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Finite Dimensional Spectral Theory

We begin with a brief review; see Chapter 1 of H-J for more details. Let V' be finite
dimensional and let L € £(V). Unless stated otherwise, F = C.

Definition. A € C is an eigenvalue of L if dv € V, v # 0,  Lv = Av. The vector v is
called an eigenvector associated with the eigenvalue .

Thus, if (A, v) is a eigenvalue-eigenvector pair for L, then span{v} is a one-dimensional
invariant subspace under L, and L acts on span{v} by scalar multiplication by A. Denote
by E) = N(A — L) the A-eigenspace of L. Every nonzero vectors in F) is an eigenvector of
L associated with the eigenvalue \. Define the geometric multiplicity of X to be dim F}, i.e.,
the maximum number of linearly independent eigenvectors associated with A. The spectrum
o(L) of L is the set of its eigenvalues, and the spectral radius of L is

p(L) =max{|\|: A € o(L)}.

Clearly A € o(L) & A — L is singular & det (Al — L) = 0 & pr(X) = 0, where p.(t) =
det (tI — L) is the characteristic polynomial of L; py is a monic polynomial of degree
n = dimV whose roots are exactly the eigenvalues of L. By the fundamental theorem
of algebra, pr has n roots counting multiplicity; we define the algebraic multiplicity of an
eigenvalue A of L to be its multiplicity as a root of pr.

Facts.
(1) The algebraic multiplicity of any eigenvalue is greater than its geometric multiplicity.

(2) Eigenvectors corresponding to different eigenvalues are linearly independent; i.e., if
v; € E\\{0} for 1 < i < k and X\; # A for ¢ # j, then {vy,..., v} is linearly

independent. Moreover, if {v,..., v} is a set of eigenvectors with the property that
for each A € o(L), the subset of {vy,...,vx} corresponding to A (if nonempty) is
linearly independent, then {vy,..., vy} is linearly independent.

Definition. L € L(V) is diagonalizable if there is a basis B = {v1,...,v,} of V consisting
of eigenvectors of L. This definition is clearly equivalent to the alternate definition: L is
diagonalizable if there is a basis B = {vy,...,v,} of V for which the matrix of L with respect
to B is diagonal (€ C**™)

Let A € o(L) and set

mg(A) = (the geometric multiplicity of A),
ma(A) = (the algebraic multiplicity of A).

By definition mg(A) < myu(A) for each A € (L) and 37,y ma(A) =n = dim V. There-
fore, 3 5eory Me(A) < n with equality iff mg(A) = my(A) for all A € o(L). By Fact 2,
> reo(r) Ma(A) is the maximum number of linearly independent eigenvectors of L. Thus L
is diagonalizable < (VA € o(L)) mg(A) = my(A) for all A € o(L). In particular, since
(VA € o(L)) mg(A) > 1, if L has n distinct eigenvalues, then L is diagonalizable.
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We say that a matrix A € C**" is diagonalizable iff A is similar to a diagonal matrix, i.e.,
there exists an invertible S € C™*" for which S~'AS = D is diagonal. Consider the linear
transformation L : C* — C" given by L : x — Ax; since matrices similar to A correspond
to the matrices of L with respect to different bases, clearly the matrix A is diagonalizable iff
L is diagonalizable. Since S is the change of basis matrix and ey, ...,e, are eigenvectors of
D, it follows that the columns of S are linearly independent eigenvectors of A. This is also
clear by computing the matrix equality AS = SD column by column.

We will restrict our attention to C* with the Euclidean inner product {-,-); here || - ||
will denote the norm induced by (-,-) (i.e., the £>-norm on C"), and we will denote by || 4|
the operator norm induced on C"*" (previously denoted |||A]||2). Virtually all the classes of
matrices we are about to define generalize to any Hilbert space V', but we must first know
that for y € V and A € B(V), 3A*y € V 5 (Az,y) = (z, A*y); we will prove this next
quarter. So far, we know that we can define the transpose operator A* € B(V*), so we need
to know that we can identify V* = V as we can do in finite dimensions. For now we restrict
to C".

One can think of many of our operations and sets of matrices in C**" as analogous to
corresponding objects in C. For example, the operation A — A% is thought of as analogous
to conjugation z — Z in C. The analogue of a real number is a Hermitian matrix.

Definition. A € C™*" is said to be Hermitian symmetric (or self-adjoint or just Hermitian)
if A= A" A€ C™" is said to be skew-Hermitian if A7 = —A.

