Linear Analysis Lecture 8

Adjoint Transformations

The adjoint transformation of $L\in \mathcal{L}(\,V,\,W),$ is $(L^*g)(v)=g(Lv)~.$

Proposition. Let V, W be normed linear spaces. If $L \in \mathcal{B}(V, W)$, then $L^*[W^*] \subset V^*$. Moreover, $L^* \in \mathcal{B}(W^*, V^*)$ and $\|L^*\| = \|L\|$.

Proof: For $g \in W^*$,

$$|(L^*g)(v)| = |g(Lv)| \le ||g|| \cdot ||L|| \cdot ||v||,$$

so $L^*g \in V^*$, and $||L^*g|| \le ||g|| \cdot ||L||$. Thus $L^* \in \mathcal{B}(W^*, V^*)$ and $||L^*|| \le ||L||$. Now given $v \in V$, apply the Hahn-Banach theorem to Lv to conclude that

 $\exists g_v \in W^* \text{ with } ||g_v|| = 1 \text{ and } (L^*g_v)(v) = g_v(Lv) = ||Lv||.$

So
$$||L^*|| = \sup_{\|f\| \le 1} ||L^*f|| = \sup_{\|f\| \le 1} \sup_{\|v\| \le 1} ||(L^*f)(v)|$$

 $\ge \sup_{\|v\| \le 1} |(L^*g_v)(v)| = \sup_{\|v\| \le 1} ||Lv|| = ||L||.$

Hence $||L^*|| = ||L||$.

Proposition. If W is complete, then $\mathcal{B}(V, W)$ is complete. In particular, V^* is always complete (since \mathbb{F} is), whether or not V is complete.

Proof: If $\{L_n\}$ is Cauchy in $\mathcal{B}(V, W)$, then

$$(\forall v \in V) \quad \{L_n v\}$$
 is Cauchy in W ,

so the limit

$$\lim_{n \to \infty} L_n v \equiv L v$$

exists in W.

Clearly $L: V \to W$ is linear and $L \in \mathcal{B}(V, W)$. To see that $||L_n - L|| \to 0$, let $\epsilon > 0$ and choose N such that $||L_n - L_m|| \le \epsilon \quad (\forall n, m \ge N)$. Then $||L_n v - L_m v|| \le \epsilon \quad (\forall v \in B, n, m \ge N)$.

Taking the limit in m gives

$$||L_n v - Lv|| \le \epsilon \quad (\forall v \in B, \ n \ge N),$$

which shows $||L_n - L|| \to 0$.

Analysis with Operators

Let $(V, \|\cdot\|)$ be a Banach space. Since V complete, $\mathcal{B}(V) = \mathcal{B}(V, V)$ is complete in the operator norm.

Let U, V, W be normed linear spaces. If $L \in \mathcal{B}(U, V)$ and $M \in \mathcal{B}(V, W)$, then for $u \in U$,

$$\|(M \circ L)(u)\|_{W} = \|M(Lu)\|_{W} \le \|M\| \cdot \|Lu\|_{V} \le \|M\| \cdot \|L\| \cdot \|u\|_{U},$$

so $M \circ L \in \mathcal{B}(U, W)$ and $||M \circ L|| \le ||M|| \cdot ||L||$.

Therefore, **Operator norms are always submultiplicative.** The special case U = V = W shows that the operator norm on $\mathcal{B}(V)$ is submultiplicative so $\mathcal{B}(V)$ is an algebra:

$$L, M \in \mathcal{B}(V) \Rightarrow M \circ L \in \mathcal{B}(V).$$

Polynomials on $\mathcal{B}(V)$.

Given $L \in \mathcal{B}(V)$ and a polynomial $p(z) = a_0 + a_1 z + \dots + a_n z^n$,

$$p(L) \equiv a_0 I + a_1 L + \dots + a_n L^n$$

is a polynomial mapping $\mathcal{B}(V)$ to itself, where

$$L^k = L \circ \cdots \circ L$$
 and $L^0 \equiv I$.

