these form the right-most columns of V' and
U, respectively. For a nonzero multiple singular value, one can choose the basis of the
eigenspace of A7 A (choosing columns of V), but then the corresponding columns of U are
determined; or, one can choose the basis of the eigenspace of AA# (choosing columns of U),
but then the corresponding columns of V' are determined. If all the singular values o4, ..., 0,
of A are distinct, then each column of V' is uniquely determined up to a factor of modulus
1, i.e., V is determined up to right multiplication by a diagonal matrix

D = diag (e, ..., e'm).

Such a change in V must be compensated for by multiplying the first n columns of U by D
(the first n — 1 cols. of U by diag (e, ..., e%-1) if g, = 0); of course if m > n, then the
last m — n columns of U have further freedom (they are in N'(AAY)).

There is an abbreviated form of SVD useful in computation. Since rank is presumed under
unitary multiplication, rank (4) = r iffoy > --- >0, > 0=0,41 = ---. Let U, € C™",
V. € C™*" be the first 7 columns of U, V, respectively, and let 3, = diag (0y,...,0,) € R™*".
Then A = U, X, VH (exercise).

Applications of SVD

If m = n, then A € C"" has eigenvalues as well as singular values. These can differ
significantly. For example, if A is nilpotent, then all of its eigenvalues are 0. But all of the
singular values of A vanish iff A = 0. However, for A normal, we have:

Proposition. Let A € C"*" be normal, and order the eigenvalues of A as
(A > Ao > > A
Then the singular values of A are 0; = |\;|, 1 <i < n.

Proof. By the Spectral Theorem for normal operators, there is a unitary V € C"*" for
which A =V A VEH where A = diag ()1,...,\,). For 1 <4 < n, choose d; € C for which
d;X\; = |\;| and |d;| = 1, and let D = diag(dy,...,d,). Then D is unitary, and

A= (VD)D"NVH =UzVH,

where U = VD is unitary and 3 = D¥A = diag (||, ..., |\s|) is diagonal with decreasing
nonnegative diagonal entries. O

Note that both the right and left singular vectors (columns of V', U) are eigenvectors of
A; the columns of U have been scaled by the complex numbers d; of modulus 1.
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The Frobenius and Euclidean operator norms of A € C™*" are easily expressed in terms
of the singular values of A:

1Al F = (Z 0?) and  [|A[| = 01 = v/p(ATA),
i=1

as follows from the unitary invariance of these norms. There are no such simple expressions
(in general) for these norms in terms of the eigenvalues of A if A is square (but not normal).
Also, one cannot use the spectral radius p(A) as a norm on C"*™ because it is possible for
p(A) = 0 and A # 0; however, on the subspace of C™™ consisting of the normal matrices,
p(A) is a norm since it agrees with the Euclidean operator norm for normal matrices.

The SVD is useful computationally for questions involving rank. The rank of A € C™*"
is the number of nonzero singular values of A since rank is invariant under pre- and post-
multiplication by invertible matrices. There are stable numerical algorithms for computing
SVD (try on matlab). In the presence of round-off error, row-reduction to echelon form
usually fails to find the rank of A when its rank is < min(m,n); for such a matrix, the
computed SVD has the zero singular values computed to be on the order of machine €, and
these are often identifiable as “numerical zeroes.” For example, if the computed singular
values of A are 102,10,1,10°%,1072,1073,107*,107%,107 %, 10~ ¢ with machine € ~ 1076,
one can safely expect rank (A) = 7.

Another application of the SVD is a way to prove the polar form of a matrix. This is the
analogue of the polar form z = e in C. (Note from problem 1 on Prob. Set 6, U € C**"
is unitary iff U = e for some Hermitian H € C"*").

Polar Form

Every A € C**™ may be written as A = PU, where P is positive semi-definite Hermitian
and U is unitary.

Proof. Let A =UXV# be a SVD for A, and write
A= (USUT)UVH).

Then ULU! is positive semi-definite Hermitian and UV is unitary. U

Observe in the proof that the eigenvalues of P are the singular values of A; this is true
for any polar decomposition of A (exercise). We note that in the polar form A = PU, P is
always uniquely determined and U is uniquely determined if A is invertible (as in z = re').
The uniqueness of P follows from the following two facts:

(i) AA¥ = PUUHPH = P? and

(ii) every positive semi-definite Hermitian matrix has a unique positive semi-definite Her-
mitian square root (see H-J, Theorem 7.2.6).

