## Linear Analysis Lecture 8

## Adjoint Transformations

The adjoint transformation of $L \in \mathcal{L}(V, W)$, is

$$
\left(L^{*} g\right)(v)=g(L v) .
$$

Proposition. Let $V, W$ be normed linear spaces. If $L \in \mathcal{B}(V, W)$, then $L^{*}\left[W^{*}\right] \subset V^{*}$.
Moreover, $L^{*} \in \mathcal{B}\left(W^{*}, V^{*}\right) \quad$ and $\quad\left\|L^{*}\right\|=\|L\|$.
Proof: For $g \in W^{*}$,

$$
\left|\left(L^{*} g\right)(v)\right|=|g(L v)| \leq\|g\| \cdot\|L\| \cdot\|v\|
$$

so $L^{*} g \in V^{*}$, and $\left\|L^{*} g\right\| \leq\|g\| \cdot\|L\|$.
Thus $L^{*} \in \mathcal{B}\left(W^{*}, V^{*}\right)$ and $\left\|L^{*}\right\| \leq\|L\|$. Now given $v \in V$, apply the Hahn-Banach theorem to $L v$ to conclude that

$$
\exists g_{v} \in W^{*} \text { with }\left\|g_{v}\right\|=1 \text { and }\left(L^{*} g_{v}\right)(v)=g_{v}(L v)=\|L v\| .
$$

So

$$
\begin{aligned}
\left\|L^{*}\right\| & =\sup _{\|f\| \leq 1}\left\|L^{*} f\right\| \\
& =\sup _{\|f\| \leq 1\|v\| \leq 1} \sup _{\| v}\left|\left(L^{*} f\right)(v)\right| \\
& \geq \sup _{\|v\| \leq 1}\left|\left(L^{*} g_{v}\right)(v)\right|
\end{aligned}=\sup _{\|v\| \leq 1}\|L v\|=\|L\| .
$$

Hence $\left\|L^{*}\right\|=\|L\|$.

Proposition. If $W$ is complete, then $\mathcal{B}(V, W)$ is complete. In particular, $V^{*}$ is always complete (since $\mathbb{F}$ is), whether or not $V$ is complete.
Proof: If $\left\{L_{n}\right\}$ is Cauchy in $\mathcal{B}(V, W)$, then

$$
(\forall v \in V) \quad\left\{L_{n} v\right\} \quad \text { is Cauchy in } W \text {, }
$$

so the limit

$$
\lim _{n \rightarrow \infty} L_{n} v \equiv L v
$$

exists in $W$.
Clearly $L: V \rightarrow W$ is linear and $L \in \mathcal{B}(V, W)$. To see that $\left\|L_{n}-L\right\| \rightarrow 0$, let $\epsilon>0$ and choose $N$ such that $\left\|L_{n}-L_{m}\right\| \leq \epsilon \quad(\forall n, m \geq N)$. Then

$$
\left\|L_{n} v-L_{m} v\right\| \leq \epsilon \quad(\forall v \in B, n, m \geq N)
$$

Taking the limit in $m$ gives

$$
\left\|L_{n} v-L v\right\| \leq \epsilon \quad(\forall v \in B, n \geq N)
$$

which shows $\left\|L_{n}-L\right\| \rightarrow 0$.

## Analysis with Operators

Let $(V,\|\cdot\|)$ be a Banach space. Since $V$ complete, $\mathcal{B}(V)=\mathcal{B}(V, V)$ is complete in the operator norm.
Let $U, V, W$ be normed linear spaces. If $L \in \mathcal{B}(U, V)$ and $M \in \mathcal{B}(V, W)$, then for $u \in U$,

$$
\|(M \circ L)(u)\|_{W}=\|M(L u)\|_{W} \leq\|M\| \cdot\|L u\|_{V} \leq\|M\| \cdot\|L\| \cdot\|u\|_{U}
$$

so $\quad M \circ L \in \mathcal{B}(U, W) \quad$ and $\quad\|M \circ L\| \leq\|M\| \cdot\|L\|$.
Therefore, Operator norms are always submultiplicative.
The special case $U=V=W$ shows that the operator norm on $\mathcal{B}(V)$ is submultiplicative so $\mathcal{B}(V)$ is an algebra:

