Main Uniqueness Theorem

Before stating our main uniqueness result, we introduce a local form of Lipschitz continuity of the function \(f(t, x) \) in the \(x \) argument.

Definition. Let \(\mathcal{D} \) be an open set in \(\mathbb{R} \times \mathbb{F}^n \). We say that \(f(t, x) \) mapping \(\mathcal{D} \) into \(\mathbb{F}^n \) is *locally Lipschitz continuous with respect to \(x \) if*

\[
\forall (t_1, x_1) \in \mathcal{D}, \quad \exists \quad \alpha > 0, \quad r > 0 \quad \text{and} \quad L > 0
\]

for which

\[
[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)} \subset \mathcal{D}
\]

and

\[
(\forall t \in [t_1 - \alpha, t_1 + \alpha]) \quad (\forall x, y \in \overline{B_r(x_1)}) \quad |f(t, x) - f(t, y)| \leq L|x - y|,
\]

i.e., \(f \) is uniformly Lipschitz continuous with respect to \(x \) in

\[
[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)}.
\]

We say \(f \in (C, \text{Lip}_{\text{loc}}) \) (not a standard notation) on \(\mathcal{D} \) if \(f \) is continuous on \(\mathcal{D} \) and locally Lipschitz continuous wrt \(x \) on \(\mathcal{D} \).

Example. Let \(\mathcal{D} \) be an open set in \(\mathbb{R} \times \mathbb{F}^n \). Suppose \(f(t, x) \) maps \(\mathcal{D} \) into \(\mathbb{F}^n \), \(f \) is continuous on \(\mathcal{D} \), and

\[
\text{for} \quad 1 \leq i, j \leq n, \quad \frac{\partial f_i}{\partial x_j} \quad \text{exists and is continuous in} \quad \mathcal{D},
\]

i.e., \(f \) is continuous on \(\mathcal{D} \) and \(C^1 \) with respect to \(x \) on \(\mathcal{D} \). Then \(f \in (C, \text{Lip}_{\text{loc}}) \) on \(\mathcal{D} \).
Main Uniqueness Theorem

Let \mathcal{D} be an open set in $\mathbb{R} \times \mathbb{F}^n$, and suppose

(a) $f \in (C, \text{Lip}_{loc})$ on \mathcal{D},

(b) $(t_0, x_0) \in \mathcal{D},$

(c) $I \subset \mathbb{R}$ is an interval containing t_0
 (which may be open or closed at either end), and

(d) $x(t)$ and $y(t)$ are both solutions of the IVP

$$x' = f(t, x); \quad x(t_0) = x_0 \quad \text{in} \quad C^1(I)$$

which satisfy

$$(t, x(t)) \in \mathcal{D} \quad \text{and} \quad (t, y(t)) \in \mathcal{D} \quad \forall \ t \in I.$$

Then $x(t) \equiv y(t)$ on I.
Proof
We first show $x(t) \equiv y(t)$ on $\{ t \in I : t \geq t_0 \}$.
If not, let

$$t_1 = \inf \{ t \in I : t \geq t_0 \text{ and } x(t) \neq y(t) \}.$$

Then $x(t) = y(t)$ on $[t_0, t_1)$ so by continuity $x(t_1) = y(t_1)$
(if $t_1 = t_0$, this is obvious).
By continuity and the openness of \mathcal{D} (as $(t_1, x(t_1)) \in \mathcal{D}$),

$$\exists \quad \alpha > 0 \quad \text{and} \quad r > 0$$

such that

$$[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)} \subset \mathcal{D},$$

f is uniformly Lipschitz continuous with respect to x in

$$[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)},$$

and

$$x(t) \in \overline{B_r(x_1)} \quad \text{and} \quad y(t) \in \overline{B_r(x_1)} \quad \forall t \in I \cap [t_1 - \alpha, t_1 + \alpha].$$

By the previous theorem, $x(t) \equiv y(t)$ in $I \cap [t_1 - \alpha, t_1 + \alpha]$, contradicting the definition of t_1.
Hence

$$x(t) \equiv y(t) \quad \text{on} \quad \{ t \in I : t \geq t_0 \}.$$

Similarly,

$$x(t) \equiv y(t) \quad \text{on} \quad \{ t \in I : t \leq t_0 \}.$$

Hence $x(t) \equiv y(t)$ on I. \qed

Remark. t_0 is allowed to be the left or right endpoint of I.
Comparison Theorem for
Nonlinear Real Scalar Equations