If A is invertible, then so is P, so U = P~!A is also uniquely determined. There is also a
version of the polar form for non-square matrices; see H-J for details.
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Linear Least Squares Problems

If A e C™™ and b € C™, the linear system Az = b might not be solvable. Instead, we can
solve the minimization problem. Find 2 € C" to attain inf,ccn ||Az — b]|? (Euclidean norm).
This is called a least-squares problem since the square of the Euclidean norm is a sum of
squares. At a minimum of ¢(z) = ||Az — b||> we must have V(z) = 0, or equivalently

o' (x;0) =0 YveC,
where

d
¢'(z;0) = %<P(33 + tv)
t=0
is the directional derivative. If y(¢) is a differentiable curve in C™, then

%Hy(t)ﬂ2 = (W' (1),y(1) + (y(1),y' (1)) = 2Re(y(t),y'(t))-
Taking y(t) = A(x + tv) — b, we obtain that
Vo) =0 (Vv e C") 2Re(Az — b, Av) =0 & A" (Ax —b) =0,

ie.,

AP Az = AMp .
These are called the normal equations (they say (Az —b) L R(A)).

Linear Least Squares, SVD, and Moore-Penrose Pseudoinverse
The Projection Theorem (for finite dimensional S)

Let V be an inner product space, and let S be a finite dimensional subspace. Then
(1) V=S& 5% ie., givenv €V, Junique j € S and z € S+ for which

V=Y +Z
(so § = Pv, where P is the orthogonal projection of V onto S; also
zZ= (I — P)v and I — P is the orthogonal projection of V onto S*).
(2) Given v € V, the g in (1) is the unique element of S which satisfies

VyeS) (v—-7,9) =0.
(3) Given v € V, the 5 in (1) is the unique element of S solving the
minimization problem

e e . . 2
minimize v —yl”

Remark. The content of the Projection Theorem is contained in the following picture:
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Proof. (1) Let {¢1,...,1.} be an orthonormal basis of S. Given v € V, let

= Z(U Y)Y and Z=v— 7.

j=1

Thenv=y+zandyeS. For1<k<r,

(Z, ) = (v, ) — (U, ) = (v, ¥) — (v, %) =0,

so z € S*t. Uniqueness follows from the fact that SN S+ = {0}.
(2) Since z = v — #, this is just a restatement of z € S*.
(3) For any y € S,

V-Yy=y—y+_z ,
€s est

so by the Pythagorean Theorem (p L ¢ = |lp % q||* = ||p||? + ||9]|?),
lo =yl = |7 — yll* + 11211”.
Therefore, ||v — y||? is minimized iff y = y, and ||Jv — y||* = ||z||*. O
The Projection Theorem as stated above is a special case of a much more general result
that can be stated for closed convex sets on a Banach space. Below we give the Hilbert space
version of this result.

The Projection Theorem for Convex Sets (on Hilbert Spaces)

Let X be a Hilbert space and let C' be a closed convex subset of X. Then for each z € X
there is a unique vector 3° € C such that

lz -y’ <|lz—y|| VyeC.

Furthermore, a necessary and sufficient condition that gy be the unique minimizing vector
is that
Re((z -3’y —9") <0 VycC.

Proof. Let {y'} C C be such that

lz = y'll = inf{llz —yl| : y € C} = 6.
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By the parallelogram law

y" +y™

ly™ —y"[I* = 2llz — y™|* + 2llz — y"||* — 4

By convexity, 27! (y" + y™) € C; so
lz =27 (y™ +y™)|| > 6.

Therefore,
ly™ = y*|1> < 2lly™ — z||* + 2[|y" — =||* — 46° — 0.

Consequently, the sequence {y"} is Cauchy and so has a limit ° with ||z — 3°|| = §. The
uniqueness follows by considering the sequence

y2"+1:ya and yQ":yb n=0,1,...,

where y°,y* € C with |h* — z|| = ||y® — z|| = §. By applying the above argument, we find

b
Yyt =y
We next show that /° is the unique vector satisfying

Re((z — %,y —¢°) < O0forally € C.

Suppose to the contrary that there is a vector y' such that Re({z — ¢°,y' —3°)) = ¢ > 0.
Consider the vectors

v=ay'+(1—a)y’€C for acl0,1]
Note that the function ¢ : R — R given by

pla) = z—y°|
(1= a)llz = y°I* + 2a(1 — a)Re({z — 4", 2 — ")) + &’|lz — ¢/'|?

is differentiable with
©'(0) = —2llz—°” 4+ 2Re((z — °, 2 —y"))

= —2Re({x — 9%z —9°) + (x — % y' — 1))
= —2Re(z — 1%, y" — ") = —2e < 0.

