Linear Analysis
Lecture 8




Adjoint Transformations

The adjoint transformation of L € L(V, W), is
(L*g)(v) = g(Lv) .
Proposition. Let V, W be normed linear spaces. If L € B(V, W), then
L*[w*lcv*.
Moreover, L* € B(W*, V*) and |L*|| = | L] -
Proof: For g € W*,
[(L7g) ()| = lg(Lo)| < gl - ][ - [Iol],

so L*g € V*, and [[L*g|| < [|g]| - [|L]]-
Thus L* € B(W*, V*) and ||L*|| < ||L]|. Now given v € V, apply the
Hahn-Banach theorem to Lv to conclude that

Jg, € W* with ||g,|| =1 and (L*¢,)(v) = go(Lv) = || Lv||.

So IL¥] = sup [IL*f]] = sup sup [(L*f)(v)|
1< IS flol <1
> sup [(L7g.)(v)| = sup [[Lof| = [|L].
loli<1 lofi<1

Hence ||L*|| = || L. O
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Completeness of B(V, W)

Proposition. If W is complete, then B(V, W) is complete. In particular,
V* is always complete (since F is), whether or not V is complete.

Proof: If {L,} is Cauchy in B(V, W), then

(Vve V) {L,v} is Cauchyin W,
so the limit
lim L,v=Lv
n— o0
exists in W.
Clearly L: V — W is linear and L € B(V, W). To see that
IL,, — L|| = 0, let € > 0 and choose N such that

| Ln — L] <€ (¥Vn,m > N). Then
|Lnv— Lv|| <€ (Vve B, n,m>N).
Taking the limit in m gives
|Lnv— Lv|| <e (YveB, n>N),
which shows ||L, — L|| = 0 O



Analysis with Operators

Let (V, |I-]l) be a Banach space. Since V complete, B(V)=B(V,V) is
complete in the operator norm.

Let U, V, W be normed linear spaces. If Le B(U, V) and MeB(V, W),
then for v € U,

(M o L)(w)[lw = [|IM(Lu)|[w < [[M]| - || Lullv < [[M[|- | Z]| - [|u]l v,

so MoLeB(U, W) and |[MolL||<|M|-|L| .

Therefore, Operator norms are always submultiplicative.

The special case U = V = W shows that the operator norm on B(V) is
submultiplicative so B(V) is an algebra:

L,MeB(V)= MoLeB(V).

Polynomials on B(V).
Given L € B(V) and a polynomial p(z) = ag + a1z + -+ - + anz™,

p(Ly=al + a1 L+ -+ a, L"
is a polynomial mapping B(V) to itself, where

LF=Lo.---oL and L'=1.



Power Series on B(V)

By taking limits of polynomials, we can form power series, and thus
analytic functions on B( V). For example, consider the series

eL:ilLk:1+L+1L2+---
k! 2 '

k=0
This series converges in the operator norm on B(V):
IL*I < 1LI*,
> SEXTL Lk =z
Sz < S lElF = < oo
k=0 k=0

Since the series converges absolutely and B( V') is complete, it converges
in the operator norm to an operator in B(V).

We call this operator eX: ||l < ellZl .

In finite dimensions, this says that for A € F"*", each component of the

partial sum S & A* converges as N — oo; the limiting matrix is e



Neumann Series

Consider the power series

1 oo
l—z:ng

k=0

with radius of convergence 1 at z = 0.

Lemma.(C. Neumann)
If L € B(V)and|L|| <1, then (I — L)~! exists, and the Neumann
series ) 7~ L* converges in the operator norm to (I — L)™'

An operator in B(V) is said to be invertible if it is bijective and its
inverse is also in B( V).

The Neumann Lemma is an enormously useful fact in a number of
contexts, e.g., the perturbation theory for linear operators.
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Proof of Neumann’s Lemma

If [|L|| <1, then

LF|| < L|IF =
ZII | ZII "= IILH

so the Neumann series > .7 Lk converges to an operator in B(V).
Now if S;, S, T € B(V) and S; — S in B(V), then ||S; — S|| — 0, so
15T = ST| < 155 = SI - I =0
and
1TS; = TS| < [T - 1S = SIl = 0,
and thus S;T — ST and TS; — TS in B( V). Thus

(I-1L) LFl = lim (I-0)Y LF= i (I-LN*h =1
(0] = g 03 = 1) -
(as ||LNFY| < || LIV — 0), and similarly

(i L’“) (I-L)=1.
k=0

So (I — L) is invertible and (I — L)~! =72 L*. O



Power Series on B(V)

Let f(z) be analytic on the disk {|z| < R} C C, with power series

E akz

and radius of convergence at least R If L e B(V) and ||L]| < R, then

the series
S art

converges absolutely, and thus converges to an element of B( V') which
we call f(L).

It is easy to check that usual operational properties hold, for example

(fg)(L) = f(L)g(L) = g(L)f(L) .

