Singular Value Decomposition (SVD)

If \(A \in \mathbb{C}^{m \times n} \), then there exists unitary matrices

\[
U \in \mathbb{C}^{m \times m} \quad \text{and} \quad V \in \mathbb{C}^{n \times n}
\]

such that

\[
A = U \Sigma V^H,
\]

where \(\Sigma \in \mathbb{C}^{m \times n} \) is the diagonal matrix of singular values.

In particular, if

\[
\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p
\]

are the non-zero singular values of \(A \) with

\[
\text{diag}(\Sigma) = [\sigma_1, \sigma_2, \sigma_3, \ldots]
\]

and

\[
U = [u_1, u_2, \ldots, u_m] \quad \text{and} \quad V = [v_1, v_2, \ldots, v_n],
\]

then

\[
\sigma_j u_j = Av_j \quad j = 1, 2, \ldots, p.
\]
Applications of the SVD

The SVD and Normal Matrices

Proposition. Let $A \in \mathbb{C}^{n \times n}$ be normal, and order the eigenvalues of A as

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|.$$

Then the singular values of A are

$$\sigma_i = |\lambda_i|, \quad 1 \leq i \leq n.$$

Proof. By the Spectral Theorem for normal operators,

$$A = V \Lambda V^H,$$

where

$$V \in \mathbb{C}^{n \times n} \text{ is unitary and } V \in \mathbb{C}^{n \times n}.$$

For $1 \leq i \leq n$, choose $d_i \in \mathbb{C}$ for which

$$\bar{d}_i \lambda_i = |\lambda_i| \quad \text{and} \quad |d_i| = 1,$$

and let $D = \text{diag}(d_1, \ldots, d_n)$. Then D is unitary, and

$$A = (VD)(D^H \Lambda)V^H \equiv U \Sigma V^H,$$

where $U = VD$ is unitary and

$$\Sigma = D^H \Lambda = \text{diag}(|\lambda_1|, \ldots, |\lambda_n|)$$

is diagonal with decreasing nonnegative diagonal entries. \qed
The SVD and Norms

The Frobenius and Euclidean operator norms of $A \in \mathbb{C}^{m \times n}$ are easily expressed in terms of the singular values of A:

$$\|A\|_F = \left(\sum_{i=1}^{n} \sigma_i^2 \right)^{\frac{1}{2}} = \left\| \begin{array}{c} \sigma_1 \\ \vdots \\ \sigma_n \end{array} \right\|_2$$

and

$$\|A\| = \sigma_1 = \sqrt{p(A^H A)} = \left\| \begin{array}{c} \sigma_1 \\ \vdots \\ \sigma_n \end{array} \right\|_\infty,$$

as follows from the unitary invariance of these norms.

There are no such simple expressions (in general) for these norms in terms of the eigenvalues of A if A is square (but not normal).
The SVD and Rank

The SVD is useful computationally for questions involving rank.

The rank of $A \in \mathbb{C}^{m \times n}$ is the number of nonzero singular values of A since rank is invariant under pre- and post-multiplication by invertible matrices.

There are stable numerical algorithms for computing SVD (try \texttt{matlab}).

In the presence of round-off error, row-reduction to echelon form usually fails to find the rank of A when its rank is $< \min(m, n)$.

For such a matrix, the computed SVD has the zero singular values computed to be on the order of machine ϵ, and these are often identifiable as “numerical zeroes.”

For example, if the computed singular values of A are $10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-15}, 10^{-15}, 10^{-16}$ with machine $\epsilon \approx 10^{-16}$, one can safely expect rank $(A) = 7$.
The SVD and Polar Form

We now consider the matrix analogue of the polar form

\[z = re^{i\theta}. \]

Proposition

Every \(A \in \mathbb{C}^{n \times n} \) may be written as

\[A = PU, \]

where \(P \) is positive semi-definite Hermitian and \(U \) is unitary.

Proof. Let

\[A = \Sigma V^H \]

be a SVD for \(A \), and write

\[A = (U\Sigma U^H)(UV^H). \]

Then

\[U\Sigma U^H \]

is positive semi-definite Hermitian and

\[UV^H \]

is unitary. \(\square \)
Linear Least Squares Problems

If $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^{m}$, and consider the system

$$Ax = b.$$

This system may not be solvable, especially if $m > n$.

