
Linear Analysis
Lecture 9



Power Series on B(V )

Let f (z) be analytic on the disk {|z| < R} ⊂ C, with power series

f (z) =
∞∑

k=0
akzk

and radius of convergence at least R. If L ∈ B(V ) and ‖L‖ < R, then
the series ∞∑

k=0
akLk

converges absolutely, and thus converges to an element of B(V ) which
we call f (L).

It is easy to check that usual operational properties hold, for example
(fg)(L) = f (L)g(L) = g(L)f (L) .

Caution: Always remember that operators do not commute in general.
For example,

eL+M 6= eLeM in general,
although if L and M commute (i.e. LM = ML), then

eL+M = eLeM .
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Calculus on B(V ): Differentiation

Let L(t) be a 1-parameter family of operators in B(V ), t ∈ (a, b). Since
B(V ) is a metric space, continuity of L(t) in t is well defined.
We say that L(t) is differentiable at t = t0 ∈ (a, b) if

L′(t0) = lim
t→t0

L(t)− L(t0)
t − t0

exists in the norm on B(V ).

For example, it is easily checked that for L ∈ B(V ), etL is differentiable
in t for all t ∈ R, and

d
dt etL = LetL = etLL .

3 / 20



Calculus on B(V ): Differentiation
Similarly consider families of operators in B(V ) depending on several real
or complex parameters. A family L(z) where

z = x + iy ∈ Ωopen ⊂ C (x, y ∈ R)

is said to be holomorphic in Ω if the partial derivatives

∂

∂x L(z), ∂

∂y L(z)

exist, are continuous in Ω, and satisfy the Cauchy-Riemann equations(
∂

∂x + i ∂
∂y

)
L(z) = 0 on Ω.

This is equivalent to the assumption that in a neighborhood of each
point z0 ∈ Ω, L(z) is given by the B(V )-norm convergent power series

L(z) =
∞∑

k=0

1
k! (z − z0)k

(
d
dz

)k
L(z0).
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Calculus on B(V ): Integration
If L(t) depends continuously on t ∈ [a, b], then it can be shown using the
same estimates as for F-valued functions (and the uniform continuity of
L(t) since [a, b] is compact) that the Riemann sums

b − a
N

n−1∑
k=0

L
(

a + k
N (b − a)

)
converge in B(V )-norm (recall V is a Banach space) as n →∞ to an
operator in B(V ), denoted ∫ b

a
L(t)dt .

More general Riemann sums than just the left-hand “rectangular rule”
with equally spaced points can be used.
Many results from standard calculus carry over, including∥∥∥∥∥

∫ b

a
L(t)dt

∥∥∥∥∥ ≤
∫ b

a
‖L(t)‖dt

which follows from∥∥∥∥∥b − a
N

N−1∑
k=0

L
(

a + k
N (b − a)

)∥∥∥∥∥ ≤ b − a
N

N−1∑
k=0

∥∥∥∥L
(

a + k
N (b − a)

)∥∥∥∥ .
By parameterizing paths in C, one can define line integrals of
holomorphic families of operators. We will discuss such constructions
further as we need them.
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Operators in Finite Dimensions

Transposes and Adjoints

A ∈ Cm×n

AT ∈ Cn×m the transpose of A: (Aij = (AT)ji

AH = ĀT the conjugate-transpose (or Hermitian transpose) of A

One often writes A∗ = AH . But there is a subtlety here, which is related
to the identification of a linear operator with its representation as a
matrix, that we must be careful about.
Recall that an inner product on Cn can be represented as a matrix
multiply, e.g. for the Euclidean inner product

〈x, y〉 = yH x

For A ∈ Cn×n,
〈Ax, y〉 = 〈x,AH y〉

since
yH Ax = (AH y)H x
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Caution About AH and A∗

A∗ is used with two different meanings (particularly when F=C).
L ∈ B(V ,W ) =⇒ L∗ ∈ B(W ∗,V ∗)

In finite dim., one can choose bases of V and W to encode the action of
L as left matrix multiplication on column vectors associated with the
bases components. Denote such a matrix as T .
Then the action of L∗ on W ∗ can be encoded using the dual bases using
the same matrix T . But now the action is represented as right multiply
by T on row vectors of components in the dual basis (a=bT).

On the other hand, in the presence of an inner product, the definition
〈Lv,w〉 = 〈v,L∗w〉

identifies L∗ with left-multiplication by the conjugate-transpose matrix.