Recall that we have already given a definition of what it means for a sesquilinear form to
be Hermitian symmetric. Recall also that there is a 1—1 correspondence between sesquilinear
forms and matrices A € C"*": A corresponds to the form (z,y)4 = (Az,y). It is easy to
check that A is Hermitian iff the sesquilinear form (-, -) 4 is Hermitian-symmetric.

Fact: A is Hermitian iff ¢A is skew-Hermitian (exercise).

The analogue of the imaginary numbers in C are the skew-Hermitian matrices. Also,
any A € C"*" can be written uniquely as A = B + iC' where B and C are Hermitian:
B =4(A+ A"), C = 5:(A— A"). Then A¥ = B —iC. Almost analogous to the Re and
Im part of a complex number, B is called the Hermitian part of A, and iC' (not C) is called
the skew-Hermitian part of A.

Proposition. A € C**" is Hermitian iff (Vz € C")(Az,z) € R.

Proof. If A is Hermitian, (Az,z) = $((Az,z) + (z, Az)) = Re(Az,z) € R. Conversely,
suppose (Vz € C")(Az,z) € R Write A = B + iC where B,C are Hermitian. Then
(Bz,z) € Ran (Cz,z) € R, so (Az,z) € R = (Cz,z) = 0. Since any sesquilinear form
{z,y} over C can be recovered from the associated quadratic form {z,z} by polarization:
{9} = e +y,2+y} —{o—y,z—y}+i{z + iy, 2 + iy} — i{e — iy, x — iy}], we con-
clude that (Cz,y) =0 Vz,y € C", and thus C =0, so A = B is Hermitian. O

The analogue of the nonnegative reals are the positive semi-definite matrices.

Definition. A € C"*" is called positive semi-definite (or nonnegative) if (V2 € C*){Ax,z) >
0. By the previous proposition, a positive semi-definite A € C**" is automatically Hermitian,
but one often says Hermitian positive semi-definite anyway.
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Caution: If A € R™™™ and (Vz € R") (Az,x) > 0, A need not be symmetric. For example,

if A= [ _11 1 ], then (Az,z) = (x,z) Vo € R".

If A € C*" then we can think of A# A as the analogue of |z|? for 2 € C. Observe that A% A
is positive semi-definite: (A7 Az, z) = (Az, Az) = ||Az||? > 0. In fact, [|[A? A|| = ||A||? since
Al = 14", A" Al < A" - [|All = [|A4]*

and
|ATA|l = sup [|A" Az|
llz||=1

= sup sup [(A"Az,y)|
lell=1 [lgll=1

> sup (A7 Az, z)
llz||=1

= sup [[Az® = [lA|*.

llzll=1

The analogue of complex numbers of modulus 1 are the unitary matrices.

Definition. A € C**" is unitary if A¥ A = I. Since injectivity is equivalent to surjectivity
for A € C*" it follows that A = H~! and AA” = I (each of these is equivalent to
ARA=1T).

Proposition. For A € C"*", the following conditions are all equivalent:

1) A is unitary.

2) The columns of A form an orthonormal basis of C".

(1)

(2)

(3) The rows of A form an orthonormal basis of C".

(4) A preserves the Euclidean norm: (Va € C*) ||Az|| = ||z
()

5) A preserves the Euclidean inner product: (Vz,y € C") (Az, Ay) = (x,y).

Proof Sketch. Let a,...,a, be the columns of A. Clearly A¥A =1 & affa; = 6;;. So (1)
< (2). Similarly (1) & AA” =1 & (3). Since ||Az||*> = (Az, Az) = (A¥ Az, z) and AH A is
Hermitian, (4) < ((A¥A—I)z,2) =0Vz € C" & A¥A =1 & (1). Finally, clearly (5) =
(4), and (4) = (5) by polarization. O

Normal matrices don’t really have an analogue in C.

Definition. A € C"*" is normal if AA"T = AH A,

Proposition. For A € C"*", the following conditions are equivalent:

(1) A is normal.



Finite Dimensional Spectral Theory 51

(2) The Hermitian and skew-Hermitian parts of A commute, i.e., if A = B+iC with B,C
Hermitian, BC' = C'B.

(3) (V& e C) [|Az|| = [|A%z]].