By taking limits of polynomials, we can form power series, and thus analytic functions on $\mathcal{B}(V)$. For example, consider the series

$$e^{L} = \sum_{k=0}^{\infty} \frac{1}{k!} L^{k} = I + L + \frac{1}{2}L^{2} + \cdots$$

This series converges in the operator norm on $\mathcal{B}(V)$:

$$\|L^{k}\| \leq \|L\|^{k},$$

$$\sum_{k=0}^{\infty} \frac{1}{k!} \|L^{k}\| \leq \sum_{k=0}^{\infty} \frac{1}{k!} \|L\|^{k} = e^{\|L\|} < \infty.$$

so

Since the series converges absolutely and $\mathcal{B}(V)$ is complete, it converges in the operator norm to an operator in $\mathcal{B}(V)$.

We call this operator e^L : $||e^L|| \le e^{||L||}$.

In finite dimensions, this says that for $A \in \mathbb{F}^{n \times n}$, each component of the partial sum $\sum_{k=0}^{N} \frac{1}{k!} A^k$ converges as $N \to \infty$; the limiting matrix is e^A .

Consider the power series

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$$

with radius of convergence 1 at z = 0.

Lemma.(C. Neumann) If $L \in \mathcal{B}(V)$ and ||L|| < 1, then $(I - L)^{-1}$ exists, and the Neumann series $\sum_{k=0}^{\infty} L^k$ converges in the operator norm to $(I - L)^{-1}$.

An operator in $\mathcal{B}(V)$ is said to be invertible if it is bijective and its inverse is also in $\mathcal{B}(V)$.

The Neumann Lemma is an enormously useful fact in a number of contexts, e.g., the perturbation theory for linear operators.

Proof of Neumann's Lemma

If
$$\|L\| < 1$$
, then
$$\sum_{k=0}^{\infty} \|L^k\| \le \sum_{k=0}^{\infty} \|L\|^k = \frac{1}{1 - \|L\|} < \infty,$$

so the Neumann series $\sum_{k=0}^{\infty} L^k$ converges to an operator in $\mathcal{B}(V)$. Now if $S_j, S, T \in \mathcal{B}(V)$ and $S_j \to S$ in $\mathcal{B}(V)$, then $||S_j - S|| \to 0$, so

$$||S_j T - ST|| \le ||S_j - S|| \cdot ||T|| \to 0$$

and

$$||TS_j - TS|| \le ||T|| \cdot ||S_j - S|| \to 0,$$

and thus $S_jT \to ST$ and $TS_j \to TS$ in $\mathcal{B}(V)$. Thus

$$(I-L)\left(\sum_{k=0}^{\infty} L^k\right) = \lim_{N \to \infty} (I-L)\sum_{k=0}^N L^k = \lim_{N \to \infty} (I-L^{N+1}) = I$$

(as $\|L^{N+1}\| \le \|L\|^{N+1} \to 0$), and similarly

$$\left(\sum_{k=0}^{\infty} L^k\right)(I-L) = I$$

So (I - L) is invertible and $(I - L)^{-1} = \sum_{k=0}^{\infty} L^k$.

Power Series on $\mathcal{B}(V)$

Let f(z) be analytic on the disk $\{|z| < R\} \subset \mathbb{C},$ with power series

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

and radius of convergence at least R. If $L\in \mathcal{B}(V)$ and $\|L\|< R,$ then the series $\sum_{k=0}^\infty a_k L^k$

converges absolutely, and thus converges to an element of $\mathcal{B}(V)$ which we call f(L).