Theorem. Let \(n = 1, \mathbb{F} = \mathbb{R} \), and suppose \(f(t, u) \) is continuous in \(t \) and Lipschitz continuous in \(u \).
Assume \(u(t), v(t) \) are \(C^1 \) for \(t \geq t_0 \) (on an interval \([t_0, b)\) or \([t_0, b]\)) and satisfy

\[
 u'(t) \leq f(t, u(t)), \quad v'(t) = f(t, v(t))
\]

and \(u(t_0) \leq v(t_0) \). Then

\[
 u(t) \leq v(t) \quad \text{for} \quad t \geq t_0.
\]

Proof. If to the contrary \(u(T) > v(T) \) for some \(T > t_0 \), then set

\[
 t_1 = \sup\{t : t_0 \leq t < T \quad \text{and} \quad u(t) \leq v(t)\}.
\]

Then

\[
 t_0 \leq t_1 < T, \quad u(t_1) = v(t_1), \quad \text{and} \quad u(t) > v(t) \quad \text{for} \quad t_1 < t \leq T
\]
(by continuity of \(u - v \)). For

\[
 t_1 \leq t \leq T, \quad |u(t) - v(t)| = u(t) - v(t),
\]
so we have

\[
 (u - v)' \leq f(t, u) - f(t, v) \leq L|u - v| = L(u - v).
\]

By Gronwall’s inequality applied to \(u - v \) on \([t_1, T]\), with

\[
 (u - v)(t_1) = 0, \quad a(t) \equiv L, \quad b(t) \equiv 0,
\]
\((u - v)(t) \leq 0 \) on \([t_1, T]\), a contradiction. \(\square \)
Remarks.

(1) As with the differential form of Gronwall’s inequality a solution of the differential inequality \(u' \leq f(t, u) \) is bounded above by the solution of the equality (i.e., the DE \(v' = f(t, v) \)).

(2) It can be shown under the same hypotheses that if \(u(t_0) < v(t_0) \), then \(u(t) < v(t) \) for \(t \geq t_0 \) (problem 4 on Prob. Set 1).

(3) Caution: It may happen that \(u'(t) > v'(t) \) for some \(t \geq t_0 \): \(u(t) \leq v(t) \not\Rightarrow u'(t) \leq v'(t) \).

Corollary. Let \(n = 1, \mathbb{F} = \mathbb{R} \). Suppose \(f(t, u) \leq g(t, u) \) are continuous in \(t \) and \(u \), and one of them is Lipschitz continuous in \(u \). Suppose also that \(u(t), v(t) \) are \(C^1 \) for \(t \geq t_0 \) (on \([t_0, b) \) or \([t_0, b] \)) and satisfy

\[u' = f(t, u), \quad v' = g(t, v), \quad \text{and} \quad u(t_0) \leq v(t_0). \]

Then

\[u(t) \leq v(t) \quad \text{for} \quad t \geq t_0. \]

Proof. Suppose first that \(g \) satisfies the Lipschitz condition. Then

\[u' = f(t, u) \leq g(t, u). \]

Now apply the theorem. If \(f \) satisfies the Lipschitz condition, apply the first part of this proof to

\[\tilde{u}(t) \equiv -v(t), \quad \tilde{v}(t) \equiv -u(t), \quad \tilde{f}(t, u) = -g(t, -u), \quad \tilde{g}(t, u) = -f(t, -u). \]

Remark. Again, if \(u(t_0) < v(t_0) \), then \(u(t) < v(t) \) for \(t \geq t_0 \).
Continuation of Solutions in Time

We consider two kinds of results

- *local continuation* (no Lipschitz condition on \(f \))
- *global continuation* (for locally Lipschitz \(f \))

Local Continuation (Continuation at a Point)

Assume \(x(t) \) is a solution of the DE \(x' = f(t, x) \) on an interval \(I \) and \(f \) is continuous on a subset \(S \subset \mathbb{R} \times \mathbb{F}^n \) containing \(\left\{ (t, x(t)) : t \in I \right\} \).

Note: no Lipschitz condition is assumed.

Case 1: *I is closed at the right end,*
i.e., \(I = (-\infty, b], [a, b], \text{ or } (a, b] \).
Assume further that \((b, x(b)) \) is in the interior of \(S \). Then the solution can be extended (by Cauchy-Peano) to an interval with right end \(b + \beta \) for some \(\beta > 0 \). This is done by solving the IVP

\[
x' = f(t, x) \quad \text{with initial value } x(b) \text{ at } t = b
\]
on an interval \([b, b + \beta] \). To show that the continuation is \(C^1 \) at \(t = b \), note that the extended \(x(t) \) satisfies the integral equation

\[
x(t) = x(b) + \int_{b}^{t} f(s, x(s)) \, ds
\]
on \(I \cup [b, b + \beta] \).
Case 2: I is open at the right end, i.e., $I = (-\infty, b)$, $[a, b)$, or (a, b) with $b < \infty$.