Caution: Always remember that operators do not commute in general.
For example, .y Iy
el tM £ ele in general,

although if L and M commute (i.e. LM = ML), then

€L+M = €L CM.



Calculus on B(V): Differentiation

Let L(¢) be a 1-parameter family of operators in B(V), ¢t € (a, b). Since
B(V) is a metric space, continuity of L(t) in ¢ is well defined.
We say that L(t) is differentiable at t = ¢ € (a, b) if

exists in the norm on B(V).

For example, it is easily checked that for L € B(V), etl is differentiable
in ¢t forall t eR, and

—etl = Lett = et .
dt



Calculus on B(V): Differentiation

Similarly consider families of operators in B( V') depending on several real
or complex parameters. A family L(z) where

z=z+1iy € QP CC (z,y € R)

is said to be holomorphic in Q if the partial derivatives

5l L)

exist, are continuous in 2, and satisfy the Cauchy-Riemann equations
(681' + 288y> L(z)=0 on Q.

This is equivalent to the assumption that in a neighborhood of each
point z € Q, L(z) is given by the B(V)-norm convergent power series

:i;; i) (jz)kL(zo).
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Calculus on B(V): Integration

If L(t) depends continuously on t € [a, b], then it can be shown using the
same estimates as for F-valued functions (and the uniform continuity of
L(t) since [a, b] is compact) that the Riemann sums

S )

converge in B(V)-norm (recaII Vis a Banach space) as n — oo to an
operator in B(V), denoted b

P V) L(t)dt .

More general Riemann sums than just the left-hand “rectangular rule”
with equally spaced points can be used.
Many results from standard calculus carry over, including

b b
[ pwa] < / |E(e)dt
which follows from ‘ ‘

b—a k

N kZ:OL(a—l—N(b—a)) < N (a+ b—a)H
By parameterizing paths in C, one can deflne I|ne integrals of
holomorphic families of operators. We will discuss such constructions

further as we need them.
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Operators in Finite Dimensions

Transposes and Adjoints

A e (men
AT € C™™ the transpose of A: (A; = (A7)}
A" = AT the conjugate-transpose (or Hermitian transpose) of A

One often writes A* = A, But there is a subtlety here, which is related
to the identification of a linear operator with its representation as a
matrix, that we must be careful about.

Recall that an inner product on C™ can be represented as a matrix
multiply, e.g. for the Euclidean inner product

(z,y) =y"x

For A € C"*",
(Az,y) = (z, ATy)

since
yH Az = (AHy)Hm
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Caution About A" and A*

The notation A* is used with two different meanings (particularly when
F=C). LeEB(V,W) = L*eB(W* V)
In finite dim., one can choose bases of VV and W to encode the action of
L as left matrix multiplication on column vectors associated with the
bases components. Denote such a matrix as 7.
Then the action of L* on W* can be encoded using the corresponding
dual bases using the same matrix T. But now the action is represented
as right multiplication by 7" on row vectors of components in the dual
basis (a=bT).
On the other hand, in the presence of an inner product, the definition
(v, w) = (v, L*w)
identifies L* with left-multiplication by the conjugate-transpose matrix.
These two definitions are related by the identification
vy
induced by the inner product:
weV = (,uwy=w"eV".
But the conjugation in this identification gives rise to a different
representation of L*. The first is a natural representation obtained
through the composition of function, and the second is through the inner
product.
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Norms on Matrices

Commonly used norms on C™*™,

[All = 325 layl (the ¢*-norm on A as if it were in C™")

Al = max;;|asl (the £>°-norm on A as if it were in (C"2)
1

|Alls = (ZU |aij|2) ’ (the £2-norm on A as if it were in C™’)

[|All2 is called the Hilbert-Schmidt norm of A, or the Frobenius norm of
A, and is often denoted ||A||r. It is also called the Euclidean norm on
C™*". The associated inner product is (A, B) =tr B7A .

We also have p-norms for matrices: let 1 < p < oo,

A = max |4z = max ||Az||, = max(||Az T .
Al = e el (= e, 42l = max(ldal/le],)
In particular,

IA|llh = maxi<j<n Y imq lag] (max column sum)
[Alllo = maxici<m > iy |ayl (max row sum)

[l|A]]|2 is the spectral norm. We study it in detail later.
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Consistent Matrix Norms

Definitions
elet p:C™" 5 R, v:C™*F 5 R, p: C™* — R be norms. We say
that 4, v, p are consistent if VA € C™*" and V B € C"*F,

p(AB) < p(A)v(B)

e A norm on F™*™ is called consistent if it is consistent with itself, i.e.,
the definition above with m =n =k an p = u = v. So by definition a
norm on F™*™ is consistent iff it is submultiplicative.

o A collection {vy, n, : m > 1,n > 1}, where v, , =F™*" - Ris a
norm on F™*™ is called a family of matrix norms.

o A family {vsm,n : m > 1,n > 1} of matrix norms is called consistent if

(Vm,n,k>1)(VA€F™") (VB e k)
Vm k(AB) < Vi n(A) vy 1 (B).