It is easy to check that usual operational properties hold, for example $(fg)(L)=f(L)g(L)=g(L)f(L)\ .$

Caution: Always remember that operators do not commute in general. For example,

$$e^{L+M} \neq e^L e^M$$
 in general,

although if L and M commute (i.e. LM = ML), then

$$e^{L+M} = e^L e^M.$$

Let L(t) be a 1-parameter family of operators in $\mathcal{B}(V)$, $t \in (a, b)$. Since $\mathcal{B}(V)$ is a metric space, continuity of L(t) in t is well defined. We say that L(t) is *differentiable* at $t = t_0 \in (a, b)$ if

$$L'(t_0) = \lim_{t \to t_0} \frac{L(t) - L(t_0)}{t - t_0}$$

exists in the norm on $\mathcal{B}(V)$.

For example, it is easily checked that for $L \in \mathcal{B}(V)$, e^{tL} is differentiable in t for all $t \in \mathbb{R}$, and

$$\frac{d}{dt}e^{tL} = Le^{tL} = e^{tL}L \; .$$

Calculus on $\mathcal{B}(V)$: Differentiation

Similarly consider families of operators in $\mathcal{B}(V)$ depending on several real or complex parameters. A family L(z) where

$$z = x + iy \in \Omega^{\text{open}} \subset \mathbb{C} \qquad (x, y \in \mathbb{R})$$

is said to be holomorphic in Ω if the partial derivatives

$$\frac{\partial}{\partial x}L(z), \qquad \frac{\partial}{\partial y}L(z)$$

exist, are continuous in Ω , and satisfy the Cauchy-Riemann equations

$$\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)L(z)=0\quad\text{on }\Omega.$$

This is equivalent to the assumption that in a neighborhood of each point $z_0 \in \Omega$, L(z) is given by the $\mathcal{B}(V)$ -norm convergent power series

$$L(z) = \sum_{k=0}^{\infty} \frac{1}{k!} (z - z_0)^k \left(\frac{d}{dz}\right)^k L(z_0).$$

Calculus on $\mathcal{B}(V)$: Integration

If L(t) depends continuously on $t \in [a, b]$, then it can be shown using the same estimates as for \mathbb{F} -valued functions (and the uniform continuity of L(t) since [a, b] is compact) that the Riemann sums

$$\frac{b-a}{N}\sum_{k=0}^{n-1}L\left(a+\frac{k}{N}(b-a)\right)$$

converge in $\mathcal{B}(V)$ -norm (recall V is a Banach space) as $n \to \infty$ to an operator in $\mathcal{B}(V)$, denoted $\int^{b} L(t)dt$.

More general Riemann sums than just the left-hand "rectangular rule" with equally spaced points can be used.

Many results from standard calculus carry over, including

$$\left|\int_{a}^{b} L(t)dt\right| \leq \int_{a}^{b} \|L(t)\|dt$$

which follows from

$$\left\|\frac{b-a}{N}\sum_{k=0}^{N-1}L\left(a+\frac{k}{N}(b-a)\right)\right\| \le \frac{b-a}{N}\sum_{k=0}^{N-1}\left\|L\left(a+\frac{k}{N}(b-a)\right)\right\|.$$

By parameterizing paths in \mathbb{C} , one can define line integrals of holomorphic families of operators. We will discuss such constructions further as we need them.

Transposes and Adjoints

 $\begin{array}{rcl} A & \in & \mathbb{C}^{m \times n} \\ A^T & \in & \mathbb{C}^{n \times m} & \text{the transpose of } A \text{: } (A_{ij} = (A^T)_{ji} \\ A^H & = & \overline{A}^T & \text{the conjugate-transpose (or Hermitian transpose) of } A \end{array}$

One often writes $A^* = A^H$. But there is a subtlety here, which is related to the identification of a linear operator with its representation as a matrix, that we must be careful about.

Recall that an inner product on \mathbb{C}^n can be represented as a matrix multiply, e.g. for the Euclidean inner product

$$\langle x, y \rangle = y^H x$$

For $A \in \mathbb{C}^{n \times n}$,

$$\langle Ax,y\rangle = \langle x,A^Hy\rangle$$

since

$$y^H A x = (A^H y)^H x$$

Caution About A^H and A^*

The notation A^* is used with two different meanings (particularly when $\mathbb{F} = \mathbb{C}$). $L \in \mathcal{B}(V, W) \implies L^* \in \mathcal{B}(W^*, V^*)$ In finite dim., one can choose bases of V and W to encode the action of L as left matrix multiplication on column vectors associated with the bases components. Denote such a matrix as T. Then the action of L^* on W^* can be encoded using the corresponding dual bases using the same matrix T. But now the action is represented as right multiplication by T on row vectors of components in the dual basis (a=bT).