Proof Sketch. Clearly (1) < (2) (exercise). Since ||Az||> = (A" Az,z) and ||A"z|*> =
(AAH g x), and since A” A and AA¥ are Hermitian,

3) & (VzelC) ((ATA-AATz,z)=0 < (1).

g

Observe that Hermitian, skew-Hermitian, and unitary matrices are all normed.

The above definitions can all be specialized to the real case. Real Hermitian matrices
are (real) symmetric matrices: AT = A. Every A € R"™ " can be written uniquely as
A = B+ C where B = B” is symmetric and C = —C" is skew-symmetric: B = $(A + A7)
is called the symmetric part of A; C = %(A — AT) is the skew-symmetric part. Real unitary
matrices are called orthogonal matrices, characterized by ATA = I or AT = A~!. Since
(VA € R™™)(Vz € R")(Az,z) € R, there is no characterization of symmetric matrices
analogous to that given above for Hermitian matrices. Also unlike the complex case, the
values of the quadratic form (Az,z) for x € R" only determine the symmetric part of A,
not A itself (the real polarization identity {z,y} = 1({z + y,z + y} — {z — y,z — y})
is valid only for symmetric bilinear forms {z,y} over R"). Consequently, the definition
of real positive semi-definite matrices includes symmetry in the definition, together with
(Vz € R*) (Az,z) > 0. (This is standard, but not universal. In some mathematical settings,
symmetry is not assumed automatically. This is particularly the case in monotone operator
theory and optimization theory where it is essential to the theory and the applications that
positive definite matrices and operators are not assumed to be symmetric.)

The analogy with the complex numbers is particularly clear when considering the eigen-
values of matrices in various classes. For example, consider the characteristic polynomial
of a matrix A € C™", P4(t). Since P4(t) = Psu(f), we have A € o(A) & X € o(AH).
If A is Hermitian, then all eigenvalues of A are real: if z is an eigenvector associated with
A, then \(z,7) = (Az,7) = (z,Az) = Mx,z), so A = \. Also eigenvectors correspond-
ing to different eigenvalues are orthogonal: if Az = Az and Ay = py, then \(z,y) =
(Az,y) = (z,Ay) = p(z,y), so (x,y) = 0if A # u. Any eigenvalue A of a unitary ma-
trix satisfies |A\| = 1 since |A| - ||z|| = ||Az|| = ||z||. Again, eigenvectors corresponding to
different eigenvalues of a unitary matrix are orthogonal: if Az = Ax and Ay = uy, then
Mz, y) = (Az,y) = (z, A7) = (z,p7"y) = 7 (z,y) = u(z,y).

Matrices which are both Hermitian and unitary, i.e., A = A” = A~! satisfy A2 = I. The
linear transformations determined by such matrices can be thought of as generalizations of
reflections: one exampleis A = —1I, corresponding to reflections about the origin Householder
transformations are of the form I — —~yy™ where y € C*\{0}: they correspond to reflection

(v,y)
about the hyperplane orthogonal to y, as « +— = — QEZé’gy, gzgy is the orthogonal projection

(z.y)
(vy)

onto span{y}; z — y is the projection onto {y}*.
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Unitary Equivalence

Similar matrices represent the same linear transformation. There is a special case of similarity
which is of particular importance.

Definition. We say that A, B € C"*" are unitarily equivalent (or unitarily similar) if there
is a unitary matrix U € C"*" 5 B = UY AU, i.e., A and B are similar via a unitary similarity
transformation (recall: U¥ = U™).

Unitary equivalence is important for several reasons. One is that the Hermitian transpose
of a matrix is much easier to compute than an inverse, so unitary similarity is computationally

advantageous. Another is that, with respect to the operator norm || - || on C**" induced by
the Euclidean norm on C", a unitary matrix U is perfectly conditioned: (Vz € C*) |Uz|| =
lzll = Uz implies U]l = [UH]| = 1, so s(U) = |U| - U] = U] - |[U*]| = L;

moreover, unitary similarity preserves the condition number of a matrix relative to || - ||
k(URAU) = [URAU| - [UXA7U|| < k(A) and likewise k(A) < x(UZAU). (In general,
for any submultiplicative norm on C**", we obtain the often crude estimate x(S™1AS) =
|ISTLAS] - [|STEATLS| < ISTHPIAN - 1A - [|S]1? = &(S)?k(A), indicating that similarity
transformations can drastically change the condition number of A if the transition matrix S
is poorly conditioned; note also that k(A) < k(S)?k(S™tAS).) Another basic reason is that
unitary similarity preserves the Euclidean operator norm || - || and the Frobenius norm || - ||¢
of a matrix.

