Linear Analysis Lecture 9

Let $f(z)$ be analytic on the disk $\{|z|<R\} \subset \mathbb{C}$, with power series

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

and radius of convergence at least R. If $L \in \mathcal{B}(V)$ and $\|L\|<R$, then the series

$$
\sum_{k=0}^{\infty} a_{k} L^{k}
$$

converges absolutely, and thus converges to an element of $\mathcal{B}(V)$ which we call $f(L)$.

It is easy to check that usual operational properties hold, for example

$$
(f g)(L)=f(L) g(L)=g(L) f(L) .
$$

Caution: Always remember that operators do not commute in general. For example,

$$
e^{L+M} \neq e^{L} e^{M} \quad \text { in general, }
$$

although if L and M commute (i.e. $L M=M L$), then

$$
e^{L+M}=e^{L} e^{M}
$$

Let $L(t)$ be a 1-parameter family of operators in $\mathcal{B}(V), t \in(a, b)$. Since $\mathcal{B}(V)$ is a metric space, continuity of $L(t)$ in t is well defined.
We say that $L(t)$ is differentiable at $t=t_{0} \in(a, b)$ if

$$
L^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{L(t)-L\left(t_{0}\right)}{t-t_{0}}
$$

exists in the norm on $\mathcal{B}(V)$.

For example, it is easily checked that for $L \in \mathcal{B}(V), e^{t L}$ is differentiable in t for all $t \in \mathbb{R}$, and

$$
\frac{d}{d t} e^{t L}=L e^{t L}=e^{t L} L
$$

Calculus on $\mathcal{B}(V)$: Differentiation

Similarly consider families of operators in $\mathcal{B}(V)$ depending on several real or complex parameters. A family $L(z)$ where

$$
z=x+i y \in \Omega^{\text {open }} \subset \mathbb{C} \quad(x, y \in \mathbb{R})
$$

is said to be holomorphic in Ω if the partial derivatives

$$
\frac{\partial}{\partial x} L(z), \quad \frac{\partial}{\partial y} L(z)
$$

exist, are continuous in Ω, and satisfy the Cauchy-Riemann equations

$$
\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) L(z)=0 \quad \text { on } \Omega .
$$

This is equivalent to the assumption that in a neighborhood of each point $z_{0} \in \Omega, L(z)$ is given by the $\mathcal{B}(V)$-norm convergent power series

$$
L(z)=\sum_{k=0}^{\infty} \frac{1}{k!}\left(z-z_{0}\right)^{k}\left(\frac{d}{d z}\right)^{k} L\left(z_{0}\right) .
$$

Calculus on $\mathcal{B}(V)$: Integration

If $L(t)$ depends continuously on $t \in[a, b]$, then it can be shown using the same estimates as for \mathbb{F}-valued functions (and the uniform continuity of $L(t)$ since $[a, b]$ is compact) that the Riemann sums

$$
\frac{b-a}{N} \sum_{k=0}^{n-1} L\left(a+\frac{k}{N}(b-a)\right)
$$

converge in $\mathcal{B}(V)$-norm (recall V is a Banach space) as $n \rightarrow \infty$ to an operator in $\mathcal{B}(V)$, denoted

$$
\int_{a}^{b} L(t) d t
$$

More general Riemann sums than just the left-hand "rectangular rule" with equally spaced points can be used.
Many results from standard calculus carry over, including

$$
\left\|\int_{a}^{b} L(t) d t\right\| \leq \int_{a}^{b}\|L(t)\| d t
$$

which follows from

$$
\left\|\frac{b-a}{N} \sum_{k=0}^{N-1} L\left(a+\frac{k}{N}(b-a)\right)\right\| \leq \frac{b-a}{N} \sum_{k=0}^{N-1}\left\|L\left(a+\frac{k}{N}(b-a)\right)\right\| .
$$

By parameterizing paths in \mathbb{C}, one can define line integrals of holomorphic families of operators. We will discuss such constructions further as we need them.