Hence, ||z — y®|| < ||z — ¢°|| for all > 0 sufficiently small. This contradiction implies that
y! does not exist.
Conversely, suppose that y° € C is such that

Re({z — 3%y —y°) <0 VyeC.
Then for any y € C with y # 3°, we have

lz—ylI” = llz=9")+ @ -y
= |lz— ¢’ + 2Re({z — v°, 4° — v)) + [|v° — ¥
> lz—y°|%. 0
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Given x € X, the unique solution to the problem

min ||z —y|

is called the projection of x onto C and is often denoted Pc(z). In the classical Projection
Theorem the set C' is a closed subspace S of X (recall that the subspace S is always closed).
In this case, the condition that

Re((z— %,y —y%)) <0 VycCS

is equivalent to the statement that (v — Po(z)) € S*. Note that the Projection Theorem
for Convex Sets extends the classical Projection Theorem to Hilbert spaces.

We leave application of the Projection Theorem for Convex Sets to later study. For the
moment we focus on applications of the Projection Theorem in the Euclidean space setting
(finite dimentional inner product spaces).

Theorem [Normal Equations for Linear Least Squares]
Let A€ C™", be C™ and || - || be the Euclidean norm. Then z € C" solves

(*) minimize ||b — Aaj”2
zeCr

if and only if x is a solution to the normal questions A” Az = A#p.

Proof. Let {ai,...,a,} be the columns of A, and let S = R(A) = span{ai,...,a,}.
Substituting y € S for Az we arrive at the equivalent minimization problem

e e h— 2 )
minimize [|b— /|

Apply the Projection Theorem to find that y = ¢ iff b—y € S*, or equivalently, x solves (*)
iff

b— Az € ST = R(A)* = N(AT).

The condition that b — Az € N(AT) is equivalent to the normal equations. O

Remarks.

(i) The minimizing element y = y* of S is unique. Since y* € R(A), there exists z €
C" for which Az = y*, or equivalently, there exists x+ € C" minimizing ||b — Az||*.
Consequently, there is an € C* for which A” Az = A¥b, that is, the normal equations
are consistent.

(ii) If rank (A) = n (i.e. {ai,...,a,} are linearly independent in C™), then there is a
unique T € C" for which Az = y. This 7 is the unique minimizer of |[b — Az||* over
x € C" as well as the unique solution of the normal equations A? Az = A"b.
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If rank (A) = r < n, then the minimizing vector x is not unique; z can be modified by
adding any element of N'(A). (Exercise. Show N(A) = N (A% A).) However, there is a

unique
te{reC :||b—AF|| <||b— Az||Vz € C"} = {z € C" : AHAx = AHp}

of minimum norm.

{z: Az = y*}

0

Since {z € C* : A" Ax = A"b} is an affine translate of the subspace N (A7 A) = N(A),
a translated version of the Projection Theorem shows that there is a unique {z € C" :
A" Az = A"b} for which 2 1. N (A) and thus % is the unique element of {x € C* : A¥ Az =
AHp} of minimum norm.

In summary: given b € C™, then z € C" minimizes ||b — Az||*> over x € C" iff Az is
the orthogonal projection of b onto R(A), and among this set of solutions there is a unique
such Z of minimum norm; alternatively, Z is the unique solution of the normal equations
A" Ax = AHp which also satisfies 2 € N (A)*L.

The map Af : C™ — C* (Al is read “A dagger”) which maps b € C™ into the unique
minimizer £ of ||b — Az||* of minimum norm is called the Moore-Penrose pseudo-inverse of
A. As we will see shortly, A' is linear, so it is represented by an n x m matrix which we
also denote by AT (and we also call this matrix the Moore-Penrose pseudo-inverse of A). If
m = n and A is invertible, then every b € C" is in R(A), so § = b, and the solution of
Az = b is unique, given by £ = A~'b. In this case A" = A~!. So the pseudo-inverse is a
generalization of the inverse to possibly non-square, non-invertible matrices.

The pseudo-inverse of A can be expressed easily in terms of the abbreviated form of the
SVD of A. Let A= UXV# be an SVD of A, let r = rank (A) (so

o221 >0=0,4 =),
let U, and V, in C™*" be the first r columns of U, V, respectively, and let
Y, = diag(o1,...,0,) € C".

