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Norms

A norm is a way of measuring the length of a vector. Let V be a vector space. A norm on
V is a function || - || : V — [0, 00) satisfying

(i) VveV) || >0,and |jv||=0iff v =0
(ii)) VaeF)(VYv €V) |lav|| = |a| - ||v||, and
(iii) (triangle inequality) (Vv,w € V) ||v 4+ w]|| < ||v]| + ||w]]-
The pair (V, || - ||) is called a normed linear space (or normed vector space).
Fact. A norm || - || on a vector space V induces a metric d on V' by
dv,w) = ||lv — w]|.

FEzercise. Show d is a metric on V. All topological properties (e.g. open sets, closed sets,

convergence of sequences, continuity of functions, compactness, etc.) will refer to those of
the metric space (V,d).

Ezxamples.
(1) #2 norm on F" (1 < p < o)

(a) p=oc: |Z]| 0o = 112&); |zi|, € T

1
(b) 1<p<oo: |z, = (i, |=il?)?, z € F".
The triangle inequality

(Z|$i+yi\p) < (Z|$z|p> + (Z\yﬂp)
i=1 i=1 i=1

is known as “Minkowski’s inequality.” It is a consequence of Holder’s inequality.
Integral versions of these inequalities are proved in real analysis texts, e.g., Folland
or Royden. The proofs for vectors in " are analogous to the proofs for integrals

S

y =aP

{ (1<p<o0)

Related observation: for 1 < p < oo, the map x — 2P for x > 0 is convex.

(c) 0<p<1: >or, |xz|p)% is not a norm on F*. If x = e, and y = ey,

n % L n % n %
Nlrituylr ] =20 >2= (> |ml) + (D lul| |
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so the triangle inequality does not hold.

y=aP

i (0<p<1)

Related observation: for 0 < p < 1, the map x +— 2P for x > 0 is not convex.
(2) £? norm on f? (subspace of F*) (1 < p < o0)
(a) p=oc: 0 = {x € F*° : sup;s; |7;5] < 00}, ||7]|e0 = sup;sy |@4] for 2 € £,

b) £ <p<oo &= {zeF: (T [l < oo}, llall, = (T2, [al?)? for
x € (P. FEzxercise. Show that the triangle inequality follows from the finite-

dimensional case.
(3) L norm on C([a,b]) (1 <p<o0)

(a) p=o00:  |[[fllec = sUPacrcs [ f(2)]-
Since |f(z)| is a continuous, real-valued function on the compact set [a, b], it takes
on its maximum, so the “sup” is actually a “max” here:

[flloo = max [f(z)].

a<z<b

(b) 1<p<oo  |Iflp=(J 1f()Pds)".

Use continuity of f to show that ||f|l, = 0 = f(z) = 0 on [a,b]. The triangle
inequality

([ i +g|wa (/Lf|wﬂé+([w@wm);

is Minkowski’s inequality, a consequence of Holder’s inequality.
1

(c) 0<p<1: (f |f(z pdx)p is not a norm on C([a, b]).
“Pseudo-example”: Let a =0, b =1,

1 o0<z<] _J0 0<z<g
/(@) {0 s<z<1 andg(x)_{l ;s <z <L

Then
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so the triangle inequality fails. Here, f and g are not continuous. Fzercise. Adjust

these f and g to be continuous (e.g., fx ﬂ ) to construct a legitimate

counterexample to the triangle inequality.

Remark. There is also a Minkowski inequality for integrals: if 1 < p < oo and u € C([a, b] X

[c,d]), then l |
</ /cd“(x’y)dypdxy < [([ wtwvrac) an.

Continuous Linear Operators on Normed Linear Spaces

Theorem. Suppose (V,|| - ||,) and W, || - ||») are normed linear spaces, and L : V — W is
a linear transformation. Then the following are equivalent:

(a) L is continuous

(b) L is uniformly continuous

(c) (3C) so that Vv € V) ||Lv|lw < C||v|o-

Proof. (a) = (c): Suppose L is continuous. Then L is continuous at v = 0. Let € = 1. Then
36 > 0 so that if ||v||, < J, then ||Lv||, <1 (as L(0) = 0). For any v # 0, )

ol <4, s0
lllo “ ||, =

|2 (20) | < 1ies 120l < Hioll. Tet 0 =3,

(¢) = (b): Suppose (Vv € V) ||[Lv]|lw < C||v|ly- Then (Yvi,vy € V) ||[Lvy — Lvgllw =
| L(v1 — v2)||w < Cllv1 — 2|, Hence L is uniformly continuous (given ¢, let § = ¢, etc.). In

fact, L is uniformly Lipschitz continuous with Lipschitz constant C.
(b)=(a) is immediate.