Transposes and Adjoints

$$
\begin{aligned}
A & \in \mathbb{C}^{m \times n} \\
A^{T} & \in \mathbb{C}^{n \times m} \text { the transpose of } A:\left(A_{i j}=\left(A^{T}\right)_{j i}\right. \\
A^{H} & =\bar{A}^{T} \text { the conjugate-transpose (or Hermitian transpose) of } A
\end{aligned}
$$

One often writes $A^{*}=A^{H}$. But there is a subtlety here, which is related to the identification of a linear operator with its representation as a matrix, that we must be careful about.
Recall that an inner product on \mathbb{C}^{n} can be represented as a matrix multiply, e.g. for the Euclidean inner product

$$
\langle x, y\rangle=y^{H} x
$$

For $A \in \mathbb{C}^{n \times n}$,

$$
\langle A x, y\rangle=\left\langle x, A^{H} y\right\rangle
$$

since

$$
y^{H} A x=\left(A^{H} y\right)^{H} x
$$

Caution About A^{H} and A^{*}

A^{*} is used with two different meanings (particularly when $\mathbb{F}=\mathbb{C}$).

$$
L \in \mathcal{B}(V, W) \quad \Longrightarrow \quad L^{*} \in \mathcal{B}\left(W^{*}, V^{*}\right)
$$

In finite dim., one can choose bases of V and W to encode the action of L as left matrix multiplication on column vectors associated with the bases components. Denote such a matrix as T.
Then the action of L^{*} on W^{*} can be encoded using the dual bases using the same matrix T. But now the action is represented as right multiply by T on row vectors of components in the dual basis ($\mathrm{a}=\mathrm{bT}$).

On the other hand, in the presence of an inner product, the definition

$$
\langle L v, w\rangle=\left\langle v, L^{*} w\right\rangle
$$

identifies L^{*} with left-multiplication by the conjugate-transpose matrix.
These two definitions are related by the identification

$$
V \cong V^{*}
$$

induced by the inner product:

$$
w \in V \quad \Longleftrightarrow \quad\langle\cdot, w\rangle=w^{*} \in V^{*}
$$

But the conjugation in this identification gives rise to a different representation of L^{*}. The first is a natural representation obtained through composition, and the second is through the inner product.

Norms on Matrices

Commonly used norms on $\mathbb{C}^{m \times n}$.

$$
\begin{aligned}
\|A\|_{1} & =\sum_{i j}\left|a_{i j}\right| & & \text { (the } \ell^{1} \text {-norm on } A \text { as if it were in } \mathbb{C}^{n^{2}} \text {) } \\
\|A\|_{\infty} & =\max _{i, j}\left|a_{i j}\right| & & \text { (the } \ell^{\infty} \text {-norm on } A \text { as if it were in } \mathbb{C}^{n^{2}} \text {) } \\
\|A\|_{2} & =\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} & & \text { (the } \ell^{2} \text {-norm on } A \text { as if it were in } \mathbb{C}^{n^{2}} \text {) }
\end{aligned}
$$

$\|A\|_{2}$ is called the Hilbert-Schmidt norm of A, or the Frobenius norm of A, and is often denoted $\|A\|_{F}$. It is also called the Euclidean norm on $\mathbb{C}^{m \times n}$. The associated inner product is $\langle A, B\rangle=\operatorname{tr} B^{H} A$.

We also have p-norms for matrices: let $1 \leq p \leq \infty$,

$$
\|A\|_{p}=\max _{\|x\|_{p}=1}\|A x\|_{p} \quad\left(=\max _{\|x\|_{p} \leq 1}\|A x\|_{p}=\max _{x \neq 0}\left(\|A x\|_{p} /\|x\|_{p}\right)\right) .
$$

In particular,

$$
\begin{aligned}
\||A|\|_{1} & =\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| & & \text { (max column sum) } \\
\||A|\|_{\infty} & =\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| & & \text { (max row sum) }
\end{aligned}
$$

$\||A|\|_{2}$ is the spectral norm. We study it in detail later.

Consistent Matrix Norms

Definitions

- Let $\mu: \mathbb{C}^{m \times n} \rightarrow \mathbb{R}, \nu: \mathbb{C}^{n \times k} \rightarrow \mathbb{R}, \rho: \mathbb{C}^{m \times k} \rightarrow \mathbb{R}$ be norms. We say that μ, ν, ρ are consistent if $\forall A \in \mathbb{C}^{m \times n}$ and $\forall B \in \mathbb{C}^{n \times k}$,