Then as we have seen above, A = U, X, VZ. Let U e cmx(m=r) V = C® 1) e the
remaining columns of U, V', respectively, so

U=[U,0] and V=V, V]
Note that

span{cols. of U,} = R(U,) = R(4), R(U) = R(A)*, R(V) = N(4),
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and
R(V;) =N (A)*
Now
|b— Az||> = ||b—-UZVHz|?
|UHb V|2
B o [ = 01V 0
- 0 0 VH
B UTHb—E,VTHx ?
- Utp ’
SO _
b — Az|* = |[UFb — =,V z|* + | U]
Thus

x solves minigize ||b — Ax||2] & NV =U*b & Viz=x1U",
zc

and, in addition,
r =% = the unique minimizer of ||b — Az||?> of minimum norm

if and only if
r € N(A)*F =R(V,),

ie., VEz =0. So 2 = # if and only if

Vi YU
H, __ T — T T
St AN

—
—177H
—a

=
YlUHp

x:[m[ 0

] =V, 'uMb .
So
&=V, UM

We conclude that £ is a linear function of b, so A' is linear, and the matrix for Af is

o oHU,H

At =V = [V, V] [ 0 on } =Vxivf,

where
>t = diag (o7%,...,0,%,0,...,0) € C*™,

Y 'r )
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It is appropriate to call this matrix X! as it is easily shown that the pseudo-inverse of
¥ € C™*™ is this matrix (exercise).

One rarely actually computes A'. Instead, to minimize ||b — Az||? using the SVD of A
one computes

& = V(1)

For b € C™, we saw above that if # = A'b, then A% = j is the orthogonal projection of
b onto R(A). Thus AA' is the orthogonal projection of C™ onto R(A). This is also clear
directly from the SVD:

AAT = U VRV WU = U3, 8 U = U U = Sh_ uju H
=1%j

which is clearly the orthogonal projection onto R(A). Note that V,¥V, = I, since the columns
of V are orthonormal. Similarly, since w = AT(Ax) is the vector of least length satisfying
Aw = Az, ATA is the orthogonal projection of C* onto N (A)*. Again, this also is clear
directly from the SVD:

AA =V, 2RO SV = ViV =55 vl

is the orthogonal projection onto R(V,) = N(A)*. These relationships are substitutes for
AA™! = A='A = [ for invertible A € C**". Similarly, one sees that

(i) AXA= A,

)
(ii) XAX =X,

(i) (AX)" = AX,
(iv) (XA)" =XA4,

where X = Af. In fact, one can show that X € C**™ is A' if and only if X satisfies (i), (ii),
(iii), (iv). (Exercise — see section 5.54 in Golub and Van Loan.)

The pseudo inverse can be used to extend the (Euclidean operator norm) condition
number to general matrices: k(A) = ||A| - ||At|| = 01/0, (where r = rank A).

LU Factorization

All of the matrix factorizations we have studied so far are spectral factorizations in the
sense that in obtaining these factorizations, one is obtaining the eigenvalues and eigenvec-
tors of A (or matrices related to A, like A7 A and AA" for SVD). We end our discussion
of matrix factorizations by mentioning two non-spectral factorizations. These non-spectral
factorizations can be determined directly from the entries of the matrix, and are compu-
tationally less expensive than spectral factorizations. Each of these factorizations amounts
to a reformulation of a procedure you are already familiar with. The LU factorization is
a reformulation of Gaussian Elimination, and the QR factorization is a reformulation of
Gran-Schmitt orthogonalization.

Recall the method of Gaussian Elimination for solving a system Ax = b of linear equa-
tions, where A € C"*" is invertible and b € C". If the coefficient of x; in the first equation is
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nonzero, one eliminates all occurrences of x; from all the other equations by adding appro-
priate multiples of the first equation. This operations does not change the set of solutions
to the equation. Now if the coefficient of x5 in the new second equation is nonzero, it can
be used to eliminate x5 from the further equations, etc... In matrix terms, if

T

— avN X 1
A_[u A}E(C ,

with a £ 0, a € C, u,v € C"~!, and A € C»~D*("=1) then using the first row to zero out u
amounts to left multiplication of the matrix A by the matrix

to get

1 0 a v’ a vl
* - nxm __
) L T eem= [0 h ]
Define .
O}E(C"X" and Ulz[av }

0 A
L;lz[_l ?]

LA = Uy, or equivalently, A= LU, .