Definition. If L : V' — W is a linear operator (where V and W are normed linear spaces),

and sup,cy.,2o % < 00, then L is called a bounded linear operator from V to W.

Remarks.

Lv||w
(9]

(1) Note that it is the norm ratio !
{l|ILv||o : v € V}.

(or “stretching factor”) that is bounded, not

FEzercise. Show that if (3 K) (Vv € V)||Lv||, < K, then L = 0.

(2) The theorem above says that if V' and W are normed linear spaces and L : V — W is
linear, then L is continuous < L is uniformly cont < L is a bounded linear operator.
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Definition. If V and W are normed linear spaces and L : V — W is a bounded linear
operator, define the operator norm of L to be

Lv
2 = sup 10
VEV,wH£D 19|

Remarks.

(1) There are other equivalent definitions of the operator norm ||L||:

Il = sup Loy
veVi|jvlls=1
Il = sup Loy
veVi|lvlls <1
IL] = min{C: (Vv e V) [[Lof, < Cllofl,}

(i.e. || L] is the smallest “stretching factor upper bound” C).

Exercise. Show these are equivalent to the definition above.

(2) The most common use of the operator norm is the obvious but powerful inequality:
(Vv e V) [|Loflw < [|L[] - [[v]]o-

Equivalence of Norms

Lemma. If (V|| - ||) is a normed linear space, then || - || : (V,]|| - ||) — R is continuous.
Proof. For vi,vs € V, ||v1|| = |1 — v + v2| < ||vr — va| + ||v2||, and thus [|v1|| — |Jve|| <
|01 — wel|. Similarly, [lvz]| = [[osl] < Jlvz — oall = flox = wall. So [[loa]] = [lvafl] < [l — w2,

Given € > 0, let 6 = ¢, etc.

Definition. Two norms ||-||; and ||-||2, both on the same vector space V, are called equivalent
norms on V' if 3 constants Cy, Cy > 0 for which (Vv € V) & lvll2 < ||v]ly < Cof|vlla.

Remarks.

(1) Two norms || - ||, and || - ||z on V are equivalent iff the identity map I : (V|| - ||o) —
(V.1 - |g) is bicontinuous (||v]|g < Ci||v|la = 1 : (V, ]| - |la) = (V. ]| - ||5) is continuous,
and ||v]|la < Co|v|lg=1:(V,|-llg) = (V. ]| - ||) is continuous.)

(2) Equivalence of norms (denoted temporarily by ~) is an equivalence relation on the
set of all norms on a fixed vector space V: (i) || - [|a ~ || - lla; Gi) || - |la ~ || - ||p iff
-1l ~ Il - llos and (ii1) if [ - fla ~ || - lls and [[ - [[5 ~ || - ||y, then [|- {la ~ [ - ||;-

For finite dimensional vector spaces V, all norms are equivalent.
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The Norm Equivalence Theorem

If V is a finite dimensional vector space, then any two norms on V are equivalent.

Proof. Fix a basis {vi,...,v,} for V, and identify V with " (v € V <> x € F* where
v = T1v1 + -+ - + Tpv,). Using this identification, we can restrict our attention to F*. Let

lz| = (O, \a:z-|2)% denote the euclidean norm [i.e., #* norm| on F*. Because equivalence
of norms is an equivalence relation, it suffices to show that any given norm || - || on F* is
equivalent to the euclidean norm |- |. For z € F*, ||z|| = ||>_, miei|| < Soiy |l - [ei]] <

I |a:i|2)% Oran ||ei||2)% by the Schwarz inequality in R*. Thus |[z|| < M|z|, where
M = (37, lle;l|*)2. Thus the identity map I : (F",|-|) — (F", | - ||) is continuous, which

is half of what we have to show. Composing the map with || - || : (F",]| - ||) = R (which is
continuous by the preceding Lemma), we conclude that || - || : (F*,|-|) — R is continuous.
Let S = {# € F" : |z| = 1}. Then S is compact in (F",| - |), and thus || - || takes on its

minimum on S, which must be > 0 since 0 ¢ S. Let m = ming,|=1} ||7|| > 0. Hence if
|z| =1, then ||z|| > m. For any x € F* with z # 0, ‘ﬁ‘ =1, so Hi‘

||

>m, ie. |z] < L.