Proposition. Let U € C™*" be unitary, and A € C™*", B € C***. Then

(1) In the operator norms induced by the Euclidean norms, ||AU|| = ||A|| and ||[UB|| =
Bl

(2) In the Frobenius norms, ||AU||r = ||A||r and ||UB||r = ||B||F-

So multiplication by a unitary matrix on either side preserves | - || and || - ||p-

Proof Sketch. (1) (Vz € C*¥) ||{UBz|| = ||Bz||, so |[UB|| = ||B||. Likewise, since U is also
unitary, [[AU|| = ||(AU)®|| = [[U¥ A®|| = ||A"]|| = ||A||- (2) Let by, ..., by be the columns of
B. Then ||UB||% = 25:1 |Ub; |13 = Z?:l 16,15 = ||B||%. Likewise, since U¥ is also unitary,
|AU|r = IU* A"][p = || A"]|p = || Al| - O

Observe that ||U||r = v/n.

Schur Unitary Triangularization Theorem

Any matrix A € C™*" is unitarily equivalent to an upper triangular matrix 7. If A{,..., A,
are the eigenvalues of A in any prescribed order, then one can choose a unitary similarity
transformation so that the diagonal entries of T" are Aq,..., A, in that order.

Proof Sketch (see also pp. 79-80 of H-J). By induction on n. Obvious for n = 1. Assume
true for n — 1. Given A € C"*" and an ordering \;,...,\, of its eigenvalues, choose an
eigenvector x for \; with Euclidean norm ||z|| = 1. Extend {z} to a basis of C* and
apply the Gram-Schmidt procedure to obtain an orthonormal basis {z,us,...,u,} of C".
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Let Uy = [zug - - -u,| € C™™™ be the unitary matrix whose columns are z,us,. .., u,. Since
H
Ar = Mz, UEAU, = [/Bl yé ] for some y; € C* 1, B € C»Ux(1)  Since similar

matrices have the same characteristic polynomial,

pa(t) = det (tI— [Aol ny D
= (t— Ay)det (tI — B)

(t - /\l)pB (t)a

so the eigenvalues of B are Ag,...,A,. By the induction hypothesis, 3 a unitary U €
C=1x("=1) and upper triangular T € C*~Vx("=1) 5 UHBU = T and the diagonal entries

~ 10
on T are Ag,..., A, in that order. Let U, = [ NG } € C™*". Then U, is unitary, and
HT7 HT7
Uy U AULU, = A ~ybl[ Ul M ullzr
0 U"BU 0o T
Since U = U, U, is unitary and U2 AU = T, the statement is true for n as well. O

Note: The basic iterative step that reduces the dimension by 1 is called a deflation. The
deflation trick is used to derive a number of important matrix factorizations.

Fact. Unitary equivalence preserves the classes of Hermitian, skew-Hermitian, and normal
matrices: e.g., if A7 = A, then (UFAU)! = URARU = UHAU is also Hermitian; if
ARA = AAE then (UFAUYE(URAU) = UR AR AU = UHAARU = (UHAU)(UR AU)E is
normal.

Spectral Theorem. Let A € C**™ be normal. Then A is unitarily diagonalizable, i.e., A
1s unitarily similar to a diagonal matriz; so there is an orthonormal basis of eigenvectors.

Proof Sketch. By Schur Triangularization Theorem, 3 unitary U > U¥ AU = T is upper
triangular. Since A is normal = T is normal: THT = TTH. By equating the diagonal
entries of THT and TTH, we show T is diagonal. The (1,1) entry of THT is |t;;|?; that of
TT" is Y77, [t1* Since [tn|* = D77, [t1;?, it must be the case that so t1; = 0 for j > 2.
Now the (2,2) entry of T#T is |ty|*; that of TT" is 377, [t5;|*; so again it must be the case
that ¢5; = 0 for j > 3. Continuing with the remaining rows yields the result. O

Cayley-Hamilton Theorem

The Schur Triangularization Theorem gives a quick proof of:
Theorem. (Cayley-Hamilton) Every matriz A € C™*™ satisfies its characteristic polyno-
mial: pa(A) = 0.