These two definitions are related by the identification
V ∼= V ∗

induced by the inner product:
w ∈ V ⇐⇒ 〈·,w〉 = w∗ ∈ V ∗ .

But the conjugation in this identification gives rise to a different
representation of L∗. The first is a natural representation obtained
through composition, and the second is through the inner product.
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Norms on Matrices

Commonly used norms on Cm×n.
‖A‖1 =

∑
ij |aij | (the `1-norm on A as if it were in Cn2 )

‖A‖∞ = maxi,j |aij | (the `∞-norm on A as if it were in Cn2 )

‖A‖2 =
(∑

i,j |aij |2
) 1

2 (the `2-norm on A as if it were in Cn2 )
‖A‖2 is called the Hilbert-Schmidt norm of A, or the Frobenius norm of
A, and is often denoted ‖A‖F . It is also called the Euclidean norm on
Cm×n. The associated inner product is 〈A,B〉 = tr BH A .

We also have p-norms for matrices: let 1 ≤ p ≤ ∞,
‖|A|‖p = max

‖x‖p=1
‖Ax‖p

(
= max
‖x‖p≤1

‖Ax‖p = max
x 6=0

(‖Ax‖p/‖x‖p)
)
.

In particular,
‖|A|‖1 = max1≤j≤n

∑m
i=1 |aij | (max column sum)

‖|A|‖∞ = max1≤i≤m
∑n

j=1 |aij | (max row sum)

‖|A|‖2 is the spectral norm. We study it in detail later.
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Consistent Matrix Norms
Definitions
• Let µ : Cm×n → R, ν : Cn×k → R, ρ : Cm×k → R be norms. We say
that µ, ν, ρ are consistent if ∀A ∈ Cm×n and ∀B ∈ Cn×k ,

ρ(AB) ≤ µ(A)ν(B)

• A norm on Fn×n is called consistent if it is consistent with itself, i.e.,
the definition above with m = n = k an ρ = µ = ν. So by definition a
norm on Fn×n is consistent iff it is submultiplicative.
• A collection {νm,n : m ≥ 1,n ≥ 1}, where νm,n = Fm×n → R is a
norm on Fm×n, is called a family of matrix norms.
• A family {νm,n : m ≥ 1,n ≥ 1} of matrix norms is called consistent if

(∀m,n, k ≥ 1)(∀A ∈ Fm×n)(∀B ∈ Fn×k)
νm,k(AB) ≤ νm,n(A)νn,k(B).

Facts Let {νm,n} be a consistent family of matrix norms. Then
(1) (∀n ≥ 1) νn,n is submultiplicative.
(2) (∀m,n ≥ 1) (∀A ∈ Fm×n) νm,n(A) ≥ µm,n(A), where µm,n is the

operator norm on Fm×n induced by νn,1 and νm,1.
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Examples of Consistent Matrix Norms

(1) For m > 1, let νm,1 be any norm on Fm, and ν1,1(x) = |x|. For
m,n ≥ 1, let νm,n be the operator norm on Fm×n induced by νn,1 and
νm,1 Then {νm,n} is a consistent family of matrix norms.

(2) (maximum row sum norm) For m,n ≥ 1 and A ∈ Fm×n, let

νm,n(A) = max
1≤i≤m

n∑
j=1
|aij |.

Then νn,1 is the `∞-norm on Fn, and νm,n(A) is the operator norm
induced by the `∞-norms on Fn and Fm, which we denoted by ‖|A|‖∞.

(3) (maximum column sum norm) For m,n ≥ 1 and A ∈ Fm×n, let

νm,n(A) = max
1≤j≤n

m∑
i=1
|aij |.

Then νn,1 is the `1-norm on Fn, and νm,n(·) is the operator norm
induced by the `′-norms on Fn and Fm, which we denoted by ‖|A|‖1.

(4) (`1-norm on Fm×n as if it were Fmn) For m,n ≥ 1 and A ∈ Fm×n, let

νm,n(A) =
m∑

i=1

n∑
j=1
|aij |.

Then {νm,n} is a consistent family of matrix norms. We denoted
νm,n(A) by ‖A‖1. Also note that ‖A‖1 ≥ ‖|A|‖1 agrees with Fact (2)
on the previous slide.
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The Frobenius or Hilbert-Schmidt Norm

(`2-norm on Fm×n as if it were Fmn) For m,n ≥ 1 and A ∈ Fm×n, let

νm,n(A) =

√√√√ m∑
i=1

n∑
j=1
|aij |2.