$$
L, M \in \mathcal{B}(V) \Rightarrow M \circ L \in \mathcal{B}(V)
$$

Polynomials on $\mathcal{B}(V)$.
Given $L \in \mathcal{B}(V)$ and a polynomial $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$,

$$
p(L) \equiv a_{0} I+a_{1} L+\cdots+a_{n} L^{n}
$$

is a polynomial mapping $\mathcal{B}(V)$ to itself, where

$$
L^{k}=L \circ \cdots \circ L \quad \text { and } \quad L^{0} \equiv I .
$$

## Power Series on $\mathcal{B}(V)$

By taking limits of polynomials, we can form power series, and thus analytic functions on $\mathcal{B}(V)$. For example, consider the series

$$
e^{L}=\sum_{k=0}^{\infty} \frac{1}{k!} L^{k}=I+L+\frac{1}{2} L^{2}+\cdots
$$

This series converges in the operator norm on $\mathcal{B}(V)$ :

$$
\left\|L^{k}\right\| \leq\|L\|^{k}
$$

so

$$
\sum_{k=0}^{\infty} \frac{1}{k!}\left\|L^{k}\right\| \leq \sum_{k=0}^{\infty} \frac{1}{k!}\|L\|^{k}=e^{\|L\|}<\infty
$$

Since the series converges absolutely and $\mathcal{B}(V)$ is complete, it converges in the operator norm to an operator in $\mathcal{B}(V)$.

We call this operator $e^{L}: \quad\left\|e^{L}\right\| \leq e^{\|L\|}$.
In finite dimensions, this says that for $A \in \mathbb{F}^{n \times n}$, each component of the partial sum $\sum_{k=0}^{N} \frac{1}{k!} A^{k}$ converges as $N \rightarrow \infty$; the limiting matrix is $e^{A}$.

## Neumann Series

Consider the power series

$$
\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k}
$$

with radius of convergence 1 at $z=0$.

Lemma.(C. Neumann)
If $L \in \mathcal{B}(V)$ and $\|L\|<1$, then $(I-L)^{-1}$ exists, and the Neumann series $\sum_{k=0}^{\infty} L^{k}$ converges in the operator norm to $(I-L)^{-1}$.

An operator in $\mathcal{B}(V)$ is said to be invertible if it is bijective and its inverse is also in $\mathcal{B}(V)$.

The Neumann Lemma is an enormously useful fact in a number of contexts, e.g., the perturbation theory for linear operators.

## Proof of Neumann's Lemma

If $\|L\|<1$, then

$$
\sum_{k=0}^{\infty}\left\|L^{k}\right\| \leq \sum_{k=0}^{\infty}\|L\|^{k}=\frac{1}{1-\|L\|}<\infty
$$

so the Neumann series $\sum_{k=0}^{\infty} L^{k}$ converges to an operator in $\mathcal{B}(V)$. Now if $S_{j}, S, T \in \mathcal{B}(V)$ and $S_{j} \rightarrow S$ in $\mathcal{B}(V)$, then $\left\|S_{j}-S\right\| \rightarrow 0$, so

$$
\left\|S_{j} T-S T\right\| \leq\left\|S_{j}-S\right\| \cdot\|T\| \rightarrow 0
$$

and

$$
\left\|T S_{j}-T S\right\| \leq\|T\| \cdot\left\|S_{j}-S\right\| \rightarrow 0
$$

and thus $S_{j} T \rightarrow S T$ and $T S_{j} \rightarrow T S$ in $\mathcal{B}(V)$. Thus

$$
(I-L)\left(\sum_{k=0}^{\infty} L^{k}\right)=\lim _{N \rightarrow \infty}(I-L) \sum_{k=0}^{N} L^{k}=\lim _{N \rightarrow \infty}\left(I-L^{N+1}\right)=I
$$

(as $\left\|L^{N+1}\right\| \leq\|L\|^{N+1} \rightarrow 0$ ), and similarly

$$
\left(\sum_{k=0}^{\infty} L^{k}\right)(I-L)=I .
$$

So $(I-L)$ is invertible and $(I-L)^{-1}=\sum_{k=0}^{\infty} L^{k}$.

Let $f(z)$ be analytic on the disk $\{|z|<R\} \subset \mathbb{C}$, with power series

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

and radius of convergence at least $R$. If $L \in \mathcal{B}(V)$ and $\|L\|<R$, then the series

$$
\sum_{k=0}^{\infty} a_{k} L^{k}
$$

converges absolutely, and thus converges to an element of $\mathcal{B}(V)$ which we call $f(L)$.