Proof. By Schur, 3 unitary U € C*™ " and upper triangular T € C*" > U¥AU =T,
where the diagonal entries of T are the eigenvalues Ay,..., A, of A (in some order). Since
A=UTU", A = UT*U¥ | so ps(A) = Upa(T)UH. Writing pa(t) as

pa(t) = (t = M) = Ag) -+~ (t = An)
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gives
pa(T) = (T — MI)(T — XoI)--- (T — N\ I).

Since T'— A, is upper triangular with its jj entry being zero, it follows easily that p4(7) = 0
(accumulate the product from the left, in which case one shows by induction on & that the
first & columns of (T — MI)--- (T — A1) are zero). O

Rayleigh Quotients and the Courant-Fischer Minimax Theorem

For A € C**" and x € C"\{0}, define the Rayleigh quotient of x (for A) to be

Az

xHy

ra(zr) =

(This is not a standard notation; often p(x) is used, but we avoid this notation to prevent
possible confusion with the spectral radius p(A).) Rayleigh quotients are most useful for
Hermitian matrices A € C"*",

Proposition. Let A € C"*" be Hermitian with eigenvalues \; < --- < \,,.

(1) For z € C* with Euclidean norm ||z|| = 1, ra(z) = 2 Az.

(2) For z € C*\{0} and a € C\{0}, ra(azx) = ra(x). In particular, r4(z) = ra (chv_H>’ SO
{ra(@) : 2 € C'\{0}} = {ra(z) : [l = 1}.

(3) Let {u,...,u,} be an orthonormal basis of C" consisting of eigenvectors of A corre-
sponding to Ay, ..., Ap; let U = [uq - - -u,| € C™™ so U is unitary and

URAU = A = diag (A1, .-+, An)-

Given z € C"\{0}, let y = Uz, so x = Uy = yyuy + - - - + YnUy,. Then

rae ZA( il )

z 1 | Z|2
(4) For z # 0, Ay < ra(x) < Ay Moreover, ming4ora(z) = Ay and max,o74(z) = Ap.
(5) In the context of (3), given x € C*\{0} and setting y = Uz,

AP~ |yz
P - 2N\ )

z 1|yz

(6) The Euclidean operator norm of A satisfies ||A|| = p(A), the spectral radius of A.

Caution. (6) is not necessarily true VA € C**™.

Ezercise. Show that ||A|| = p(A) where the norm is the Euclidean operator norm if A is
normal.



Finite Dimensional Spectral Theory 95

Proof Sketch. (1) and (2) follow immediately from the definition. For (3),

o Az y Ay
= (y"U" AUy)/(y"U"Uy) = i,

2Hr Y =7a(Y)-

ra(z) =

For (4), clearly Ay < 75(y) < A,; if 2 = uj, then 74(z) = A, so A; and A, are taken on. For
(5), since A = A,

HAZ
JAelP/llal? = - = rae(2) = ras(y Zv il
T

z 1 ‘y2|2

For (6), clearly ra2(y) < p(A4)?, so |A|| < p(A). Since 12l = |\, || Al > p(A). Thus

(|

I|A|| = p(A). (Note here that p(A) = max{|\i|, | \nl}.) O
Corollary. If A € C™*" then ||A|| = v/p(AH# A) (in the operator norm induced by Euclidean
norms).

Proof. For xz # 0, ||Az||?/||z]|? = (z7 AZ Az)/zz = TAHA( ). Since AZ A is positive
semidefinite, its eigenvalues are nonnegative, so max,g HIIwIIH = max,o 741 4(7) = p(AT A).

U
There is a very useful extension of part (4) of the Proposition above.

Courant-Fischer Minimax Theorem. Let A € C"*" be Hermitian. In what follows, Sy
will denote an arbitrary subspace of C* of dimension k, and ming, and maxg, denote taking
the min or max over all subspaces of C* of dimension k.

(1) For1 <k <n, ming, Max,ozes, r4() = Ak (minimaz)
(2) For1<k<n, maxg, .., MiNgzozes, ., 74(T) = Ak (mazimin)
where Ay < Ay < --- < )\, are the eigenvalues of A.