On the other hand, in the presence of an inner product, the definition $\langle Lv, w \rangle = \langle v, L^*w \rangle$

identifies L^\ast with left-multiplication by the conjugate-transpose matrix. These two definitions are related by the identification

$$V \cong V^*$$

induced by the inner product:

 $w \in V \iff \langle \cdot, w \rangle = w^* \in V^*$. But the conjugation in this identification gives rise to a different representation of L^* . The first is a natural representation obtained through the composition of function, and the second is through the inner product.

Norms on Matrices

Commonly used norms on $\mathbb{C}^{m \times n}$.

$$\|A\|_{1} = \sum_{ij} |a_{ij}| \qquad (\text{the } \ell^{1}\text{-norm on } A \text{ as if it were in } \mathbb{C}^{n^{2}})$$

$$\|A\|_{\infty} = \max_{i,j} |a_{ij}| \qquad (\text{the } \ell^{\infty}\text{-norm on } A \text{ as if it were in } \mathbb{C}^{n^{2}})$$

$$\|A\|_{2} = \left(\sum_{i,j} |a_{ij}|^{2}\right)^{\frac{1}{2}} \qquad (\text{the } \ell^{2}\text{-norm on } A \text{ as if it were in } \mathbb{C}^{n^{2}})$$

$$\begin{split} \|A\|_2 \text{ is called the Hilbert-Schmidt norm of } A, \text{ or the Frobenius norm of } A, \text{ and is often denoted } \|A\|_F. \text{ It is also called the Euclidean norm on } \mathbb{C}^{m\times n}. \text{ The associated inner product is } \langle A, B \rangle &= \operatorname{tr} B^H A \text{ .} \end{split}$$
We also have $p\text{-norms for matrices: let } 1 \leq p \leq \infty, \\ \||A|\|_p &= \max_{\|x\|_p=1} \|Ax\|_p \quad \left(= \max_{\|x\|_p \leq 1} \|Ax\|_p = \max_{x \neq 0} (\|Ax\|_p / \|x\|_p) \right). \text{ In particular,} \end{split}$

$$||A|||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$
 (max column sum)

 $|||A|||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$ (max row sum) $|||A|||_2$ is the spectral norm. We study it in detail later.

Consistent Matrix Norms

Definitions

• Let $\mu : \mathbb{C}^{m \times n} \to \mathbb{R}$, $\nu : \mathbb{C}^{n \times k} \to \mathbb{R}$, $\rho : \mathbb{C}^{m \times k} \to \mathbb{R}$ be norms. We say that μ, ν, ρ are **consistent** if $\forall A \in \mathbb{C}^{m \times n}$ and $\forall B \in \mathbb{C}^{n \times k}$,

 $\rho(AB) \leq \mu(A)\nu(B)$

• A norm on $\mathbb{F}^{n \times n}$ is called consistent if it is consistent with itself, i.e., the definition above with m = n = k an $\rho = \mu = \nu$. So by definition a norm on $\mathbb{F}^{n \times n}$ is consistent iff it is submultiplicative.