It is easy to check that usual operational properties hold, for example

$$
(f g)(L)=f(L) g(L)=g(L) f(L) .
$$

Caution: Always remember that operators do not commute in general. For example,

$$
e^{L+M} \neq e^{L} e^{M} \quad \text { in general, }
$$

although if $L$ and $M$ commute (i.e. $L M=M L$ ), then

$$
e^{L+M}=e^{L} e^{M}
$$

Let $L(t)$ be a 1-parameter family of operators in $\mathcal{B}(V), t \in(a, b)$. Since $\mathcal{B}(V)$ is a metric space, continuity of $L(t)$ in $t$ is well defined.
We say that $L(t)$ is differentiable at $t=t_{0} \in(a, b)$ if

$$
L^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{L(t)-L\left(t_{0}\right)}{t-t_{0}}
$$

exists in the norm on $\mathcal{B}(V)$.

For example, it is easily checked that for $L \in \mathcal{B}(V), e^{t L}$ is differentiable in $t$ for all $t \in \mathbb{R}$, and

$$
\frac{d}{d t} e^{t L}=L e^{t L}=e^{t L} L
$$

## Calculus on $\mathcal{B}(V)$ : Differentiation

Similarly consider families of operators in $\mathcal{B}(V)$ depending on several real or complex parameters. A family $L(z)$ where

$$
z=x+i y \in \Omega^{\text {open }} \subset \mathbb{C} \quad(x, y \in \mathbb{R})
$$

is said to be holomorphic in $\Omega$ if the partial derivatives

$$
\frac{\partial}{\partial x} L(z), \quad \frac{\partial}{\partial y} L(z)
$$

exist, are continuous in $\Omega$, and satisfy the Cauchy-Riemann equations

$$
\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) L(z)=0 \quad \text { on } \Omega .
$$

This is equivalent to the assumption that in a neighborhood of each point $z_{0} \in \Omega, L(z)$ is given by the $\mathcal{B}(V)$-norm convergent power series

$$
L(z)=\sum_{k=0}^{\infty} \frac{1}{k!}\left(z-z_{0}\right)^{k}\left(\frac{d}{d z}\right)^{k} L\left(z_{0}\right) .
$$

## Calculus on $\mathcal{B}(V)$ : Integration

If $L(t)$ depends continuously on $t \in[a, b]$, then it can be shown using the same estimates as for $\mathbb{F}$-valued functions (and the uniform continuity of $L(t)$ since $[a, b]$ is compact) that the Riemann sums

$$
\frac{b-a}{N} \sum_{k=0}^{n-1} L\left(a+\frac{k}{N}(b-a)\right)
$$

converge in $\mathcal{B}(V)$-norm (recall $V$ is a Banach space) as $n \rightarrow \infty$ to an operator in $\mathcal{B}(V)$, denoted

$$
\int_{a}^{b} L(t) d t
$$

More general Riemann sums than just the left-hand "rectangular rule" with equally spaced points can be used.
Many results from standard calculus carry over, including

$$
\left\|\int_{a}^{b} L(t) d t\right\| \leq \int_{a}^{b}\|L(t)\| d t
$$

which follows from

$$
\left\|\frac{b-a}{N} \sum_{k=0}^{N-1} L\left(a+\frac{k}{N}(b-a)\right)\right\| \leq \frac{b-a}{N} \sum_{k=0}^{N-1}\left\|L\left(a+\frac{k}{N}(b-a)\right)\right\| .
$$

By parameterizing paths in $\mathbb{C}$, one can define line integrals of holomorphic families of operators. We will discuss such constructions further as we need them.

Transposes and Adjoints

$$
\begin{aligned}
A & \in \mathbb{C}^{m \times n} \\
A^{T} & \in \mathbb{C}^{n \times m} \text { the transpose of } A:\left(A_{i j}=\left(A^{T}\right)_{j i}\right. \\
A^{H} & =\bar{A}^{T} \text { the conjugate-transpose (or Hermitian transpose) of } A
\end{aligned}
$$