Proof. Let uq,...,u, be orthonormal eigenvectors of A corresponding to A;,...,\,. Let
U= [u---u, € C*" so UPAU = A = diag()\,...,\n), and for z € C*, let y =
Uz, so x = Uy = yiug + -+ + yan. To prove (1), let W = span{uyg,...,u,}, so
dimW = n—k+ 1. If dimSy = k, then by dimension arguments 3z € S, N W\{0},
so ra(®) = Yop_p Nilyil?/ Do i |l > Ak. Thus V Sk, maxgsozes, 74(z) > Ag. But for
z € span{uy, ..., us \{0}, 7a(2) = S5, Milwil?/ o8, wi? < Mg Thus minmax = ). The
proof of (2) is similar. Let W = span{us,...,ux}, sodimW = k. If dim S, 1 =n—k+1,
then 3z € S,_x 1 NW\{0}, and r4(z) < A Thus V.S 1 mingozes, o, 7a(z) < A But
for S,_gy1 = span{ug, ..., u,}, the min is Ay, so max min = ). O

Remark. (1) for k =1 and (2) for £ = n give part (4) of the previous Proposition.
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Non-Unitary Similarity Transformations

Despite the advantages of unitary equivalence, there are limitations. Not every diagonalizable
matrix is unitarily diagonalizable. For example, consider an upper-triangular matrix 7" with
distinct eigenvalues Ay, ..., A\,. We know that 7" is diagonalizable. However, 7" is not unitarily
similar to a diagonal matrix unless it is already diagonal. This is because unitary equivalence
preserves the Frobenius norm: ||T|% = Y70, [Mif* + 37, [ti;]°, but any diagonal matrix
similar to 7" has Frobenius norm Y, | |A;/?. In order to diagonalize T it is necessary to use
non-unitary similar transformations.

Proposition. Let A € C"", and let \{,..., \; be the distinct eigenvalues of A, with
multiplicities my, . .., my, respectively (so mj; + -+ 4 my = n). Then A is similar to a block
diagonal matrix of the form
T1 0
T

O .Tk

where each T; € C™i*™ ig upper triangular with \; as each of its diagonal entries.

Proof. By Schur, A is similar to an upper triangular 7" with diagonal entries ordered
mi ma mg

3\1,...,)\;,5\2, ) ..,)\;,--- ,s\k,...,)\;. We use a strategy as in Gaussian Elimination (but
must be sure to do similarity transformations). Consider the matrices E,; € C**™ having
1 is the (r, s)-entry and 0 elsewhere. Left multiplication of T' by E,; moves the sth row of
T to the rth row and zeros out all other elements, that is, the elements of the matrix E,,T
are all zero except for those in the rth row which is just the sth row of 7. Therefore, left
multiplication of T by the matrix (I — aF,;) corresponds to subtracting « times the sth
row of T" from the rth row of 7. This is just one of the elementary row opperation used in
Gaussian elimination. Note in particular that if » < s, then this operation introduces no
new non-zero entries below the main diagonal of T', that is, E,;T is still upper triangular (as
is (I — aFE,y)).

Similarly, right multiplication of 7" by E,s moves the rth column of 7" to the sth column
and zeros out all other entries in the matrix, that is, the elements of the matrix TE,; are all
zero except for those in the sth column which is just the rth column of T'. Therefore, right
multiplication of T by (I + aE,) corresponds to adding « times the rth column of 7" to the
sth column of T. In particular, if » < s, then this operation introduces no new non-zero
entries below the main diagonal of T, that is, T'E,; is still upper triangular.

Because of the properties described above, the matrices (I + aE,;) are sometimes refered
to as Gaussian elimination matrices. Note that E% = 0 whenever r # s, and so

(I —aE,)(I+aE,,)=1I—-aFE,,+aE,, —aF% = 1.

That is, (I + aE,s)~' = (I — aE,), which makes sense since the inverse of adding « times
the sth row to the rth row is to subtract it.
Now consider the similarity transformation

T — (I + aF,) 'T + aE,) = (I — aE,,)T(I + aF,,)
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with @ € C and r < s. Since T is upper triangular (as are I aE,, for r < s), it follows that
this similarity transformation only changes T in the s*! column above (and including) the
r'" row, and in the r*® row to the right of (and including) the s® column, and that ¢,, gets
replaced by t,5 + a(t,, — tss). So if t,,. # tss it is possible to choose « to make t,, = 0. Using
these observations, it is easy to see that such transformations can be performed successively
without destroying previously created zeroes to zero out all entries except these in the desired
block diagonal form (work backwards row by row starting with row n — my; in each row,

zero out entries from left to right). O

Jordan Form

Let T € C**™ be an upper triangular matrix in block diagonal form
1) 0

T = ..
0 T}

as in the previous Proposition, i.e., T; € C™*™i gatisfies T; = \;I + N; where N; € C™i*™i
is strictly upper triangular, and Ay, ..., A; are distinct. Then for 1 <4 < k, N, =0, so