Facts Let {v,, ,,} be a consistent family of matrix norms. Then
(1) (Yn>1) vy, issubmultiplicative.
(2) (Vm,n>1) VAEF™™) v n(A) > ptim.n(A), where iy, ,, is the
operator norm on F™*™ induced by v, 1 and v, ;.
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Examples of Consistent Matrix Norms

(1) For m > 1, let v, 1 be any norm on F™, and 14 1(z) = |z|. For
m,n > 1, let vy, , be the operator norm on F"™*™ induced by v,, ; and
Vm,1 Then {v,, ,} is a consistent family of matrix norms.

(2) (maximum row sum norm) For m,n>1 and A e F™X" let

1% = Imax a.
mon T i<i<m Z' il
Then vy, 1 is the £*°-norm on F", and ym n(A) is the operator norm

induced by the £>°-norms on "™ and F™, which we denoted by || A,
(3) (maximum column sum norm) For m,n > 1and A € F™*", let

Um.n(A) = max E lag;|.
1<j<n
Then vy, ; is the ¢ -norm on F™, and v,, n%) is the operator norm

induced by the ¢-norms on F™ and F™, which we denoted by || A][;.
(4) (¢*-norm on F™*™ as if it were Fm") For m,n>1and A € F™ " |et

Vmn(A4) = Z Z |ag]-
=1 j=1
Then {v,, } is a consistent family of matrix norms. We denoted
Vm.n(A) by ||A||;. Also note that ||A||; > || A]|; agrees with Fact (2)

on the previous slide.
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The Frobenius or Hilbert-Schmidt Norm

(£2-norm on F™*™ 3s if it were F™") For m,n > 1 and A € F™*", let

Then v,, 1 is the £2-norm on F™. If A € F™*" and B € F"**, then by
the Schwarz inequality,

m k n 2
(mi(AB)? = Y IS auby,
i=1 j=1 | =1
m k n n
< 35St (D)
i=1 j=1 \f=1 r=1
= (Vm,n(A)Vn,k(B))zv

50 {Um,n} is a consistent family of matrix norms.
This is not an operator norm: for n > 1, v, ,(I) = \/n but the operator
norm of I is always 1.

Denote vy, ,(A) by ||A||2 (or, sometimes ||A|| 7).
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The Frobenius or Hilbert-Schmidt Norm

For A € F™*™ and z € F™, we have
[Azlj2 < [[All2 - ]2,
so for A € F™*" and B € F"*k,
IABll2 < [|All2 - | Bll2-
Fact (2) above gives the important inequality
[Allp = 1Al v AeF™™

Thus the operator norm induced by the #2-norms on F™ and F” is
dominated by the Frobenius norm.
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Condition Number and Error Sensitivity

Let A € C™*™ be invertible. How sensitive is the solution to Az = b to

changes in b and A? Let || - || be a consistent martrix norm on C"*™.
Suppose Az = b and Az =b. How faris % from z7?
e = x—12 = the error vector
llell := the error
r := b—b = the residual vector
|lr|| := the residual
llell/llz]] := the relative error
Il7]|/]|b]] := the relative residual

Then Ae = A(z —2) =b—b=r, so
lell = 1A= [l < [ATHHIrll - and (b} < [[A] [l2]]

lell - 11oll < 1AL (AT [l - I

SO

which implies

el I~
< R(A) =
] o]l

where k(A) := || A]| - || A=Y|| is the condition number of A.
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Condition Number and Error Sensitivity

k(A) = ||A]| - | A~|| = condition number of A.

Note that for any operator norm
L= [[I]| = [[AATH] < [JA[H|ATH] = w(A).

A matrix is said to be perfectly conditioned if x(A) = 1, and is said to be
ill-conditioned if k(A) is large.

If Z is the result of a numerical algorithm for solving Az = b (with
round-off error), then the error e = z — T is not computable. However,
the residual r = b — AZ is computable, so we obtain an upper bound on
the relative error

[[ell K4
T < ()il
]| 1]

In practice, we don't know x(A) (although we may be able to estimate
it), and this upper bound may be much larger than the actual relative
error.
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Condition Number and Error Sensitivity

Now assume that both A and b are perturbed:

+ —-r
Obtain a bound on the relative error ||¢||/||z|| where
e=x—1 with Z solving AZ =10 .
First use the Neumann Lemma to note that if
AT Bl < [ A7HHIE] <1,

then
A+ B) | = I(T+ A By A7
1 _ 1 _
<N+ ATTE)THATY) SwnA I
Also, (A+ E)z = b+ Ez and (A+ E)Z = b so
e=1—3=(A+E) Y (Ex+r)
and so
lell < ICA+E) I IEN ] + 7]
1 e [IE] JIEal}
< s AT [ Al 2l + o LA
L—[[ A=Y [ E]] 1A]l Il
Therefore,

llell f4)  [IEl D7l
ol = 1= n(a)IEI Tt fol)
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