One often writes $A^{*}=A^{H}$. But there is a subtlety here, which is related to the identification of a linear operator with its representation as a matrix, that we must be careful about.
Recall that an inner product on $\mathbb{C}^{n}$ can be represented as a matrix multiply, e.g. for the Euclidean inner product

$$
\langle x, y\rangle=y^{H} x
$$

For $A \in \mathbb{C}^{n \times n}$,

$$
\langle A x, y\rangle=\left\langle x, A^{H} y\right\rangle
$$

since

$$
y^{H} A x=\left(A^{H} y\right)^{H} x
$$

## Caution About $A^{H}$ and $A^{*}$

The notation $A^{*}$ is used with two different meanings (particularly when $\mathbb{F}=\mathbb{C}) . \quad L \in \mathcal{B}(V, W) \quad \Longrightarrow \quad L^{*} \in \mathcal{B}\left(W^{*}, V^{*}\right)$
In finite dim., one can choose bases of $V$ and $W$ to encode the action of $L$ as left matrix multiplication on column vectors associated with the bases components. Denote such a matrix as $T$.
Then the action of $L^{*}$ on $W^{*}$ can be encoded using the corresponding dual bases using the same matrix $T$. But now the action is represented as right multiplication by $T$ on row vectors of components in the dual basis ( $a=b T$ ).
On the other hand, in the presence of an inner product, the definition

$$
\langle L v, w\rangle=\left\langle v, L^{*} w\right\rangle
$$

identifies $L^{*}$ with left-multiplication by the conjugate-transpose matrix.
These two definitions are related by the identification

$$
V \cong V^{*}
$$

induced by the inner product:

$$
w \in V \quad \Longleftrightarrow\langle\cdot, w\rangle=w^{*} \in V^{*}
$$

But the conjugation in this identification gives rise to a different representation of $L^{*}$. The first is a natural representation obtained through the composition of function, and the second is through the inner product.

## Norms on Matrices

Commonly used norms on $\mathbb{C}^{m \times n}$.

$$
\begin{aligned}
\|A\|_{1} & =\sum_{i j}\left|a_{i j}\right| & & \text { (the } \ell^{1} \text {-norm on } A \text { as if it were in } \mathbb{C}^{n^{2}} \text { ) } \\
\|A\|_{\infty} & =\max _{i, j}\left|a_{i j}\right| & & \text { (the } \ell^{\infty} \text {-norm on } A \text { as if it were in } \mathbb{C}^{n^{2}} \text { ) } \\
\|A\|_{2} & =\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} & & \text { (the } \ell^{2} \text {-norm on } A \text { as if it were in } \mathbb{C}^{n^{2}} \text { ) }
\end{aligned}
$$

$\|A\|_{2}$ is called the Hilbert-Schmidt norm of $A$, or the Frobenius norm of $A$, and is often denoted $\|A\|_{F}$. It is also called the Euclidean norm on $\mathbb{C}^{m \times n}$. The associated inner product is $\langle A, B\rangle=\operatorname{tr} B^{H} A$.
We also have $p$-norms for matrices: let $1 \leq p \leq \infty$,

$$
\|A \mid\|_{p}=\max _{\|x\|_{p}=1}\|A x\|_{p} \quad\left(=\max _{\|x\|_{p} \leq 1}\|A x\|_{p}=\max _{x \neq 0}\left(\|A x\|_{p} /\|x\|_{p}\right)\right) .
$$

In particular,

$$
\begin{aligned}
&\||A|\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \text { (max column su } \\
&\||A|\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \text { (max row sum) } \\
&\||A|\|_{2} \text { is the spectral norm. We study it in detail later. }
\end{aligned}
$$

## Consistent Matrix Norms

## Definitions

- Let $\mu: \mathbb{C}^{m \times n} \rightarrow \mathbb{R}, \nu: \mathbb{C}^{n \times k} \rightarrow \mathbb{R}, \rho: \mathbb{C}^{m \times k} \rightarrow \mathbb{R}$ be norms. We say that $\mu, \nu, \rho$ are consistent if $\forall A \in \mathbb{C}^{m \times n}$ and $\forall B \in \mathbb{C}^{n \times k}$,

$$
\rho(A B) \leq \mu(A) \nu(B)
$$

- A norm on $\mathbb{F}^{n \times n}$ is called consistent if it is consistent with itself, i.e., the definition above with $m=n=k$ an $\rho=\mu=\nu$. So by definition a norm on $\mathbb{F}^{n \times n}$ is consistent iff it is submultiplicative.
- A collection $\left\{\nu_{m, n}: m \geq 1, n \geq 1\right\}$, where $\nu_{m, n}=\mathbb{F}^{m \times n} \rightarrow \mathbb{R}$ is a norm on $\mathbb{F}^{m \times n}$, is called a family of matrix norms.
- A family $\left\{\nu_{m, n}: m \geq 1, n \geq 1\right\}$ of matrix norms is called consistent if