$$
\rho(A B) \leq \mu(A) \nu(B)
$$

- A norm on $\mathbb{F}^{n \times n}$ is called consistent if it is consistent with itself, i.e., the definition above with $m=n=k$ an $\rho=\mu=\nu$. So by definition a norm on $\mathbb{F}^{n \times n}$ is consistent iff it is submultiplicative.
- A collection $\left\{\nu_{m, n}: m \geq 1, n \geq 1\right\}$, where $\nu_{m, n}=\mathbb{F}^{m \times n} \rightarrow \mathbb{R}$ is a norm on $\mathbb{F}^{m \times n}$, is called a family of matrix norms.
- A family $\left\{\nu_{m, n}: m \geq 1, n \geq 1\right\}$ of matrix norms is called consistent if

$$
\begin{gathered}
(\forall m, n, k \geq 1)\left(\forall A \in \mathbb{F}^{m \times n}\right)\left(\forall B \in \mathbb{F}^{n \times k}\right) \\
\nu_{m, k}(A B) \leq \nu_{m, n}(A) \nu_{n, k}(B)
\end{gathered}
$$

Facts Let $\left\{\nu_{m, n}\right\}$ be a consistent family of matrix norms. Then
(1) $(\forall n \geq 1) \quad \nu_{n, n} \quad$ is submultiplicative.
(2) $(\forall m, n \geq 1)\left(\forall A \in \mathbb{F}^{m \times n}\right) \quad \nu_{m, n}(A) \geq \mu_{m, n}(A)$, where $\mu_{m, n}$ is the operator norm on $\mathbb{F}^{m \times n}$ induced by $\nu_{n, 1}$ and $\nu_{m, 1}$.

Examples of Consistent Matrix Norms

(1) For $m>1$, let $\nu_{m, 1}$ be any norm on \mathbb{F}^{m}, and $\nu_{1,1}(x)=|x|$. For $m, n \geq 1$, let $\nu_{m, n}$ be the operator norm on $\mathbb{F}^{m \times n}$ induced by $\nu_{n, 1}$ and $\nu_{m, 1}$ Then $\left\{\nu_{m, n}\right\}$ is a consistent family of matrix norms.
(2) (maximum row sum norm) For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Then $\nu_{n, 1}$ is the ℓ^{∞}-norm on \mathbb{F}^{n}, and $\nu_{m, n}^{j=1}(A)$ is the operator norm induced by the ℓ^{∞}-norms on \mathbb{F}^{n} and \mathbb{F}^{m}, which we denoted by $\|A\|_{\infty}$.
(3) (maximum column sum norm) For $m, n \geq{ }_{m} 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\max _{1 \leq j \leq n} \sum_{i=1}\left|a_{i j}\right| .
$$

Then $\nu_{n, 1}$ is the ℓ^{1}-norm on \mathbb{F}^{n}, and $\nu_{m, n}(\cdot)$ is the operator norm induced by the ℓ^{\prime}-norms on \mathbb{F}^{n} and \mathbb{F}^{m}, which we denoted by $\|A\|_{1}$.
(4) (ℓ^{1}-norm on $\mathbb{F}^{m \times n}$ as if it were $\left.\mathbb{F}^{m n}\right)_{m}$ For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Then $\left\{\nu_{m, n}\right\}$ is a consistent family of matrix norms. We denoted $\nu_{m, n}(A)$ by $\|A\|_{1}$. Also note that $\|A\|_{1} \geq\|A\|_{1}$ agrees with Fact (2) on the previous slide.
$\left(\ell^{2}\right.$-norm on $\mathbb{F}^{m \times n}$ as if it were $\left.\mathbb{F}^{m n}\right)$ For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

Then $\nu_{n, 1}$ is the ℓ^{2}-norm on \mathbb{F}^{n}. If $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times k}$, then by the Schwarz inequality,

$$
\begin{aligned}
\left(\nu_{m, k}(A B)\right)^{2} & =\sum_{i=1}^{m} \sum_{j=1}^{k}\left|\sum_{\ell=1}^{n} a_{i \ell} b_{\ell_{j}}\right|^{2} \\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{k}\left(\sum_{\ell=1}^{n}\left|a_{i \ell}\right|^{2}\right)\left(\sum_{r=1}^{n}\left|b_{r j}\right|^{2}\right) \\
& =\left(\nu_{m, n}(A) \nu_{n, k}(B)\right)^{2},
\end{aligned}
$$

so $\left\{v_{m, n}\right\}$ is a consistent family of matrix norms.
This is not an operator norm: for $n>1, \nu_{n, n}(I)=\sqrt{n}$ but the operator norm of I is always 1 .
Denote $\nu_{m, n}(A)$ by $\|A\|_{2}$ (or, sometimes $\|A\|_{F}$).