Instead solve

$$(*) \quad \inf_{x \in \mathbb{C}^{n}} ||Ax - b||^{2}_{2}.$$

This is called a least-squares problem since the square of the Euclidean norm is a sum of squares.

Set $\varphi(x) = ||Ax - b||^{2}$, then at the solution to $(*)$ $\nabla \varphi(x) = 0$, or equivalently

$$\varphi'(x; v) = 0 \quad \forall \ v \in \mathbb{C}^{n},$$

where

$$\varphi'(x; v) = \frac{d}{dt} \varphi(x + tv) \bigg|_{t=0}$$

is the directional derivative. If $y(t)$ is a differentiable curve in \mathbb{C}^{m}, then

$$\frac{d}{dt}||y(t)||^{2} = \langle y'(t), y(t) \rangle + \langle y(t), y'(t) \rangle = 2 \text{Re} \langle y(t), y'(t) \rangle.$$

Taking $y(t) = A(x + tv) - b$, we obtain that

$$\nabla \varphi(x) = 0 \iff (\forall \ v \in \mathbb{C}^{n}) 2 \text{Re} \langle Ax - b, Av \rangle = 0 \iff A^{H}(Ax - b) = 0,$$

i.e.,

$$A^{H}Ax = A^{H}b.$$

These are called the normal equations (they say $(Ax - b) \perp \mathcal{R}(A)$).
The Projection Theorem

Let $S \subset V$ be a subspace of the Euclidean space V.

(1) $V = S \oplus S^\perp$, i.e., given $v \in V$, \exists unique $\bar{y} \in S$ and $\bar{z} \in S^\perp$ for which

$$v = \bar{y} + \bar{z}$$

(so $\bar{y} = Pv$, where P is the orthogonal projection of V onto S; also $\bar{z} = (I - P)v$ and $I - P$ is the orthogonal projection of V onto S^\perp).

(2) Given $v \in V$, the \bar{y} in (1) is the unique element of S which satisfies

$$(\forall y \in S) \quad \langle v - \bar{y}, y \rangle = 0.$$

(3) Given $v \in V$ let \bar{y} be as in (1). Then $\hat{y} = \bar{y}$ if and only if \hat{y} is the unique element of S solving the minimization problem

$$\min_{y \in S} ||v - y||^2.$$
Proof of The Projection Theorem

(1) $V = S \oplus S^\perp$,

i.e., given $v \in V$, \exists unique

$$\bar{y} \in S \quad \text{and} \quad \bar{z} \in S^\perp$$

for which

$$v = \bar{y} + \bar{z}$$

so

$$\bar{y} = Pv \quad \text{and} \quad \bar{z} = (I - P)v,$$

where P is the orthogonal projection of V onto S.

\textit{Proof}

Let $\{\psi_1, \ldots, \psi_r\}$ be an orthonormal basis of S.

Given $v \in V$, let

$$\bar{y} = \sum_{j=1}^{r} \langle v, \psi_j \rangle \psi_j \quad \text{and} \quad \bar{z} = v - \bar{y}.$$

Then $v = \bar{y} + \bar{z}$ and $\bar{y} \in S$.

For $1 \leq k \leq r$,

$$\langle \bar{z}, \psi_k \rangle = \langle v, \psi_k \rangle - \langle \bar{y}, \psi_k \rangle = \langle v, \psi_k \rangle - \langle v, \psi_k \rangle = 0,$$

so $\bar{z} \in S^\perp$.

Uniqueness follows from the fact that $S \cap S^\perp = \{0\}$.
Proof of The Projection Theorem

(2) Given $v \in V$, the \bar{y} in (1) is the unique element of S which satisfies

$$\forall y \in S \quad \langle v - \bar{y}, y \rangle = 0.$$

Proof
Since $\bar{z} = v - \bar{y}$, this is just a restatement of $\bar{z} \in S^\perp$.