Then νn,1 is the `2-norm on Fn. If A ∈ Fm×n and B ∈ Fn×k , then by
the Schwarz inequality,

(νm,k(AB))2 =
m∑

i=1

k∑
j=1

∣∣∣∣∣
n∑

`=1
ai`b`j

∣∣∣∣∣
2

≤
m∑

i=1

k∑
j=1

( n∑
`=1
|ai`|2

)( n∑
r=1
|brj |2

)
= (νm,n(A)νn,k(B))2,

so {vm,n} is a consistent family of matrix norms.
This is not an operator norm: for n > 1, νn,n(I ) =

√
n but the operator

norm of I is always 1.

Denote νm,n(A) by ‖A‖2 (or, sometimes ‖A‖F).
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The Frobenius or Hilbert-Schmidt Norm

For A ∈ Fm×n and x ∈ Fn, we have

‖Ax‖2 ≤ ‖A‖2 · ‖x‖2,

so for A ∈ Fm×n and B ∈ Fn×k ,

‖AB‖2 ≤ ‖A‖2 · ‖B‖2.

Fact (2) above gives the important inequality

‖A‖F ≥ ‖|A|‖2 ∀ A ∈ Fm×n.

Thus the operator norm induced by the `2-norms on Fm and Fn is
dominated by the Frobenius norm.
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Condition Number and Error Sensitivity

Let A ∈ Cn×n be invertible. How sensitive is the solution to Ax = b to
changes in b and A? Let ‖ · ‖ be a consistent martrix norm on Cn×n.
Suppose Ax = b and Ax̂ = b̂. How far is x̂ from x?

e := x − x̂ = the error vector
‖e‖ := the error

r := b − b̂ = the residual vector
‖r‖ := the residual

‖e‖/‖x‖ := the relative error
‖r‖/‖b‖ := the relative residual

Then Ae = A(x − x̂) = b − b̂ = r , so
‖e‖ = ‖A−1r‖ ≤ ‖A−1‖ ‖r‖ and ‖b‖ ≤ ‖A‖ ‖x‖

so
‖e‖ · ‖b‖ ≤ ‖A‖ · ‖A−1‖ · ‖x‖ · ‖r‖

which implies ‖e‖
‖x‖ ≤ κ(A)‖r‖

‖b‖ ,

where κ(A) := ‖A‖ · ‖A−1‖ is the condition number of A.
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Condition Number and Error Sensitivity

κ(A) = ‖A‖ · ‖A−1‖ = condition number of A.

Note that for any operator norm

1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖ ‖A−1‖ = κ(A).

A matrix is said to be perfectly conditioned if κ(A) = 1, and is said to be
ill-conditioned if κ(A) is large.

If x̂ is the result of a numerical algorithm for solving Ax = b (with
round-off error), then the error e = x − x̂ is not computable. However,
the residual r = b −Ax̂ is computable, so we obtain an upper bound on
the relative error

‖e‖
‖x‖ ≤ κ(A)‖r‖

‖b‖ .

In practice, we don’t know κ(A) (although we may be able to estimate
it), and this upper bound may be much larger than the actual relative
error.
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Condition Number and Error Sensitivity
Now assume that both A and b are perturbed:

Â = A + E and b̂ = b − r
Obtain a bound on the relative error ‖e‖/‖x‖ where

e = x − x̂ with x̂ solving Âx̂ = b̂ .
First use the Neumann Lemma to note that if

‖A−1E‖ ≤ ‖A−1‖ ‖E‖ < 1,
then
‖(A + E)−1‖ = ‖(I + A−1E)−1A−1‖

≤ ‖(I + A−1E)−1‖ ‖A−1‖ ≤ 1
1− ‖A−1‖ ‖E‖‖A

−1‖ .

Also, (A + E)x = b + Ex and (A + E)x̂ = b̂ so
e = x − x̂ = (A + E)−1(Ex + r)

and so
‖e‖ ≤ ‖(A + E)−1‖ [‖E‖ ‖x‖+ ‖r‖]

≤ 1
1− ‖A−1‖ ‖E‖‖A

−1‖
[
‖E‖
‖A‖‖A‖ ‖x‖+ ‖r‖

‖b‖‖A‖ ‖x‖
]
.

Therefore,
‖e‖
‖x‖ ≤

κ(A)
1− κ(A)‖E‖‖A‖

[
‖E‖
‖A‖ + ‖r‖

‖b‖

]
.
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