So || - || and | - | are equivalent.

Remarks.

(1) All norms on a fixed finite dimensional vector space are equivalent. Be careful, though,
when studying problems (e.g. in numerical PDE) where there is a sequence of finite
dimensional spaces of increasing dimensions: the constants C; and C in the equivalence
can depend on the dimension (e.g. ||z|]2 < /7||%||x in F™).

(2) The Norm Equivalence Theorem is not true in infinite dimensional vector spaces.

(3) Tt can be shown that, for a normed linear space V', the closed unit ball {v € V' : ||v]| <
1} is compact iff dim V' < oo.

Ezxamples.

(1) On FP = {x € F° : (IN)(Vn > N) z, = 0}, for 1 < p < ¢ < oo, the ## norm
and ¢¢ norm are not equivalent. We show the case p = 1, ¢ = oo. First note that
[2lloe < 37370 @il = ll@lh, so I+ (5, | - [l1) = (F || - lloo) s continuous. But if
y1 = (1,0,0--+), yo = (1,1,0,---), y3 = (1,1,1,0,---), etc., then ||y,|lcc = 1V n, but
lynll1 = n. So there does not exist a constant C' for which (Vz € FP) ||z||1 < C||z]|co-

(2) On C([a,b]), for 1 < p < q < o0, the LP and L7 norms are not equivalent. We will
show the case p = 1, ¢ = oo here: |jul|; = fab lu(z)|dr < fab |ullsodz = (b — 1)||t]|0o,
so I:(C(la,b]),] - lc) = (C([a,b]),] - ||1) is continuous. (Remark: Since the integral
Z(u) = fabu(x)dx is clearly continuous on (C([a,b]),| - ||1) since |Z(uy) — Z(uz)| <
fab |uq (z) —ug(z)|dzx = ||ug —usl|1, composition of these two continuous operators implies

the standard result that if u,, — u uniformly on [a, b], then fab up(z)dz — flb u(z)dz.)
WLOG assume a =0, b = 1. Let u, be
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S|=
Siv
—

Then ||uy||; = 1, but ||uy|lc = m. So there does not exist a constant C' for which

(Vu e C([a, 8])) lJullo < Cllullr-

(3) In ¢2 (subspace of F*) with norm ||z||;2 = /D> 5, |z:|?, the closed unit ball {z € ¢*:
|z|lee < 1} is not compact. The sequence ey, eg, €3, .. is bounded ||e;|| < 1, and all
are in the closed unit ball, but no subsequence converges because ||e; — ;|| = v/2 for

i # 7.
FEzercise. Does the sequence e1, ey, €3, . .. converge weakly in £2? (A sequence {z,} is

said to converge weakly to x in ¢2 if (Vy € £?) (z,,y) — (z,y), where (-,-) is the inner
product (z,y) =Y oo x;y; on £.)

Norms induced by inner products

Let V be a vector space and (-,-) be an inner product on V. Define ||[v|| = y/(v,v). By
the properties of an inner product, ||v|| > 0 with ||v|]| = 0iff v = 0, and (Va € F)(Vv €
V) |lav|| = |a| - ||v||. To show that || - || is actually a norm on V we need the triangle
inequality. We begin by first showing the Cauchy-Schwarz inequality.

Lemma.[The Cauchy-Schwarz inequality| For all v,w € V we have |(v, w)| < ||v||- ||w]|-
Moreover, we have equality iff v and w are linearly dependent. (This latter statement is
sometimes called the “converse of Cauchy-Schwarz.”)

Proof.
Case (i) If v = 0 or w = 0, clear.

Case (ii) If [|v]| = ||w|| = 1 and (v, w)
2Re(v,w) + (w,w) = 2(1 — (v

> 0, then 0 < [jv —w|?* = (v — w,v — w) = (v,v) —
,w)) so (v, w) <1 (with equality iff v = w).

Case (iii) For any v # 0 and w # 0, choose « € F with |a| = 1 and o (v, w) > 0. Let v; = o and

wi = - Then ||lv1]| = ||w1]] = 1 and {vy,w;) > 0, so Hléﬁ_’ﬁ’u)]l” = Iﬁrllﬁl = (v, w) <1

(with equality iff v; = wy).