N is nilpotent. Recall that any nilpotent operator is a direct sum of shift operators in an
appropriate basis, so the matrix NV; is similar to a direct sum of shift matrices

0 1 0
SZZ o E(CZXZ
0 0

of varying sizes £. Thus each 7; is similar to a direct sum of Jordan blocks

A1 0
Jo(A) =M+ S, = o1 et
0 0

of varying sizes £ (with A = \;).
Definition. A matrix J is in Jordan normal form if it is the direct sum of finitely many

Jordan blocks (with, of course, possibly different values of A and /).

The previous Proposition, together with our results on the structure of nilpotent operators
as discussed above, establishes the following Theorem.
Theorem. FEvery matriz A € C**" is similar to a matriz in Jordan normal form.

Remarks.

(1) The Jordan form of A is not quite unique since the blocks may be arbitrarily reordered
by a similarity transformation. As we will see, this is the only nonuniqueness: the
number of blocks of each size for each eigenvalue A is determined by A.
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For A € 0(A) and j > 1, let b;(\) denote the number of j x j blocks associated with
A in some Jordan matrix similar to A, and let 7(\) = max{j : b;(A) > 0} be the size
of the largest block associated with . Let k;(A) = dim(N (A — AI)?). Then from our
remarks on nilpotent operators,

0 <ki(A) <ko(A) <--- <kry(A) = krpy1(A) = - - =m(}),

where m(\) is the algebraic multiplicity of A. By considering the form of powers of
shift matrices, one can easily show that

bj(A) + b1 (A) + -+ + by (A) = K5(A) — ki (A),

i.e., the number of blocks of size > j associated with A is k;(A) —k;_1(A). (In particular,
for j = 1, the number of Jordan blocks associated with X is k1(\) = the geometric
multiplicity of A.) Thus,

bi(A) = —kjr1(A) + 2k;(A) — ki1 (N),

which is completely determined by A. Since k;(\) is invariant under similarity trans-
formations, we conclude:

Proposition. (a) The Jordan form of A is unique up to reordering of the Jordan blocks.
(b) Two matrices in Jordan form are similar iff they can be obtained from each other by
reordering the blocks.

Remarks.

(3)

(4)

(5)

Knowing the algebraic and geometric multiplicities of each eigenvalue of A is not suffi-
cient to determine the Jordan form (unless the algebraic multiplicity of each eigenvalue
is at most one greater than its geometric multiplicity.

Ezercise. Why is it determined in this case?

For example,

and N2 =

are not similar as N2 # 0 = N2, but both have 0 as the only eigenvalue with algebraic
multiplicity 4 and geometric multiplicity 2.

The expression for b;(A) in remark (2) above can also be given in terms of rj(\) =
rank ((A - /\I)]) = dlm(R(A — /\I)]) =n— k]()\) bj =Tj+1 — 27”]' + Tj—1-

A necessary and sufficient condition for two matrices in C**™ to be similar is that they
are both similar to the same Jordan normal form matrix.
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Spectral Decomposition

There is a useful invariant formulation (i.e., basis-free) of some of the above. Let L € L(V)
where dimV = n < oo (and F = C). Let Aq,..., A\ be the distinct eigenvalues of L,
with algebraic multiplicities my, ..., my. Define the generalized eigenspaces E, of L to be
E; = N(L—\I)™. The eigenspaces are E,, = N (L— \;I). Vectors in E;\ E) are sometimes
called generalized eigenvectors). Then

k
dimE; =m; (1<i<k) and V=EPE.
=1

This follows easily upon choosing a basis for V' in which L is represented as a block-diagonal
upper triangular matrix as above. Let P; (1 < i < k) be the projections associated with
this decomposition of V', and define D = Ele A P;. Then clearly by using the same basis
that represents L as a block-diagonal upper triangular matrix the matrix for D is diagonal.
Using this same basis, the matrix of N = L — D is strictly upper triangular, and thus N is
nilpotent (in fact N™ = 0 where m = maxm;); moreover, N = Zle N; where N; = P,NP;;
also LEi CNE, and LD = DL since D is a multiple of the identity on each of the L-invariant
subspaces E;, and thus also ND = DN. We have proved:

Theorem. Any L € L(V) can be written as L = D + N where D is diagonalizable, N is
nilpotent, and DN = ND. If P; is the projection onto the \;-generalized eigenspace and
N; = PNP, then D= Y% \;P; and N = Y_°_ N;. Moreover,

LP;=PFL=PFLP,=\NP+N; (1<i<k),

and

where 0;; =0 if i # j and 6;; =1 if i = j.
Note: D and N are uniquely determined by L, but we will not prove this here.

