Completeness

\((V, \| \cdot \|)\) a normed linear space.

We say \((V, \| \cdot \|)\) is complete if every Cauchy sequence in \(V\) has a limit in \(V\).

\(\{v_n\} \subset V\) is Cauchy if

\[(\forall \epsilon > 0)(\exists N)(\forall n, m \geq N) \quad \|v_n - v_m\| < \epsilon.\]

\(\{v_n\} \subset V\) has limit \(v\) if \(\|v - v_n\| \to 0\).

For example, \(\mathbb{F}^n\) endowed with the Euclidean norm

\[\|x\|_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2}\]

is complete.

Topological properties are those that depend only on the collection of open sets (e.g., open, closed, compact, whether a sequence converges, etc.). Completeness is not a topological property.

Example:
Let \(f: [1, \infty) \to (0, 1]\) be given by \(f(x) = \frac{1}{x}\) (with the usual metric on \(\mathbb{R}\)). Then \(f\) is a homeomorphism (bijective, bicontinuous), but \([1, \infty)\) is complete while \((0, 1]\) is not complete.

Completeness is a uniform property.

Theorem. If \((X, \rho)\) and \((Y, \sigma)\) are metric spaces, and

\[\varphi: (X, \rho) \to (Y, \sigma)\]

is a uniform homeomorphism (i.e., bijective, bicontinuous and \(\varphi\) and \(\varphi^{-1}\) are both uniformly continuous), then \((X, \rho)\) is complete iff \((Y, \sigma)\) is complete.
Since bounded linear operators between normed linear spaces are automatically uniformly continuous, several facts follow immediately.

Corollary. If two norms $\| \cdot \|_1$ and $\| \cdot \|_2$ on a vector space V are equivalent, then $(V, \| \cdot \|_1)$ is complete iff $(V, \| \cdot \|_2)$ is complete.

Corollary. Every finite-dim normed linear space is complete.

But not every infinite-dim normed linear space is complete.

Definition. A complete normed linear space is called a *Banach space*. An inner product space for which the induced norm is complete is called a *Hilbert space*.

To show that a normed linear space is complete, we must show that every Cauchy sequence converges in that space.

The basic strategy for showing completeness is a three step process that can be described as follows:

Given a Cauchy sequence,

(i) construct what you think is its limit;

(ii) show the limit is in the space V;

(iii) show the sequence converges to the limit in V.
Examples

- \((C_b(M), \| \cdot \|)\)

\(M\) a metric space.
\(C(M)\) the vector space of continuous functions \(u : M \to \mathbb{F}\).
\(C_b(M)\) the subspace of \(C(M)\) of all bounded continuous functions
\[C_b(M) = \{ u \in C(M) : (\exists K)(\forall x \in M) \ |u(x)| \leq K \} .\]
On \(C_b(M)\), define the sup-norm
\[\|u\| = \sup_{x \in M} |u(x)|.\]

Fact \((C_b(M), \| \cdot \|)\) is complete.

Proof Let \(\{u_n\} \subset C_b(M)\) be Cauchy in \(\| \cdot \|\).
Given \(\varepsilon > 0\), \(\exists N\) so that
\[(\forall n, m \geq N) \ |u_n - u_m| < \varepsilon.\]
For each \(x \in M\), \(|u_n(x) - u_m(x)| \leq \|u_n - u_m\|\), so for each \(x \in M\),
\(\{u_n(x)\}\) is a Cauchy sequence in \(\mathbb{F}\), which has a limit in \(\mathbb{F}\) (which we
will call \(u(x)\)) since \(\mathbb{F}\) is complete:
\[u(x) = \lim_{n \to \infty} u_n(x).\]
Let \(\varepsilon > 0\), then
\[(\exists N)(\forall n, m \geq N)(\forall x \in M) \ |u_n(x) - u_m(x)| < \varepsilon.\]
Take the limit (for each fixed \(x\)) to get
\[(\forall n \geq N)(\forall x \in M) \ |u_n(x) - u(x)| \leq \varepsilon.\]
Thus \(u_n \to u\) uniformly, so \(u\) is continuous (since the uniform limit
of continuous functions is continuous). Clearly \(u\) is bounded, so
\(u \in C_b(M)\). And now we have \(\|u_n - u\| \to 0\) as \(n \to \infty\), i.e.,
\(u_n \to u\) in \((C_b(M), \| \cdot \|)\). \(\square\)
• \(\ell^p \) is complete for \(1 \leq p \leq \infty \).