- A collection $\{\nu_{m,n}: m \ge 1, n \ge 1\}$, where $\nu_{m,n} = \mathbb{F}^{m \times n} \to \mathbb{R}$ is a norm on $\mathbb{F}^{m \times n}$, is called a **family of matrix norms**.
- A family $\{\nu_{m,n}: m \geq 1, n \geq 1\}$ of matrix norms is called **consistent** if

$$\begin{aligned} (\forall m, n, k \ge 1) (\forall A \in \mathbb{F}^{m \times n}) (\forall B \in \mathbb{F}^{n \times k}) \\ \nu_{m,k}(AB) \le \nu_{m,n}(A)\nu_{n,k}(B). \end{aligned}$$

Facts Let $\{\nu_{m,n}\}$ be a consistent family of matrix norms. Then (1) $(\forall n \ge 1) \quad \nu_{n,n}$ is submultiplicative. (2) $(\forall m, n \ge 1) \quad (\forall A \in \mathbb{F}^{m \times n}) \quad \nu_{m,n}(A) \ge \mu_{m,n}(A)$, where $\mu_{m,n}$ is the operator norm on $\mathbb{F}^{m \times n}$ induced by $\nu_{n,1}$ and $\nu_{m,1}$.

Examples of Consistent Matrix Norms

- (1) For m > 1, let $\nu_{m,1}$ be any norm on \mathbb{F}^m , and $\nu_{1,1}(x) = |x|$. For $m, n \ge 1$, let $\nu_{m,n}$ be the operator norm on $\mathbb{F}^{m \times n}$ induced by $\nu_{n,1}$ and $\nu_{m,1}$ Then $\{\nu_{m,n}\}$ is a consistent family of matrix norms.
- (2) (maximum row sum norm) For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$\nu_{m,n}(A) = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

Then $\nu_{n,1}$ is the ℓ^{∞} -norm on \mathbb{F}^n , and $\nu_{m,n}(A)$ is the operator norm induced by the ℓ^{∞} -norms on \mathbb{F}^n and \mathbb{F}^m , which we denoted by $||A||_{\infty}$.

(3) (maximum column sum norm) For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$\nu_{m,n}(A) = \max_{1 \le j \le n} \sum_{i=1} |a_{ij}|.$$

Then $\nu_{n,1}$ is the ℓ^1 -norm on \mathbb{F}^n , and $\nu_{m,n}(\cdot)$ is the operator norm induced by the ℓ' -norms on \mathbb{F}^n and \mathbb{F}^m , which we denoted by $|||A|||_1$. (4) (ℓ^1 -norm on $\mathbb{F}^{m \times n}$ as if it were \mathbb{F}^{mn}) For $m, n \ge 1$ and $A \in \mathbb{F}^{m \times n}$, let $\nu_{m,n}(A) = \sum_{i=1}^{m} \sum_{j=1}^{m} |a_{ij}|.$

Then $\{\nu_{m,n}\}$ is a consistent family of matrix norms. We denoted $\nu_{m,n}(A)$ by $||A||_1$. Also note that $||A||_1 \ge ||A||_1$ agrees with Fact (2) on the previous slide.

The Frobenius or Hilbert-Schmidt Norm

(ℓ^2 -norm on $\mathbb{F}^{m imes n}$ as if it were \mathbb{F}^{mn}) For $m, n \geq 1$ and $A \in \mathbb{F}^{m imes n}$, let

$$\nu_{m,n}(A) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}.$$

Then $\nu_{n,1}$ is the ℓ^2 -norm on \mathbb{F}^n . If $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times k}$, then by the Schwarz inequality,

$$(\nu_{m,k}(AB))^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \left| \sum_{\ell=1}^{n} a_{i\ell} b_{\ell_{j}} \right|^{2}$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{k} \left(\sum_{\ell=1}^{n} |a_{i\ell}|^{2} \right) \left(\sum_{r=1}^{n} |b_{rj}|^{2} \right)$$

$$= (\nu_{m,n}(A)\nu_{n,k}(B))^{2},$$

so $\{v_{m,n}\}$ is a consistent family of matrix norms. This is **not** an operator norm: for n > 1, $\nu_{n,n}(I) = \sqrt{n}$ but the operator norm of I is always 1.

Denote $\nu_{m,n}(A)$ by $||A||_2$ (or, sometimes $||A||_F$).