olg M
~

and observe that

ol

Hence (*) becomes

Note that L, is lower triangular and U; is block upper-triangular with one 1 x 1 block and
one (n — 1) x (n — 1) block on the block diagonal. The elements of ¥ € C*~! are called
multipliers, they are the multiples of the first row subtracted from subsequent rows, and they
are computed in the Gaussian Elimination algorithm. The multipliers are usually denoted

mo1

m
wia = 31

mMnp1

Now, if the (1,1) entry of A; is not 0, we can apply the same procedure to A;: if A; =
I 0

T
ar Y (n—1)X(n—1) < ing o — (n—1)x(n—1)
[u1 i1 ] e C with a; # 0, letting Ly = | 4 7| € C , and

~ T T ~
forming L,*A; = [_1u O:| [al A ] = [al Ui ] = U, € CDx(=Y) (where

a1
ﬁ I (3] A-1 0 AQ
A —2 € C"2x(=2)) amounts to using the second row to zero out elements of the second

10 T
column below the diagonal: setting Ly = ~ |anduy = @V , we have Ly 'LT'A =
0 L2 0 U9
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1 0 T
~ @ v = Us,, which is block upper triangular with two |z| blocks and one
0o L' [ |0 4

(n —2) x (n —2) block on the block diagonal. The elements of ' are multipliers, usually
m32
M52 . . 1 . .
denoted Z—i = : . Notice that these multipliers appear in L, in the second column,
Mp2
below the diagonal. Continuing in a similar fashion, L ', ---Ly'LT'A = U,_; = U is
upper triangular (provided along the way that the (1,1) entries of A, Ay, Ay, ..., Ap_o are
nonzero so the process can continue). Define L = (L', ---L7')™' = LiLy---L,_;. Then
A= LU. (Remark: A lower triangular matrix with 1’s on the diagonal is called a unit lower
triangular matrix, so L;, Lj_l, Lj__l1 LT Ly - - Lj, L™!, L are all unit lower triangular.) For
an invertible A € C*"*", writing A = LU as a product of a unit lower triangular matrix L
and a (necessarily invertible) upper triangular matrix U (both in C**") is called the LU
factorization of A.

Remarks.

(1) If A € C™™" is invertible and has an LU factorization, it is unique (exercise).

(2) One can show that A € C"*" has an LU factorization iff for 1 < j < n, the upper left
air - Qg
J X j principal submatrix : is invertible.

aji e G

(3) Not every invertible A € C**" has an LU-factorization. (Example: [ (1) (1) } doesn’t.)

Typically, one must permute the rows of A to move nonzero entries to the appropriate
spot for the elimination to proceed. Recall that a permutation matrix P € C**" is the
identity I with its rows (or columns) permuted: so P € R**" is orthogonal, and P~! =
PT. Permuting the rows of A amounts to left multiplication by a permutation matrix
PT; then PT A has an LU factorization, so A = PLU (called the PLU factorization of
A).

(4) Fact: Every invertible A € C™™ has a (not necessarily unique) PLU factorization.
1

(5) It turns out that L = Ly---L,_, = | ™21 has the multipliers m;; below

Mp_q -+ 1
the diagonal.

(6) The LU factorization can be used to solve linear systems Az = b (where A = LU €
C™*™ is invertible). The system Ly = b can be solved by forward substitution (1°* eqn.
gives 11, etc.), and Uz = y can be solved by back-substitution (n'® eqn. gives z,, etc.),
giving solu. of Az = LUz = b. See section 3.5 of H-J.
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QR Factorization

Recall first the Gram-Schmidt orthogonalization process. Let V' be an inner product space,
and suppose ay, ..., a, € V are linearly independent. Define g1, ..., g, inductively, as follows:
let py = ay and ¢ = pi/||pll: for 2 < j < m, let p; = a; — 317 (aj,¢5)q; and ¢; =
p;/||pjll- Since clearly for 1 < k < n ¢, € span{as,...,a;}, each p; is nonzero by the linear

independence of {ay, ..., a,}, so each g¢; is well-defined. It is easily seen that {g;,...,¢,} isan
orthonormal basis for span{ay,...,a,}. Note also that for 1 < k < n a; € span{qy,...,q}
(and thus {¢i,...,¢x} is an orthonormal basis of span{as,...,a;}: defining r;; = ||p||; (so

p; = 15;q;) and 7y = (a;,q;) for 1 <4 < j < n, we have: a; = r11q1, a2 = T12¢1 + 722Gz, in
general a; = Y 1_, 1iiq;.