For $A \in \mathbb{F}^{m \times n}$ and $x \in \mathbb{F}^{n}$, we have

$$
\|A x\|_{2} \leq\|A\|_{2} \cdot\|x\|_{2}
$$

so for $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times k}$,

$$
\|A B\|_{2} \leq\|A\|_{2} \cdot\|B\|_{2}
$$

Fact (2) above gives the important inequality

$$
\|A\|_{F} \geq\|A\|_{2} \quad \forall A \in \mathbb{F}^{m \times n} .
$$

Thus the operator norm induced by the ℓ^{2}-norms on \mathbb{F}^{m} and \mathbb{F}^{n} is dominated by the Frobenius norm.

Condition Number and Error Sensitivity

Let $A \in \mathbb{C}^{n \times n}$ be invertible. How sensitive is the solution to $A x=b$ to changes in b and A ? Let $\|\cdot\|$ be a consistent martrix norm on $\mathbb{C}^{n \times n}$. Suppose $A x=b$ and $A \hat{x}=\hat{b}$. How far is \hat{x} from x ?
$e:=x-\hat{x}=$ the error vector

$$
\|e\|:=\text { the error }
$$

$$
r:=b-\hat{b}=\text { the residual vector }
$$

$$
\|r\|:=\text { the residual }
$$

$$
\|e\| /\|x\|:=\text { the relative error }
$$

$$
\|r\| /\|b\|:=\text { the relative residual }
$$

Then $A e=A(x-\hat{x})=b-\hat{b}=r$, so

$$
\|e\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\|\|r\| \quad \text { and } \quad\|b\| \leq\|A\|\|x\|
$$

so

$$
\|e\| \cdot\|b\| \leq\|A\| \cdot\left\|A^{-1}\right\| \cdot\|x\| \cdot\|r\|
$$

which implies

$$
\frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

where $\kappa(A):=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of A.

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|=\text { condition number of } A
$$

Note that for any operator norm

$$
1=\|I\|=\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\|=\kappa(A) .
$$

A matrix is said to be perfectly conditioned if $\kappa(A)=1$, and is said to be ill-conditioned if $\kappa(A)$ is large.

If \widehat{x} is the result of a numerical algorithm for solving $A x=b$ (with round-off error), then the error $e=x-\widehat{x}$ is not computable. However, the residual $r=b-A \widehat{x}$ is computable, so we obtain an upper bound on the relative error

$$
\frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

In practice, we don't know $\kappa(A)$ (although we may be able to estimate it), and this upper bound may be much larger than the actual relative error.

Condition Number and Error Sensitivity

Now assume that both A and b are perturbed:

$$
\hat{A}=A+E \quad \text { and } \quad \hat{b}=b-r
$$

Obtain a bound on the relative error $\|e\| /\|x\|$ where

$$
e=x-\hat{x} \quad \text { with } \hat{x} \text { solving } \hat{A} \hat{x}=\hat{b}
$$

First use the Neumann Lemma to note that if

$$
\left\|A^{-1} E\right\| \leq\left\|A^{-1}\right\|\|E\|<1
$$

then

$$
\begin{aligned}
\left\|(A+E)^{-1}\right\| & =\left\|\left(I+A^{-1} E\right)^{-1} A^{-1}\right\| \\
& \leq\left\|\left(I+A^{-1} E\right)^{-1}\right\|\left\|A^{-1}\right\| \leq \frac{1}{1-\left\|A^{-1}\right\|\|E\|}\left\|A^{-1}\right\|
\end{aligned}
$$

Also, $(A+E) x=b+E x$ and $(A+E) \widehat{x}=\widehat{b}$ so

$$
e=x-\hat{x}=(A+E)^{-1}(E x+r)
$$

and so

$$
\begin{aligned}
\|e\| & \leq\left\|(A+E)^{-1}\right\|[\|E\|\|x\|+\|r\|] \\
& \leq \frac{1}{1-\left\|A^{-1}\right\|\|E\|}\left\|A^{-1}\right\|\left[\frac{\|E\|}{\|A\|}\|A\|\|x\|+\frac{\|r\|}{\|b\|}\|A\|\|x\|\right] .
\end{aligned}
$$

Therefore,

$$
\frac{\|e\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A) \frac{\|E\|}{\|A\|}}\left[\frac{\|E\|}{\|A\|}+\frac{\|r\|}{\|b\|}\right]
$$