\(p = \infty \). This is a special case of (1) where \(M = \mathbb{N} = \{1, 2, 3, \ldots \} \).

\(1 \leq p < \infty \). Let \(\{x_k\} \subset \ell^p \) be Cauchy.

Write \(x_k = (x_{k1}, x_{k2}, \ldots) \). Given \(\epsilon > 0 \),

\[
(\exists K)(\forall k, \ell \geq K) \quad \|x_k - x_\ell\|_p < \epsilon.
\]

For each \(m \in \mathbb{N} \),

\[
|x_{km} - x_{\ell m}| \leq \left(\sum_{i=1}^{\infty} |x_{ki} - x_{\ell i}|^p \right)^{1/p} = \|x_k - x_\ell\|,
\]

so for each \(m \in \mathbb{N} \), \(\{x_{km}\}_{k=1}^{\infty} \) is a Cauchy sequence in \(\mathbb{F} \), which has a limit: let \(x_m = \lim_{k \to \infty} x_{km} \).

Let \(x \) be the sequence \(x = (x_1, x_2, x_3, \ldots) \); so far, we just know that \(x \in \ell^\infty \). Given \(\epsilon > 0 \),

\[
(\exists K)(\forall k, \ell \geq K) \quad \|x_k - x_\ell\| < \epsilon.
\]

Then for any \(N \) and for \(k, \ell \geq K \),

\[
\left(\sum_{i=1}^{N} |x_{ki} - x_{\ell i}|^p \right)^{1/p} < \epsilon.
\]

Taking the limit in \(\ell \),

\[
\left(\sum_{i=1}^{N} |x_{ki} - x_i|^p \right)^{1/p} \leq \epsilon.
\]

Taking the limit in \(N \),

\[
\left(\sum_{i=1}^{\infty} |x_{ki} - x_i|^p \right)^{1/p} \leq \epsilon.
\]

Thus \(x_k - x \in \ell^p \), so also \(x = x_k - (x_k - x) \in \ell^p \), and we have

\[
(\forall k \geq K) \quad \|x_k - x\|_p \leq \epsilon.
\]

Thus \(\|x_k - x\|_p \to 0 \) as \(k \to \infty \), i.e., \(x_k \to x \) in \(\ell^p \). \(\square \)
\[F_0^\infty = \{ x \in F^\infty : (\exists N)(\forall n \geq N) \quad x_n = 0 \} \]

is not complete in any \(\ell^p \) norm \((1 \leq p \leq \infty) \).

\[1 \leq p < \infty. \]
Choose any \(x \in \ell^p \setminus F_0^\infty \), and consider the truncated sequences

\[y_1 = (x_1, 0, \ldots), \quad y_2 = (x_1, x_2, 0, \ldots), \quad y_3 = (x_1, x_2, x_3, 0, \ldots), \ldots \]

\(\{y_n\} \) is Cauchy in \((F_0^\infty, \| \cdot \|_p) \), but there is no \(y \in F_0^\infty \) for which \(\|y_n - y\|_p \to 0 \).

\[p = \infty. \]
Same idea: choose any \(x \in \ell^\infty \setminus F_0^\infty \) for which

\[\lim_{i \to \infty} x_i = 0, \]

and consider the sequence of truncated sequences.
Every Metric Space can be Completed

Fact. Let \((X, \rho)\) be a metric space. Then there exists a complete metric space \((\bar{X}, \bar{\rho})\) and an “inclusion map” \(i : X \to \bar{X}\) for which

\[
i \text{ is injective},
\]

\[
i \text{ is an isometry from } X \text{ to } i[X],
\[
(\forall x, y \in X) \rho(x, y) = \bar{\rho}(i(x), i(y)),
\]

and

\[
i[X] \text{ is dense in } \bar{X}.
\]

Moreover, all such \((\bar{X}, \bar{\rho})\) are isometrically isomorphic. The metric space \((\bar{X}, \bar{\rho})\) is called the *completion* of \((X, \rho)\).