Remarks.

(1) If a1, a9, - - - is a linearly independent sequence in V', we can apply the Gram-Schmidt
process to obtain an orthonormal sequence q1, gy, ... with the property that for £ > 1,
{q1,---,qx} is an orthonormal basis for span{a,...,ax}.

(2) If the a,’s are linearly dependent, then for some value(s) of k, a; € span{as, ..., ax_1},
and then p;y = 0. The process can be modified by setting ¢, = 0 and proceeding. We
end up with orthogonal ¢;’s, some of which have ||g;|| = 1 and some have ||¢;|| = 0.
Then for & > 1, the nonzero vectors in the set {qy,..., ¢} form an orthonormal basis
for span{ay,...,ax}.

(3) The classical Gram-Schmidt algorithm described above applied to n linearly indepen-
dent vectors ay,...,a, € C™ (where of course m > n) does no behave well compu-
tationally. Due to the accumulation of round-off error, the computed g¢;’s are not as
orthogonal as one would want (or need in applications): (g;, gx) is small for j # k
with j near k, but not so small for j < k£ or j > k. An alternate version, “Modified
Gram-Schmidt,” is equivalent in exact arithmetic, but behaves better numerically. In
the following “pseudo-codes,” p denotes a temporary storage vector used to accumulate
the sums defining the p;’s.

Classic Gram-Schmidt Modified Gram-Schmidt
For j=1,---,ndo For j=1,...,ndo
pi=a; pi=a;
Fori=1,...,57—1do Fori=1,...,7—1do
rij = {aj, @) rij = (P i)
P :=Dp— T4 P :=Dp— T4
rii = llpll rij = |Ipll
4=/ 4=/

The only difference is in the computation of r;;: in Modified Gram-Schmidt, we or-
thogonalize the accumulated partial sum for p; against each g; successively.
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Proposition. Suppose A € C™*" with m > n. Then 3Q € C™™ which is unitary and
an upper triangular R € C™*" (i.e. r;; = 0 for ¢ > j) for which A = QR. If Q € C™*"
denotes the first n columns of () and R € C"*" denotes the first n rows of R, then clearly

also A = QR = [@*] [ ]g } = @ﬁ Moreover

(a) We may choose an R 2with nonnegative diagonal entries.

(b) If A is of full rank (i.e. rank(A) = n, or the cols. of A are linearly independent),
then we may choose an R with positive diagonal entries, in which case the condensed
factorization A = QR is unique (and thus in this case if m = n, the factorization
A = @R is unique since then @) = @ and R = é)

(c) If A is of full rank, the condensed factorization A = QR is essentially unique: if
A= Q1R1 QQRZ, then 3 a unitary diagonal matrix D € C**" for which Q2 QlDH
(rescaling cols. of Ql) and R2 DR; (rescaling rows of Rl)

Proof. If the columns of A are linearly independent, we can apply the Gram-Schmidt process
described above. Let Q [q1,---,q,] € C™™, and define R € C"*" by setting r;; — 0 for
¢ > 7, and r;; to be the value computed in J-S for ¢ < j. Then A = QVE Extending
{a1,...,¢n} to an orthonormal basis {gi,...,¢n} of C™, and setting @ = [g,...,qn] and

R= [ ]0% } € C™*", we have A = QR. As rj; > 0in J-S, we have (b): uniqueness follows by

induction passing through the J-S process again, noting that at each step we have no choice.
(c) follows easily from (b) since if rank (4) = n, then rank (R) = n in any QR factorization
of A. If the columns of A are linearly dependent, we alter the Gram-Schmidt algorithm
as in Remark (2) above. Notice that ¢, = 0 iff ry; = 0V, so if {gx,,...,qx } are the
nonzero vectors in {¢i, ..., ¢,} (where of course = rank (A)), then the nonzero rows in R
are precisely Tows ki, . . ., k. So if we define ) = 9k, — gk, ] € C™*" and R € C™*" to be these
nonzero rows, then Qﬁ A where Q has orthonormal columns and R i 1s upper triangular.

Let @ be a unitary matrix whose first r columns are Q, and let R = [ ]0% ] Cm™*™_ Then

A = QR. (Notice that in addition to (a), we actually have constructed an R for which, in
each nonzero row, the first nonzero element is positive.) O

Remarks.