Assume further that $f(t, x(t))$ is **bounded** on $[t_0, b)$ for some $t_0 < b$ with $[t_0, b) \subseteq I$, say $|f(t, x(t))| \leq M$ on $[t_0, b)$.

In this case the integral equation

\[
(*) \quad x(t) = x(t_0) + \int_{t_0}^{t} f(s, x(s)) \, ds
\]

holds for $t \in I$. In particular, for $t_0 \leq \tau \leq t < b$,

\[
|x(t) - x(\tau)| = \left| \int_{\tau}^{t} f(s, x(s)) \, ds \right| \leq \int_{\tau}^{t} |f(s, x(s))| \, ds \leq M|t - \tau|.
\]

Thus, for any sequence $t_n \uparrow b$, \(\{x(t_n)\}\) is Cauchy. This implies $\lim_{t \to b^-} x(t)$ exists; call it $x(b^-)$. So $x(t)$ has a continuous extension from I to $I \cup \{b\}$.

- If in addition $(b, x(b^-))$ is in \mathcal{S}, then $(*)$ holds on $I \cup \{b\}$ as well, so $x(t)$ is a C^1 solution of $x' = f(t, x)$ on $I \cup \{b\}$.

- Finally, if $(b, x(b^-))$ is in the interior of \mathcal{S}, we are back in Case 1 and can extend the solution $x(t)$ beyond $t = b$.

- The assumption that $f(t, x(t))$ is bounded on $[t_0, b)$ can be restated with a slightly different emphasis: for some $t_0 \in I$, $\{(t, x(t)) : t_0 \leq t < b\}$ stays within a subset of \mathcal{S} on which f is bounded. For example, if $\{(t, x(t)) : t_0 \leq t < b\}$ stays within a compact subset of \mathcal{S}, this condition is satisfied.

Case 3: I is closed at the left end — similar to Case 1.

Case 4: I is open at the left end — similar to Case 2.
Global Continuation

Assume $f(t, x)$ is continuous on an open set $\mathcal{D} \subset \mathbb{R} \times \mathbb{F}^n$ and is locally Lipschitz continuous with respect to x on \mathcal{D}. Write $f \in (C, \text{Lip}_{\text{loc}})$ on \mathcal{D}.

Let $(t_0, x_0) \in \mathcal{D}$ and consider the IVP

$$x' = f(t, x), \quad x(t_0) = x_0.$$

It has been shown that a unique solutions exist on both $[t_0, t_0 + \alpha_+]$ and $(-\alpha_- + t_0, t_0]$, and that this gives a unique solution on $(-\alpha_- + t_0, \alpha_+)$ for some $\alpha_+, \alpha_- > 0$.

Set

$$T_+ = \sup \{ t > t_0 : \exists \text{ a solution of IVP on } [t_0, t) \}, \quad \text{and} \quad T_- = \inf \{ t < t_0 : \exists \text{ a solution of IVP on } (t, t_0) \}.$$

(T_-, T_+) is the maximal interval of existence of the solution of the IVP. It is possible that $T_+ = \infty$ and/or $T_- = -\infty$.

The maximal interval (T_-, T_+) must be open: if the solution could be extended to T_+ (or T_-), this would contradict the local continuation results since \mathcal{D} is open.

Ideally, $T_+ = +\infty$ and $T_- = -\infty$.

Another possibility is if $f(t, x)$ is not defined for $t \geq T_+$. For example, if $a(t) = \frac{1}{1-t}$, and $x'(t) = a(t)$. Here we don’t expect the solution to exist beyond $t = 1$.

But less desirable behavior can occur.

For example, for the IVP: $x^1 = x^2, \ x(0) = x_0 > 0, \ t_0 = 0$, and $\mathcal{D} = \mathbb{R} \times \mathbb{R}$. The solution $x(t) = (x_0^{-1} - t)^{-1}$ blows up at $T_+ = 1/x_0$ (note that $T_- = -\infty$). Observe that $x(t) \to \infty$ as $t \to (T_+)^-$. So the solution does not just “stop” in the interior of \mathcal{D}.

This kind of blow-up behavior must occur if a solution cannot be continued to the whole real line.
Theorem. (Solution Blow-Up)
Suppose \(f \in (C, \text{Lip}_{\text{loc}}) \) on an open set \(\mathcal{D} \subset \mathbb{R} \times \mathbb{F}^n \). Let \((t_0, x_0) \in \mathcal{D} \), and let \((T_-, T_+) \) be the maximal interval of existence of the solution of the IVP
\[
x' = f(t, x), \quad x(t_0) = x_0.
\]
If \(T_+ < +\infty \) (\(T_- > -\infty \)), then for any compact set \(K \subset \mathcal{D} \), there exists a \(T < T_+ \) (\(T_- < T \)) for which \((t, x(t)) \notin K \) for \(t > T \) (\(t < T \)).