Ezercise. In case (iii) of the above proof, show v, w are linearly dependent iff v; = w;.



Norms 31

Now the triangle inequality follows
lv+w|> = w+w,v+1)=(v,v)+2Re(v,w) + (w, w)
< ol + 2w, w)| + lwl® < [Jol* + 2]l - lwll + [[wll* = (vl + [[w]])*.
So ||v|| = 4/{(v,v) is a norm on V. It is called the norm induced by the inner product (-, ).
An inner product induces a norm, which induces a metric (V,{-,-)) < (V,|| - ||) +> (V. d).

Ezxamples.

(1) The Euclidean norm [i.e. ¢? norm] on F" is induced by the standard inner product
(my) = ¥ ||zlle = 2o, i = /224 il
(2) Let A € F**" by Hermitian symmetric and positive definite, and let

n

n
(T, y)a = Zinaijy_j for z,y € F".

i=1 j=1

Then (-, -)4 is an inner product on F*, which induces the norm

zl|a = V{z,2)a = ZZ.TZGUCC_J = VT Az = Vol Az,

i=1 j=1

Remark. An alternate convention is to define (z, y)4 to be >, Z?Zl viaiz; = y? Az,

in which case ||z||4 = V2 Ax.
(3) The ¢2 norm on ¢* (subspace of F*) is induced by the inner product (z,y) = > oo x;7; :

lllz = /2220 @i = /222 |l

(4) The L? norm |ju|ly = (f:\u(a:)|2dx)§ on C([a,b]) is induced by the inner product
(u,v) = f: u(z)v(r)dz.

Closed unit balls {v € V : ||v]| < 1} in finite dimensional normed
linear spaces V

Ezample. For f? norms in R? (1 < p < o)

N
N7

Definition. A subset C of a vector space V is called conver if

(Vv,we C)(Vtel0,1]) tv+(1—tueC.
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Remarks.

(1) This means that the line segment joining v and w is in C' if v and w are in C":

v—w
\ ot =1
/’U
t=0-—p; = 2 (midpoint)

w + t(v — w) is on this line segment.

(2) The linear combination tv + (1 — t)w for ¢ € [0, 1] is often called a convezr combination
of v and w.

Let B = {v € V : ||lv|]] < 1} denote the closed unit ball in a finite dimensional normed
linear space.

Facts.

1) B is convex.

2) B is compact.

(1)
(2)
(3) B is symmetric (if v € B and o € F with |a| =1, then aw € B).
(4) The origin is in the interior of B.

Lemma. If dimV < oo and B C V satisfies the four conditions in the statement of facts
above, then there is a unique norm on V for which B is the closed unit ball:

|| = inf{c > 0: 2 € BY.
C

Remark. The condition that 0 be in the interior of a set is independent of the norm: by the
norm equivalence theorem, all norms induce the same topology on V', i.e. have the same
collection of open sets.

Exercise. Show that the object defined in the lemma above does indeed define a norm,
and that B is its closed unit ball. The uniqueness of this norm follows from the fact that
in any normed linear space, |[v|| = inf{c > 0 : ¥ € B} where B is the closed unit ball
B = {v : ||v|| £ 1}. Hence there is a one-to-one correspondence between norms on a finite
dimensional vector space and subsets B satisfying the four conditions stated above.
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Completeness

Completeness in a normed linear space (V, ||-||) means completeness in the metric space (V, d),
where d(v,w) = ||[v — w||: every Cauchy sequence {v,} in V (i.e. (Ve > 0)(IN)(Vn,m >
N) ||vn — vm]|| < €) has a limit in V' (i.e. (3v € V)||lv, —v|| = 0 as n — o0).

Ezample. F* endowed with the euclidean norm ||z|ls = /Y ., |z;|? is complete.
Topological properties are those which depend only on the collection of open sets (e.g.,

open, closed, compact, whether a sequence converges, etc.). Completeness is not a topological

property.

Ezample. Let f :[1,00) = (0,1] be given by f(z) = 1 (with the usual metric on R). Then

f is a homeomorphism (bijective, bicontinuous), but [1,00) is complete while (0,1] is not

complete.

Completeness is a uniform property.