For $A \in \mathbb{F}^{m \times n}$ and $x \in \mathbb{F}^n$, we have

 $||Ax||_2 \le ||A||_2 \cdot ||x||_2,$

so for $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times k}$,

 $||AB||_2 \le ||A||_2 \cdot ||B||_2.$

Fact (2) above gives the important inequality

 $\|A\|_F \ge \|A\|_2 \qquad \forall \ A \in \mathbb{F}^{m \times n}.$

Thus the operator norm induced by the ℓ^2 -norms on \mathbb{F}^m and \mathbb{F}^n is dominated by the Frobenius norm.

Condition Number and Error Sensitivity

Let $A \in \mathbb{C}^{n \times n}$ be invertible. How sensitive is the solution to Ax = b to changes in b and A? Let $\|\cdot\|$ be a consistent martrix norm on $\mathbb{C}^{n \times n}$. Suppose Ax = b and $A\hat{x} = \hat{b}$. How far is \hat{x} from x? $e := x - \hat{x} =$ the error vector ||e|| := the error $r := b - \hat{b} =$ the residual vector ||r|| := the residual ||e||/||x|| := the relative error ||r||/||b|| := the relative residual Then $Ae = A(x - \hat{x}) = b - \hat{b} = r$, so $||e|| = ||A^{-1}r|| < ||A^{-1}|| ||r||$ and $||b|| \le ||A|| ||x||$ SO $||e|| \cdot ||b|| < ||A|| \cdot ||A^{-1}|| \cdot ||x|| \cdot ||r||$

which implies

$$\frac{\|e\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|},$$

where $\kappa(A):=\|A\|\cdot\|A^{-1}\|$ is the condition number of A.

 $\kappa(A) = \|A\| \cdot \|A^{-1}\| = \text{condition number of } A.$

Note that for any operator norm

$$1 = \|I\| = \|AA^{-1}\| \le \|A\| \, \|A^{-1}\| = \kappa(A).$$

A matrix is said to be perfectly conditioned if $\kappa(A) = 1$, and is said to be ill-conditioned if $\kappa(A)$ is large.

If \hat{x} is the result of a numerical algorithm for solving Ax = b (with round-off error), then the error $e = x - \hat{x}$ is not computable. However, the residual $r = b - A\hat{x}$ is computable, so we obtain an upper bound on the relative error

$$\frac{\|e\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|} .$$

In practice, we don't know $\kappa(A)$ (although we may be able to estimate it), and this upper bound may be much larger than the actual relative error.

Condition Number and Error Sensitivity

Now assume that both A and b are perturbed: $\hat{A} = A + E$ and $\hat{b} = b - r$ Obtain a bound on the relative error ||e||/||x|| where $e = x - \hat{x}$ with \hat{x} solving $\hat{A}\hat{x} = \hat{b}$. First use the Neumann Lemma to note that if $||A^{-1}E|| < ||A^{-1}|| ||E|| < 1,$ then $||(A + E)^{-1}|| = ||(I + A^{-1}E)^{-1}A^{-1}||$ $\leq \|(I+A^{-1}E)^{-1}\| \|A^{-1}\| \leq \frac{1}{1-\|A^{-1}\| \|E\|} \|A^{-1}\|.$ Also, (A + E)x = b + Ex and $(A + E)\widehat{x} = \widehat{b}$ so $e = x - \hat{x} = (A + E)^{-1}(Ex + r)$ and so $||e|| \leq ||(A+E)^{-1}|| [||E|| ||x|| + ||r||]$ $\leq \quad \frac{1}{1 - \|A^{-1}\| \|E\|} \|A^{-1}\| \left[\frac{\|E\|}{\|A\|} \|A\| \|x\| + \frac{\|r\|}{\|b\|} \|A\| \|x\| \right] \ .$ Therefore,

$$\frac{\|e\|}{\|x\|} \le \frac{\kappa(A)}{1 - \kappa(A) \frac{\|E\|}{\|A\|}} \left[\frac{\|E\|}{\|A\|} + \frac{\|r\|}{\|b\|} \right] .$$

21 / 21