One way to construct such an \(\bar{X}\) is to take equivalence classes of Cauchy sequences in \(X\) to be elements of \(\bar{X}\).
Representations of Completions

Sometimes the completion of a metric space can be identified with a larger vector space which actually includes X, and whose elements are objects of a similar nature to the elements of X. One example is $\mathbb{R} = \text{completion of the rationals } \mathbb{Q}$.

The completion of $C([a, b])$ in the L^p norm (for $1 \leq p < \infty$) is denoted by $L^p([a, b])$.

$L^p([a, b])$ is the vector space of equivalence classes of Lebesgue measurable functions $u : [a, b] \rightarrow \mathbb{F}$ for which $\int_a^b |u(x)|^p dx < \infty$, with norm

$$||u||_p = \left(\int_a^b |u(x)|^p dx \right)^{\frac{1}{p}}.$$

Fact. A subset of a complete metric space is complete iff it is closed.

Proposition. Let V be a Banach space, and $W \subset V$ be a subspace. The norm on V restricts to a norm on W. We have:

W is complete iff W is closed.
Examples of Complete Spaces as Closed Subspaces

Consider the spaces

\[C_0(\mathbb{R}^n) \quad \text{and} \quad C_c(\mathbb{R}^n). \]

\[C_0(\mathbb{R}^n) = \{ u \in C_b(\mathbb{R}^n) : \lim_{|x| \to \infty} u(x) = 0 \} \]

\[C_c(\mathbb{R}^n) = \{ u \in C^*_b(\mathbb{R}^n) : (\exists K > 0) \exists (\forall x \text{ with } |x| \geq K) u(x) = 0 \} \]

- Suppose \(M \) is a metric space and \(u : M \to \mathbb{F} \) is a function. The support of \(u \) is the closure of \(\{ x \in M : u(x) \neq 0 \} \). The complement of the support of a function is the interior of \(\{ x \in M : u(x) = 0 \} \).

- Elements of \(C_c(\mathbb{R}^n) \) are continuous functions with compact support.

- \(C_0(\mathbb{R}^n) \) is complete in the sup norm. This can either be shown directly, or by showing that \(C_0(\mathbb{R}^n) \) is a closed subspace of \(C^*_b(\mathbb{R}^n) \).

- \(C_c(\mathbb{R}^n) \) is not complete. In fact, \(C_c(\mathbb{R}^n) \) is dense in \(C_0(\mathbb{R}^n) \). So \(C_0(\mathbb{R}^n) \) is a representation of the completion of \(C_c(\mathbb{R}^n) \) in the sup norm.
Series in Normed Linear Spaces

Let \((V, \| \cdot \|)\) be a normed linear space. Consider a series \(\sum_{n=1}^{\infty} v_n\) in \(V\).

Definition. We say the series *converges in* \(V\) if
\[
\exists v \in V \text{ such that } \lim_{N \to \infty} \|S_N - v\| = 0,
\]
where \(S_N = \sum_{n=1}^{N} v_n\) is the \(N\)th partial sum. We say this series *converges absolutely* if
\[
\sum_{n=1}^{\infty} \|v_n\| < \infty.
\]

Caution: Strictly speaking, if a series “converges absolutely” in a normed linear space, it does not have to converge in that space.

For example, the series \((1, 0, \cdots) + (0, \frac{1}{2}, 0, \cdots) + (0, 0, \frac{1}{4}, 0, \cdots)\) “converges absolutely” in \(\mathbb{F}_0^\infty\), but it doesn’t converge in \(\mathbb{F}_0^\infty\).

Proposition. A normed linear space \((V, \| \cdot \|)\) is complete iff every absolutely convergent series converges in \((V, \| \cdot \|)\).