Theorem. If (X,p) and (Y,0) are metric spaces, and ¢(X,p) — (Y,0) is a uniform
homeomorphism (i.e., bijective, bicontinuous and ¢ and = are both uniformly continuous),
then (X, p) is complete iff (Y, o) is complete.

The key step in the proof of this theorem is to show that if ¢ : X — Y is a uniform
homeomorphism, then ¢ preserves Cauchy sequences, i.e. a sequence {z,} is Cauchy in
(X, p) iff {©(X,)} is Cauchy in (Y,0). Since bounded linear operators between normed
linear spaces are automatically uniformly continuous, several facts follow immediately.

Corollary. If two norms || - ||; and || - ||2 on a vector space V' are equivalent, then (V|| - [|1)

is complete iff (V|| - ||2) is complete.

Corollary. Every finite dimensional normed linear space is complete.

Proof. If dimV = n < oo, choose a basis of V' and use it to identify V with F". Since F” is

complete in the euclidean norm, the corollary follows from the norm equivalence theorem.
But not every infinite dimensional normed linear space is complete.

Definition. A complete normed linear space is called a Banach space. An inner product
space for which the induced norm is complete is called a Hilbert space.

Ezramples. To show that a normed linear space is complete, we must show that every Cauchy
sequence converges in that space. The basic strategy for showing that a space is complete is
a three step process that can be described as follows: given a Cauchy sequence,

(i) construct what you think is its limit;
(ii) show the limit is in the space V/;
(iii) show the sequence converges to the limit in V.
(1) Let M be a metric space. Let C(M) denote the vector space of continuous functions
u: M — F. Let Cy(M) denote the subspace of C(M) consisting of all bounded

continuous functions Cy(M) = {u € C(M) : AK)(Vz € M)|u(z)| < K}. On Cy(M),
define the sup-norm ||u|| = sup,¢,, |u(z)|.
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Fact. (CoM), || -||) is complete.

Proof. Let {u,} C Cy(M) be Cauchy in || - ||. Given € > 0, IN so that (Vn,m >
N) ||t — upm|| < €. For each x € M, |u,(z) — tup(x)| < ||tn — ty|, so for each x € M,
{un(x)} is a Cauchy sequence in F, which has a limit in F (which we will call u(x))
since F is complete: u(z) = lim, o un(z). Given € > 0, (AN)(Vn,m > N)(Vz €
M) |un(z) — up(z)| < e. Taking the limit (for each fixed z) as m — oo, we get
(Vn > N)Vz € M) |up(z) — u(x)| < e. Thus u,, — u uniformly, so v is continuous
(since the uniform limit of continuous functions is continuous). Clearly u is bounded
(choose N for e = 1; then (Vo € M) |u(z)| < ||lun]|| + 1), so u € Cy(M). And now we
have ||u, — ul| = 0 as n — oo, i.e., u, — u in (Co(M), || - ||)- O

£P is complete for 1 < p < .

p = oo. This is a special case of (1) where M =N ={1,2,3,...}.

1 <p<oo. Let {zx} be a Cauchy sequence in ¢*; write zy = (xg,,Tg,,...). Given
€e>0, 3K)(Vk,£> K) ||k — ||, < €. For each m € N,

o ;
24, = 6] < (Z 1, - w) = flax el

=1

so for each m € N, {z, }32, is a Cauchy sequence in F, which has a limit: let z,, =

limy oo 7k, Let z be the sequence z = (z1,%9,23,...); so far, we just know that

x € F°. Given € > 0, (3K)(Vk,£ > K) ||lzx — x¢|]| < €. Then for any N and for
1

1

kt>K, (Zsz1 | Tk, — :1:&.\7’) P < €; taking the limit as ¢ — oo, (Zf\il |y, — l’i\p) g <

¢; then taking the limit as N — oo, (D207, @k, — :EZ-\”)% <'e. Thus g —x € P, so also
=2z — (rtx — ) € ¢P, and we have (Vk > K) ||z — z||, < €. Thus ||zx — z|[, = 0
as k — oo, i.e., x, — x in /P, O

If M is a compact metric space, then every continuous function v : M — T is
bounded, so C(M) = Cy(M). In particular, C(M) is complete in the sup norm
llu|| = supgen |u(z)| (special case of (1).) For example, C([a,b]) is complete in the
L* norm.

For 1 < p < oo, C([a, b]) is not complete in the L? norm.

"

Ezample. On [0,1], let u, be: I 1 1 Then u, € C[0,1].

