Linear Analysis
Lecture 9




Power Series on B(V)

Let f(z) be analytic on the disk {|z| < R} C C, with power series

E akz

and radius of convergence at least R If L e B(V) and ||L]| < R, then

the series
S art

converges absolutely, and thus converges to an element of B( V') which
we call f(L).

It is easy to check that usual operational properties hold, for example

(fg)(L) = f(L)g(L) = g(L)f(L) .

Caution: Always remember that operators do not commute in general.
For example, .y Iy
el tM £ ele in general,

although if L and M commute (i.e. LM = ML), then

€L+M = €L CM.
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Calculus on B(V): Differentiation

Let L(¢) be a 1-parameter family of operators in B(V), ¢t € (a, b). Since
B(V) is a metric space, continuity of L(t) in ¢ is well defined.
We say that L(t) is differentiable at t = ¢ € (a, b) if

exists in the norm on B(V).

For example, it is easily checked that for L € B(V), etl is differentiable
in ¢t forall t eR, and

—etl = Lett = et .
dt
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Calculus on B(V): Differentiation

Similarly consider families of operators in B( V') depending on several real
or complex parameters. A family L(z) where

z=z+1iy € QP CC (z,y € R)

is said to be holomorphic in Q if the partial derivatives

5l L)

exist, are continuous in 2, and satisfy the Cauchy-Riemann equations
(681' + 288y> L(z)=0 on Q.

This is equivalent to the assumption that in a neighborhood of each
point z € Q, L(z) is given by the B(V)-norm convergent power series

:i;; i) (jz)kL(zo).
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Calculus on B(V): Integration

If L(t) depends continuously on t € [a, b], then it can be shown using the
same estimates as for F-valued functions (and the uniform continuity of
L(t) since [a, b] is compact) that the Riemann sums

S )

converge in B(V)-norm (recaII Vis a Banach space) as n — oo to an
operator in B(V), denoted b

P V) L(t)dt .

More general Riemann sums than just the left-hand “rectangular rule”
with equally spaced points can be used.
Many results from standard calculus carry over, including

b b
[ pwa] < / |E(e)dt
which follows from ‘ ‘

b—a k

N kZ:OL(a—l—N(b—a)) < N (a+ b—a)H
By parameterizing paths in C, one can deflne I|ne integrals of
holomorphic families of operators. We will discuss such constructions

further as we need them.
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Operators in Finite Dimensions

Transposes and Adjoints

A e (men
AT € C™™ the transpose of A: (A; = (A7)}
A" = AT the conjugate-transpose (or Hermitian transpose) of A

One often writes A* = A, But there is a subtlety here, which is related
to the identification of a linear operator with its representation as a
matrix, that we must be careful about.

Recall that an inner product on C™ can be represented as a matrix
multiply, e.g. for the Euclidean inner product

(z,y) =y"x

For A € C"*",
(Az,y) = (z, ATy)

since
yH Az = (AHy)Hm
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Caution About A" and A*

A* is used with two different meanings (particularly when F=C).
LeB(V,W) = L"'eB(W" V")

In finite dim., one can choose bases of ¥V and W to encode the action of

L as left matrix multiplication on column vectors associated with the

bases components. Denote such a matrix as 7.

Then the action of L* on W* can be encoded using the dual bases using

the same matrix T. But now the action is represented as right multiply

by T on row vectors of components in the dual basis (a=bT).

On the other hand, in the presence of an inner product, the definition
(L, w) = (v, L*w)
identifies L* with left-multiplication by the conjugate-transpose matrix.

These two definitions are related by the identification
Vvevr
induced by the inner product:
weV = (,uwy=w"eV".
But the conjugation in this identification gives rise to a different
representation of L*. The first is a natural representation obtained
through composition, and the second is through the inner product.
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Norms on Matrices

Commonly used norms on C™*™,

Al = >4 layl (the ¢'-norm on A as if it were in C™")

Al = max;;|asl (the £°°-norm on A as if it were in C™")
1

1Al = (2 |aij|2) ’ (the £2-norm on A as if it were in C™’)

||Al|2 is called the Hilbert-Schmidt norm of A, or the Frobenius norm of
A, and is often denoted ||A||r. It is also called the Euclidean norm on
C™*". The associated inner product is (A, B) =tr B7A .

We also have p-norms for matrices: let 1 < p < oo,
[I1A[ll[, = max [|Az]|, < max | Az, = 151%(||Az||p/|x||p)> :

l=]lp=1 I=ll,<1
In particular,
IA|llh = maxi<j<n Yy lag] (max column sum)
[Alllo = maxicicm Y5y |ay] (max row sum)

[[|Al||2 is the spectral norm. We study it in detail later.
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Consistent Matrix Norms

Definitions
elet p:C™" 5 R, v:C™*F 5 R, p: C™* — R be norms. We say
that 4, v, p are consistent if VA € C™*" and V B € C"*F,

p(AB) < p(A)v(B)

e A norm on F™*™ is called consistent if it is consistent with itself, i.e.,
the definition above with m =n =k an p = u = v. So by definition a
norm on F™*™ is consistent iff it is submultiplicative.

o A collection {vy, n, : m > 1,n > 1}, where v, , =F™*" - Ris a
norm on F™*™ is called a family of matrix norms.

o A family {vsm,n : m > 1,n > 1} of matrix norms is called consistent if

(Vm,n,k>1)(VA€F™") (VB e k)
Vm k(AB) < Vi n(A) vy 1 (B).