(4) If A € R™*" everything can be done in real arithmetic, so, e.g., @ € R™*™ is orthog-
onal and R € R™*" is real, upper triangular.

(5) In practice, there are more efficient and better computationally behaved ways of calcu-
lating the @ and R factors. The idea is to create zeros below the diagonal (successively
in columns 1,2 ...) as in Gaussian Elimination, except we now use Householder trans-
formations (which are unitary) instead of the unit lower triangular matrices L;. Details
will be described in an upcoming problem set.
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Using QR Factorization to Solve Least Squares Problems

Suppose A € C™*™ h € C™, and m > n. Assume A has full rank (rank (A) = n). To solve
the least squares problem min [|b — Az||> (which has a unique solution in this case). Let
A = QR be a QR factorization of A, with condensed form QR, and write @ = [QQ)] where

&)1

~ ~ ~H ~
=||Q¥b— Rx||*+||Q b||*>. Here R € C"*" is an invertible upper triangle

Q € C™*(=n)_ Then ||b— Az||? = ||b— QRz||> = ||Q#b— Rz|®> =

H

b
matrix, so = minimizes ||b — Az||? iff Rz = Q7b. This invertible upper triangular n x n

H l Qb — Rz
Q

system for x can be solved by back-substitution. Note that we only need @ and R to solve
for x.

The QR Algorithm

The QR algorithm is used to compute a specific Schur unitary triangularization of a matrix
A € C"", The algorithm is iterative: We generate a sequence A = Ay, Ay, As, ... of matrices
which are unitarily similar to A; the goal is to get the subdiagonal elements to converge to
zero, as then the eigenvalues will appear on the diagonal. If A is Hermitian, then so also are
Ay, As, . .., so if the subdiagonal elements — 0, also the superdiagonal elements — 0, and (in
the limit) we have diagonalized A. The QR algorithm is the most commonly used method
for computing all the eigenvalues (and eigenvectors if wanted) of a matrix. It behaves well
numerically since all the similarity transformations are unitary.

x e x
When used in practice, a matrix is first reduced to upper-Hessenberg form

x

0 z =

(hij = 0 for i > j+1) using unitary similarity transformations built from Householder reflec-
tions (or Givens rotations), quite analogous to computing a QR factorization. Here, however,
similarity transformations are being performed, so they require left and right multiplication
by the Householder transformations — leading to an inability to zero out the first subdiago-
nal (¢ = j+1) in the process. If A is Hermitian ad upper-Hessenberg, A is tridiagonal. This
initial reduction is to decrease the computational cost of the iterations in the QR algorithm.
It is successful because upper-Hessenberg form is preserved by the iterations: if Ay is upper
Hessenberg, so is Agi1-

There are many sophisticated variants of the QR algorithm (shifts to speed up conver-
gence, implicit shifts to allow computing a real quasi-upper triangular matrix similar to a
real matrix using only real arithmetic, etc.). We consider the basic algorithm over C.

The (Basic) QR Algorithm

Given A € C"*"  let Ag = A. For k=0,1,2,..., starting with Ay, do a QR factorization of
Ag. Ax = Qi Ry, and define Ap 1 = RipQy.
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Remark. Ry = Qi Ay, so Axr1 = QF AxQy, is unitarily similar to Ag. The algorithm uses
the @ of the QR factorization of A; to perform the next unitary similarity transformation.

Convergence of the QR Algorithm

We will show under mild hypotheses that all of the subdiagonal elements of Ay converge to
0 as k£ — co. See section 2.6 in H-J for examples where the QR algorithm does not converge.
See also sections 7.5, 7.6, 8.2 in Golub and Van Koen for more discussion.

Lemma. Let Q; (j = 1,2,...) be a sequence of unitary matrices in C**" and R; (j =
1,2,...) be a sequence of upper triangular matrices in C"*" with positive diagonal entries.
Suppose Q;R; — I as j — oc. Then Q; — I and R; — 1.