S|=

1
2

FEzercise: Show that {u,} is Cauchy in || - ||, We must show that there does not exist
a u € C|0,1] for which |lu, — u|l, — 0.

Egercise: Show that if u € C[0,1] and ||u, — ul|, — 0, then u(z) = 0for 0 <z < 1
and u(x) = 1 for % < z < 1, contradicting the continuity of u at z = %
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(5) Fe ={z € F* : (IN)(Vn > N) z,, = 0} is not complete in any ¢’ norm (1 < p < c0).
This can be shown using the sequences described below.

1 <p<oo. Choose any z € (P\F3°, and consider the truncated sequences y; =
(21,0,...); y2 = (21, 2,0,...); y3 = (21, T2, 73,0, ...); etc.

FEzxercise: Show that {y,} is Cauchy in (F, || - ||,), but that there is no y € Fy° for
which |y, — yl|, = 0.

p = 00. Same idea: choose any z € (*°\Fg° for which lim;_,,, z; = 0, and consider the
sequence of truncated sequences.

Completion of a Metric Space

Fact. Let (X, p) be a metric space. Then there exists a complete metric space (X, p) and
an “inclusion map” i : X — X for which i is injective, 4 is an isometry from X to i[X] (i.e.
(Vz,y € X) p(z,y) = p(i(r),i(y))), and i[X] is dense in X. Moreover, all such (X, p) are
isometrically isomorphic. The metric space (X, p) is called the completion of (X, p).

One way to construct such an X is to take equivalence classes of Cauchy sequences in X
to be elements of X.
Representations of Completions

In some situations, the completion of a metric space can be identified with a larger vector
space which actually includes X, and whose elements are objects of a similar nature to
the elements of X. One example is R = completion of the rationals Q. The completion
of C([a,b]) in the L? norm (for 1 < p < 00) can be represented as L([a,b]), the vector

space of [equivalence classes of| Lebesgue measurable functions u : [a,b] — F for which
1

fab |u(z)|Pdx < oo, with norm ||ul|, = (fab |u(m)|pdx) .

Fact. A subset of a complete metric space is complete iff it is closed.

Proposition. Let V be a Banach space, and W C V be a subspace. The norm on V
restricts to a norm on W. We have:

W is complete iff W is closed.

Ezxamples.
(1) Co(R™) = {u € Cy(R™) : lim g 00 u(z) = 0}.
(2) Co(R*) ={u € Cp(R™) : (3K > 0) > (V with |z| > K)u(x) = 0}.

Remarks.
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(1) If M is a metric space and u : M — F is a function, define the support of u to be the
closure of {x € M : u(x) # 0}. The support of a function is automatically closed. The
complement of the support of a function is the interior of {x € M : u(z) = 0}.

(2) Element of C.(R") are continuous functions with compact support.

(3) Cy(R™) is complete in the sup norm (exercise). This can either be shown directly, or
by showing that Cy(R") is a closed subspace of C,(R™).

(4) C.(R™) is not complete. In fact, C.(R") is dense in Cy(R™). So Co(R™) is a represen-
tation of the completion of C.(R") in the sup norm.

Series in normed linear spaces

Let (V.| - ||) be a normed linear space. Consider a series Y, v, in V.

Definition. We say the series converges in V if 3v € V 3 limy_,o ||Sy — v|| = 0, where
Sy = 3N v, is the N partial sum. We say this series converges absolutely if 3., ||va|| <
0.

Caution: Strictly speaking, if a series “converges absolutely’ in a normed linear space, it
does not have to converge in that space.

Ezample. The series (1,0---) + (0,3,0---) + (0,0

'3 1,0---) “converges absolutely” in F,
but it doesn’t converge in [F°.

340

Proposition. A normed linear space (V|| - ||) is complete iff every absolutely convergent
series actually converges in (V|| - ||)-

Proof Sketch (=) Given an absolutely convergent series, show that the sequence of partial
sums is Cauchy: for m > n ||Sy, — Sull < D770, 1 [lvill-

(<) Given a Cauchy sequence {z,}, choose ni,ny < --- inductively so that for k& =
1,2,..., (Vn,m>ng) ||tn — || < 2°%. Then in particular ||z,, — 2,,,, || <2*. Show that
the series Zp, + > poy(Zn, — Tn,_,) is absolutely convergent. Let z be its limit. Show that
Ty — T.