If V has an inner product (-, -), and L is normal, then we know that L is diagonalizable,
so N = 0. In this case we know that eigenvectors corresponding to different eigenvalues are
orthogonal, so the subspaces E; (= E), here) are mutually orthogonal in V. The associated
projections P; are orthogonal projections (as E)t =FE,® - ®E\_®E),,  ® -0E),).

Recall that any P € L(V) satisfying P? = P is a projection: one has V = R(P)® N (P),
and P is the projection of V onto R(P) along N(P). Recall also that P is called an
orthogonal projection if R(P) L N (P).

Proposition. A projection P is orthogonal iff it is self-adjoint (i.e., P is Hermitian: P* = P,
where P* is the adjoint of P with respect to the inner product (-,-)).

Proof. Let P € L(V) be a projection. If P* = P, then (Pz,y) = (z,Py) Vz,y € V.
Soy € N(P) iff (Vz € V) (Pz,y) = (z,Py) = 0 iff y € R(P)*, so P is an orthogonal
projection. Conversely, suppose R(P) L N (P). We must show that (Px,y) = (x, Py) for
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all z,y € V. Since V = R(P) & N (P), it suffices to check this separately in the four cases
x,y € R(P), N(P). Each of these cases is straightforward since Pv = v for v € R(P) and
Pv =0 for v € N(P). O

Jordan form depends discontinuously on A

Ignoring the rendering question, the Jordan form of A is discontinuous at every matrix
A except those with distinct eigenvalues. For example, when ¢ = 0, the Jordan form of

e 1. 01 . e 0 .
( 00 ) is < 00 ), but for € # 0, the Jordan form is ( 00 ) So small perturbations

in A can significantly change the Jordan form. For this reason, the Jordan form is almost
never used for numerical computation.

Jordan Form over R

The previous results do not hold for real matrices: for example, in general a real matrix is
not similar to a real upper-triangular matrix via a real similarity transformation; if it were,
then its eigenvalues would be the real diagonal entries, but a real matrix need not have only
real eigenvalues. However, nonreal eigenvalues are the only obstruction to carrying out our
previous arguments. Precisely, if A € R**" has real eigenvalues, then A is orthogonally
similar to a real upper triangular matrix, and A can be put into block diagonal an Jordan
form using real similarity transformations, by following the same arguments as before. If A
does have some nonreal eigenvalues, then there are substitute normal forms which can be
obtained via real similarity transformations.

Recall that nonreal eigenvalues of a real matrix A € R*™*" came in complex conjugate
pairs: if A\ = a +4b (with a,b € R, b # 0) is an eigenvalue of A, then since p(t) has real
coefficients, 0 = p4(A\) = pa()), so A = a —ib is also an eigenvalue. If u+iv (with u,v € R?)
is an eigenvector of A for \, then A(u—iv) = A(u + iv) = A(u+ ) = Mu + iv) = Au—1v),
s0 u— v is an eigenvector of A for A. It follows that v+ iv and u —4v (being eigenvectors for
different eigenvalues) are linearly independent over C, and thus u = (u+1v)+3(u—1v) and
v = 5:(u+ w) — 5:(u — ) are linearly independent over C, and consequently also over R.
Since A(u+1v) = (a+1b)(u +iv) = (au — bv) + i(bu + av), Au = au — bv and Av = bu + av.
Thus span{u, v} is a 2-dimensional real invariant subspace of R” for A, and the matrix of A

b ] (observe
a

restricted to the subspaces span{u, v} with respect to the basis {u, v} is { _ab

that this 2 x 2 matrix has eigenvalues \, \).

Over R, the best one can generally do is to have such 2 x 2 diagonal blocks instead of
upper triangular matrices with A\, A on the diagonal. For example, the real Jordan blocks for
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A, A are
[ | a b 10 i
T
Je(A, ) = [(1) 2] € R*%.
a b
o EX

The real Jordan form of A € R"*™ is a direct sum of such blocks, with the usual Jordan
blocks for the real eigenvalues. See H-J for details.