(3) Given $v \in V$ let \bar{y} be as in (1). Then $\hat{y} = \bar{y}$ if and only if \hat{y} is
the unique element of S solving the minimization problem

$$\min_{y \in S} \|v - y\|^2.$$

Proof
For any $y \in S$,

$$v - y = \underbrace{\bar{y} - y}_{S} + \underbrace{\bar{z}}_{S^\perp},$$

so by the Pythagorean Theorem

$$(p \perp q \iff \|p \pm q\|^2 = \|p\|^2 + \|q\|^2),$$

$$\|v - y\|^2 = \|\bar{y} - y\|^2 + \|\bar{z}\|^2.$$

Therefore, $\|v - y\|^2$ is minimized iff $y = \bar{y}$, and $\|v - \bar{y}\|^2 = \|\bar{z}\|^2$.
The Projection Theorem for Convex Sets

Let X be a Hilbert space with $C \subset X$ closed and convex. Then there is a unique $y^0 \in C$ such that

$$\mathcal{P} \quad \|x - y^0\| \leq \|x - y\| \quad \forall \ y \in C.$$

Furthermore, y_0 satisfies \mathcal{P} if and only if

$$\text{Re}(\langle x - y^0, y - y^0 \rangle) \leq 0 \quad \forall \ y \in C.$$

Proof

Let $\{y^i\} \subset C$ be such that

$$\|x - y^i\| \to \inf\{\|x - y\| : y \in C\} =: \delta.$$

By the parallelogram law

$$\|y^m - y^n\|^2 = 2\|x - y^m\|^2 + 2\|x - y^n\|^2 - 4\left\| x - \frac{y^n + y^m}{2} \right\|^2.$$

By convexity,

$$2^{-1}(y^n + y^m) \in C,$$

so

$$\|x - 2^{-1}(y^m + y^n)\| \geq \delta.$$

Therefore,

$$\|y^m - y^n\|^2 \leq 2\|y^m - x\|^2 + 2\|y^n - x\|^2 - 4\delta^2 \to 0.$$

Consequently, $\{y^n\}$ is Cauchy and so has a limit y^0 with

$$\|x - y^0\| = \delta.$$

Uniqueness follows by considering the sequence

$$y^{2n+1} = y^a \quad \text{and} \quad y^{2n} = y^b \quad n = 0, 1, \ldots$$

where $y^a, y^b \in C$ with $\|h^a - x\| = \|y^b - x\| = \delta$. Apply the above argument, to see that $y^a = y^b$.
We now show that y^0 is the unique vector satisfying
$$\text{Re}(\langle x - y^0, y - y^0 \rangle) \leq 0$$
for all $y \in C$.
Suppose to the contrary that there is a vector y^1 such that
$$\text{Re}(\langle x - y^0, y^1 - y^0 \rangle) = \epsilon > 0.$$
Consider the vectors
$$y^\alpha = \alpha y^1 + (1 - \alpha)y^0 \in C \quad \text{for} \quad \alpha \in [0, 1].$$
Note that the function $\varphi : \mathbb{R} \to \mathbb{R}$ given by
$$\varphi(\alpha) = \| x - y^\alpha \|^2 = (1 - \alpha)^2\| x - y^0 \|^2 + 2\alpha(1 - \alpha)\text{Re}(\langle x - y^0, x - y^1 \rangle) + \alpha^2\| x - y^1 \|^2$$
is differentiable with
$$\varphi'(0) = -2\| x - y^0 \|^2 + 2\text{Re}(\langle x - y^0, x - y^1 \rangle)$$
$$= -2\text{Re}(\langle x - y^0, x - y^0 \rangle + \langle x - y^0, y^1 - x \rangle)$$
$$= -2\text{Re}(x - y^0, y^1 - y^0) = -2\epsilon < 0.$$
Hence, $\| x - y^\alpha \| < \| x - y^0 \|$ for all $\alpha > 0$ sufficiently small. This contradiction implies that y^1 does not exist.

Conversely, suppose that $y^0 \in C$ is such that
$$\text{Re}(\langle x - y^0, y - y^0 \rangle) \leq 0 \quad \forall \ y \in C.$$
Then for any $y \in C$ with $y \neq y^0$, we have
$$\| x - y \|^2 = \| (x - y^0) + (y^0 - y) \|^2$$
$$= \| x - y^0 \|^2 + 2\text{Re}(\langle x - y^0, y^0 - y \rangle) + \| y^0 - y \|^2$$
$$> \| x - y^0 \|^2.$$