Facts Let {v,, ,,} be a consistent family of matrix norms. Then
(1) (Yn>1) vy, issubmultiplicative.
(2) (Vm,n>1) VAEF™™) v n(A) > ptim.n(A), where iy, ,, is the
operator norm on F™*™ induced by v, 1 and v, ;.
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Examples of Consistent Matrix Norms

(1) For m > 1, let v, 1 be any norm on F™, and 14 1(z) = |z|. For
m,n > 1, let vy, , be the operator norm on F"™*™ induced by v,, ; and
Vm,1 Then {v,, ,} is a consistent family of matrix norms.

(2) (maximum row sum norm) For m,n>1 and A e F™X" let

1% = Imax a.
mon T i<i<m Z' il
Then vy, 1 is the £*°-norm on F", and ym n(A) is the operator norm

induced by the £>°-norms on "™ and F™, which we denoted by || A,
(3) (maximum column sum norm) For m,n > 1and A € F™*", let

Um.n(A) = max E lag;|.
1<j<n
Then vy, ; is the ¢ -norm on F™, and v,, n%) is the operator norm

induced by the ¢-norms on F™ and F™, which we denoted by || A][;.
(4) (¢*-norm on F™*™ as if it were Fm") For m,n>1and A € F™ " |et

Vmn(A4) = Z Z |ag]-
=1 j=1
Then {v,, } is a consistent family of matrix norms. We denoted
Vm.n(A) by ||A||;. Also note that ||A||; > || A]|; agrees with Fact (2)

on the previous slide.
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The Frobenius or Hilbert-Schmidt Norm

(£2-norm on F™*™ 3s if it were F™") For m,n > 1 and A € F™*", let

Then v,, 1 is the £2-norm on F™. If A € F™*" and B € F"**, then by
the Schwarz inequality,

m k n 2
(mi(AB)? = Y IS auby,
i=1 j=1 | =1
m k n n
< 35St (D)
i=1 j=1 \f=1 r=1
= (Vm,n(A)Vn,k(B))zv

50 {Um,n} is a consistent family of matrix norms.
This is not an operator norm: for n > 1, v, ,(I) = \/n but the operator
norm of I is always 1.

Denote vy, ,(A) by ||A||2 (or, sometimes ||A|| 7).
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The Frobenius or Hilbert-Schmidt Norm

For A € F™*™ and z € F™, we have
[Azlj2 < [[All2 - ]2,
so for A € F™*" and B € F"*k,
IABll2 < [|All2 - | Bll2-
Fact (2) above gives the important inequality
[Allp = 1Al v AeF™™

Thus the operator norm induced by the #2-norms on F™ and F” is
dominated by the Frobenius norm.
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Condition Number and Error Sensitivity

Let A € C™*™ be invertible. How sensitive is the solution to Az = b to

changes in b and A? Let || - || be a consistent martrix norm on C"*™.
Suppose Az = b and Az =b. How faris % from z7?
e = x—12 = the error vector
llell := the error
r := b—b = the residual vector
|lr|| := the residual
llell/llz]] := the relative error
Il7]|/]|b]] := the relative residual

Then Ae = A(z —2) =b—b=r, so
lell = 1A= [l < [ATHHIrll - and (b} < [[A] [l2]]

lell - 11oll < 1AL (AT [l - I

SO

which implies

el I~
< R(A) =
] o]l

where k(A) := || A]| - || A=Y|| is the condition number of A.
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Condition Number and Error Sensitivity

k(A) = ||A]| - | A~|| = condition number of A.

Note that for any operator norm
L= [[I]| = [[AATH] < [JA[H|ATH] = w(A).

A matrix is said to be perfectly conditioned if x(A) = 1, and is said to be
ill-conditioned if k(A) is large.

If Z is the result of a numerical algorithm for solving Az = b (with
round-off error), then the error e = z — T is not computable. However,
the residual r = b — AZ is computable, so we obtain an upper bound on
the relative error

[[ell K4
T < ()il
]| 1]

In practice, we don't know x(A) (although we may be able to estimate
it), and this upper bound may be much larger than the actual relative
error.
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Condition Number and Error Sensitivity

Now assume that both A and b are perturbed:

+ —-r
Obtain a bound on the relative error ||¢||/||z|| where
e=x—1 with Z solving AZ =10 .
First use the Neumann Lemma to note that if
AT Bl < [ A7HHIE] <1,

then
A+ B) | = I(T+ A By A7
1 _ 1 _
<N+ ATTE)THATY) SwnA I
Also, (A+ E)z = b+ Ez and (A+ E)Z = b so
e=1—3=(A+E) Y (Ex+r)
and so
lell < ICA+E) I IEN ] + 7]
1 e [IE] JIEal}
< s AT [ Al 2l + o LA
L—[[ A=Y [ E]] 1A]l Il
Therefore,

llell f4)  [IEl D7l
ol = 1= n(a)IEI Tt fol)
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