Proof. If not, \(\exists t_j \to T_+ \) with \((t_j, x(t_j)) \in K \) for all \(j \). By taking a subsequence, we may assume that \(x(t_j) \) also converges to \(x_+ \in \mathbb{F}^n \), and
\[
(t_j, x(t_j)) \to (T_+, x_+) \in K \subset \mathcal{D}.
\]
We can thus choose \(r > 0, \tau > 0, N \in \mathbb{N} \) such that
\[
\mathcal{S} = \bigcup_{j=N}^{\infty} \{(t, x) : |t - t_j| \leq \tau, |x - x(t_j)| \leq r\} \subset \mathcal{D}.
\]
Since \(\mathcal{D} \) is compact, there is an \(M \) for which \(|f(t, x)| \leq M \) on \(\mathcal{S} \). By the local existence theorem, the solution of \(x' = f(t, x) \) starting at the initial point \((t_j, x(t_j)) \) exists for a time interval of length
\[
T' \equiv \min \left\{ \tau, \frac{r}{M} \right\},
\]
independent of \(i \). Choose \(j \) for which \(t_j > t_+ - T' \). Then \((t, x(t)) \) exists in \(\mathcal{D} \) beyond time \(T_+ \), which is a contradiction. \(\square \)
Autonomous Systems

The ODE \(x'(t) = f(t, x) \) is called an autonomous system if \(f(t, x) \) is independent of \(t \), i.e., the ODE is of the form

\[
x' = f(x).
\]

Remarks.

(1) Time translates of solutions of an autonomous system are again solutions:

\(x(t) \) a solution \(\implies \) \(x(t - c) \) is a solution for any constant \(c \).

(2) Any ODE \(x' = f(t, x) \) is equivalent to an autonomous system. Define “\(x_{n+1} = t \)” and set

\[
\tilde{x} = (x_{n+1}, x) \in \mathbb{F}^{n+1}
\]

\[
\tilde{x}' = \tilde{f}(\tilde{x}) = \tilde{f}(x_{n+1}, x) = \begin{bmatrix} 1 \\ f(x_{n+1}, x) \end{bmatrix} \in \mathbb{F}^{n+1}
\]

and consider the autonomous IVP

\[
\tilde{x}' = \tilde{f}(\tilde{x}), \quad \tilde{x}(t_0) = \begin{bmatrix} t_0 \\ x_0 \end{bmatrix}.
\]

This IVP is equivalent to the IVP

\[
x' = f(t, x), \quad x(t_0) = x_0.
\]
Continuation for Autonomous Systems

Suppose $f(x)$ is defined and locally Lipschitz continuous on an open set $\mathcal{U} \subset \mathbb{R}^n$. Take $\mathcal{D} = \mathbb{R} \times \mathcal{U}$. Suppose $T_+ < \infty$ and C is a compact subset of \mathcal{U}. Take $K = [t_0, T_+] \times C$ in the ODE Blow-Up Theorem.

Then

$$\exists T < T_+ \text{ such that } x(t) \notin C \text{ for } T < t < T_+.$$

In this case we say that

$$x(t) \to \partial \mathcal{U} \cup \{\infty\} \text{ as } t \to (T_+)^-,$$

meaning that

$$(\forall C^{\text{compact}} \subset \mathcal{U})(\exists T < T_+) \text{ such that for } t \in (T, T_+), x(t) \notin C.$$

Stated briefly, eventually $x(t)$ stays out of any given compact set.
Continuation of Linear Systems

Consider the linear IVP

\[x'(t) = A(t)x(t) + b(t), \quad x(t_0) = x_0 \quad \text{on} \quad (a, b) \quad \text{with} \quad t_0 \in (a, b), \]

where \(A(t) \in \mathbb{F}^{n\times n} \) and \(b(t) \in \mathbb{F}^n \) are continuous on \((a, b)\).

Let \(\mathcal{D} = (a, b) \times \mathbb{F}^n \). Then

\[f(t, x) = A(t)x + b(t) \in (C, \text{Lip}_{\text{loc}}) \quad \text{on} \quad \mathcal{D}. \]

Moreover, for \(c, d \) satisfying

\[a < c \leq t_0 \leq d < b, \]

\(f \) is uniformly Lipschitz continuous with respect to \(x \) on \([c, d] \times \mathbb{F}^n\),

\[\text{take} \quad L = \max_{c \leq t \leq d} |A(t)|. \]

The Picard global existence theorem implies there is a solution of the IVP on \([c, d]\), which is unique by the uniqueness theorem for locally Lipschitz \(f \). This implies that \(T_- = a \) and \(T_+ = b \).