Proof Sketch

\((\Rightarrow)\) Given an absolutely convergent series, show that the sequence of partial sums is Cauchy: for
\[
m > n, \quad \|S_m - S_n\| \leq \sum_{j=n+1}^{m} \|v_j\|.
\]

\((\Leftarrow)\) Given a Cauchy sequence \(\{x_n\}\), choose \(n_1, n_2 < \cdots\) inductively so that for
\[
k = 1, 2, \ldots, \ (\forall n, m \geq n_k) \quad \|x_n - x_m\| \leq 2^{-k}.
\]
Then \(\|x_{n_k} - x_{n_{k+1}}\| \leq 2^{-k}\). The series \(x_{n_1} + \sum_{k=2}^{\infty} (x_{n_k} - x_{n_{k-1}})\) is absolutely convergent. Let \(x\) be its limit. Then \(x_n \to x\).
Norms on Operators

If V, W are vector spaces, then so is the space of linear transformations from V to W denoted

$$\mathcal{L}(V, W).$$

When $V = W$, $\mathcal{L}(V, V) = \mathcal{L}(V)$ is an algebra with composition as multiplication.

Norms on $\mathcal{L}(V)$ compatible with composition are particularly useful. A norm on $\mathcal{L}(V)$ is said to be \textit{submultiplicative} if

$$\|A \circ B\| \leq \|A\| \cdot \|B\| .$$

Not all matrix norms are submultiplicative.

For $A \in \mathbb{C}^{n \times n}$, define

$$\|A\| = \sup_{1 \leq i, j \leq n} |a_{ij}| .$$

Then, if

$$A = B = \begin{pmatrix} 1 & \cdots & 1 \\ & \vdots & \vdots \\ 1 & \cdots & 1 \end{pmatrix},$$

then $\|A\| = \|B\| = 1$, but $AB = A^2 = nA$ so $\|AB\| = n$.

But it can be shown that the norm

$$A \mapsto n \sup_{1 \leq i, j \leq n} |a_{ij}|$$

is submultiplicative.
Bounded Linear Operators

Let \((V, \| \cdot \|_v)\) and \((W, \| \cdot \|_w)\) be normed linear spaces.

An \(L \in \mathcal{L}(V, W)\) is called a \textit{bounded linear operator} if

\[
\sup_{\|v\|_v = 1} \|Lv\|_w < \infty.
\]

\(\mathcal{B}(V, W)\) is the set of all bounded linear operators from \(V\) to \(W\).

If \(W = \mathbb{F}\), we have \textit{bounded linear functionals}, and we set

\[
V^* = \mathcal{B}(V, \mathbb{F})
\]

If \(\dim V < \infty\), then \(\mathcal{L}(V, W) = \mathcal{B}(V, W)\), so also \(V^* = V'\).

Not all linear operators are bounded.
Let \(V = \mathcal{P}\) be the space of polynomials with norm

\[
\|p\| = \sup_{0 \leq x \leq 1} |p(x)|.
\]

Then \(\frac{d}{dx} : \mathcal{P} \rightarrow \mathcal{P}\) is not a bounded linear operator:

\[
\|x^n\| = 1 \quad \text{for all } n \geq 1 \quad \text{but} \quad \left\| \frac{d}{dx} x^n \right\| = \|nx^{n-1}\| = n
\]
Operator Norms

Definition. Let $L : V \rightarrow W$ be a bounded linear operator between normed linear spaces, i.e., $L \in \mathcal{B}(V, W)$. Define the operator norm of L to be

$$||L|| = \sup_{||v|| \leq 1} ||Lv||_w$$

$\mathcal{B}(V, W)$ is a normed linear space.

In the special case $W = \mathbb{F}$, the norm

$$||f|| = \sup_{||v|| \leq 1} |f(v)|$$

on V^* is called the **dual norm**.

Therefore,

$$|f(v)| \leq ||f|| ||v||, \quad \forall v \in V, \ f \in V^*.$$

If dim $V < \infty$, choose bases to identify V and V^* with \mathbb{F}^n. Thus every norm on \mathbb{F}^n has a dual norm on \mathbb{F}^n. We sometimes write \mathbb{F}^{n*} for \mathbb{F}^n when it is being identified with V^*.