Proof Sketch. Let @);, be any subsequence of @);. Since the set of unitary matrices in
C™™ is compact, 4 a sub-subsequence ijl and a unitary Q) > ijl — Q. So Rjkl =
]I-il Qji, Rji, — QY -T=Q". So Q" is unitary, upper triangular, with nonnegative diagonal
elements, which implies easily that Q¥ = I. Thus every subsequence of ); has in turn
a sub-subsequence converging to I. By standard metric space theory, ¢); — I, and thus
RszfQjRj—)I-sz. d
Theorem. Suppose A € C*™*™ has eigenvalues i, ..., Ay with |A1| > |Xo| > -+ > |An] >
0. Choose X € C" 3 X71AX = A = diag(\i,...,\n), and suppose X' has an LU
decomposition. Generate the sequence Ay = A, Ay, Ag, ... using the QR algorithm. Then the
subdiagonal entries of A, — 0 as k — oo, and for 1 < j < n, the j* diagonal entry — ;.

Proof. Define ka = Qo1 ---Qr and E’k = Ry ---Ry. Then Ay, = c’ijAéjk
Claim: QkRk = A¥! [Proof: Clear for k = 0; Suppose Qk 1Rk 1 = A*. Then R, =

AIH-IQk = QFAQLQY = QFAQk_1, 50 Ry = RyRpy = QI AQy_ 1Ry = QFAF s

QkRk = A*1] Now, choose a QR factorization of X and an LU factorization of X'
X = QR, X! = LU (Q unitary, L unit lower triang., R and U upper triangular with nonzero
diagonal entries). Then A¥*! = X A1 X1 = QR AF! LU = QR(AFH LAGFD) Ak [
Let By = AFPPLA=®+) T and Fyy = RE, 1 R™'. Claim: Ej,, — 0 (and this Fyy; — 0)
as k — oo. [Proof: Let ¢;; denote the elements of L. Ej; is strictly lower triangular,

1
and for ¢ > j its ¢j element is (i—;)H li; — 0 as k — oo since |\ < |A\;].] Now AF =
QR(I + Epyq) N1 U, so A = Q(I + Fyy1)R A¥1 U. Choose a QR factorization of
I+ Fy,1 (which is invertible) I 4+ Fq = Q\k+1§k+1 where ﬁkﬂ has positive diagonal entries.
By the Lemma, Q1 — I and Ry — I. Since A¥! = (QQps1)(Rps1R A¥! U) and
ARt = QkRk, the essential uniqueness of QR factorizations of invertible matrices implies
3 a unitary dlagonal matrix D), for which QQk+1Dk = Qk andeRk+1 ANFLU = Ri. So
Qka = QQ/H—I — Q, and thus DHAk_HDk = DHQkHAQka — QHAQ as k — Q4
But QPAQ = Q*(QRA X)) QRR™' = RA R™! is upper triangular with diagonal entries
A, - .-, M\ in that order. Since Dy, is unitary and diagonal, the lower triangular part of RAR™?
A1
and of DyR A R"'D¥ are the same, namely . |, and ||Ag11 — DkR A R'DE| =

0 A
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|DF Ax11Dy — R A R7'| — 0. The Theorem follows. O

(Note that the proof shows that 3 a sequence { Dy} of unitary diagonal matrices for which
DI Ay.1Dy — R A R7!. So although the superdiagonal (i < j) elements of Az, may not
converge, the magnitude of each superdiagonal element converges.)

As a partial explanation for why the QR algorithm works, we show how the convergence of

A1

0
the first column of Ay to | . | follows from the power method. (See problem 6 on Prob. Set

0
5.) Suppose A € C"*" is diagonalizable and has a unique eigenvalue \; of maximum modules,
and suppose for simplicity that Ay > 0. Then if z € C"* has nonzero component in the
direction of the eigenvector corresponding to A; when expanded in terms of the eigenvectors
of A, it follows that the sequence A¥z/||A*z|| converges to a unit eigenvector corresponding
to A;. The condition in the Theorem above that X ! has an LU factorization implies that
the (1,1) entry of X' is nonzero, so when e; is expanded in terms of the eigenvectors
T1,..., %, (cols. of X), the z;i-coefficient is nonzero. So A**le; /||A**le;|| converges to axy
for some o € C with |a| = 1. Let (); denote the first column of Qj and (7;);; denote the
(1,1)-entry of Ek; then A¥*le; = @kﬁkel = (?k)nékel = (7%)11(qGk)1, s0 (k)1 — ax;. Since

A1

o~ o~ 0
A1 = QF AQy, the first column of Agy; —

0
Further insight into the relationship between the QR algorithm and the power method,

inverse power method, and subspace iteration, can be found in this delightful paper “Under-
standing the QR Algorithm” by D. S. Watkins (SIAM Review, vol. 24, 1982, pp. 427-440).