$$
\begin{gathered}
(\forall m, n, k \geq 1)\left(\forall A \in \mathbb{F}^{m \times n}\right)\left(\forall B \in \mathbb{F}^{n \times k}\right) \\
\nu_{m, k}(A B) \leq \nu_{m, n}(A) \nu_{n, k}(B)
\end{gathered}
$$

Facts Let $\left\{\nu_{m, n}\right\}$ be a consistent family of matrix norms. Then
(1) $(\forall n \geq 1) \quad \nu_{n, n} \quad$ is submultiplicative.
(2) $(\forall m, n \geq 1)\left(\forall A \in \mathbb{F}^{m \times n}\right) \quad \nu_{m, n}(A) \geq \mu_{m, n}(A)$, where $\mu_{m, n}$ is the operator norm on $\mathbb{F}^{m \times n}$ induced by $\nu_{n, 1}$ and $\nu_{m, 1}$.

## Examples of Consistent Matrix Norms

(1) For $m>1$, let $\nu_{m, 1}$ be any norm on $\mathbb{F}^{m}$, and $\nu_{1,1}(x)=|x|$. For $m, n \geq 1$, let $\nu_{m, n}$ be the operator norm on $\mathbb{F}^{m \times n}$ induced by $\nu_{n, 1}$ and $\nu_{m, 1}$ Then $\left\{\nu_{m, n}\right\}$ is a consistent family of matrix norms.
(2) (maximum row sum norm) For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Then $\nu_{n, 1}$ is the $\ell^{\infty}$-norm on $\mathbb{F}^{n}$, and $\nu_{m, n}^{j=1}(A)$ is the operator norm induced by the $\ell^{\infty}$-norms on $\mathbb{F}^{n}$ and $\mathbb{F}^{m}$, which we denoted by $\|A\|_{\infty}$.
(3) (maximum column sum norm) For $m, n \geq{ }_{m} 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\max _{1 \leq j \leq n} \sum_{i=1}\left|a_{i j}\right| .
$$

Then $\nu_{n, 1}$ is the $\ell^{1}$-norm on $\mathbb{F}^{n}$, and $\nu_{m, n}(\cdot)$ is the operator norm induced by the $\ell^{\prime}$-norms on $\mathbb{F}^{n}$ and $\mathbb{F}^{m}$, which we denoted by $\|A\|_{1}$.
(4) ( $\ell^{1}$-norm on $\mathbb{F}^{m \times n}$ as if it were $\left.\mathbb{F}^{m n}\right)_{m}$ For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Then $\left\{\nu_{m, n}\right\}$ is a consistent family of matrix norms. We denoted $\nu_{m, n}(A)$ by $\|A\|_{1}$. Also note that $\|A\|_{1} \geq\|A\|_{1}$ agrees with Fact (2) on the previous slide.
$\left(\ell^{2}\right.$-norm on $\mathbb{F}^{m \times n}$ as if it were $\left.\mathbb{F}^{m n}\right)$ For $m, n \geq 1$ and $A \in \mathbb{F}^{m \times n}$, let

$$
\nu_{m, n}(A)=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

Then $\nu_{n, 1}$ is the $\ell^{2}$-norm on $\mathbb{F}^{n}$. If $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times k}$, then by the Schwarz inequality,

$$
\begin{aligned}
\left(\nu_{m, k}(A B)\right)^{2} & =\sum_{i=1}^{m} \sum_{j=1}^{k}\left|\sum_{\ell=1}^{n} a_{i \ell} b_{\ell_{j}}\right|^{2} \\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{k}\left(\sum_{\ell=1}^{n}\left|a_{i \ell}\right|^{2}\right)\left(\sum_{r=1}^{n}\left|b_{r j}\right|^{2}\right) \\
& =\left(\nu_{m, n}(A) \nu_{n, k}(B)\right)^{2},
\end{aligned}
$$

so $\left\{v_{m, n}\right\}$ is a consistent family of matrix norms.
This is not an operator norm: for $n>1, \nu_{n, n}(I)=\sqrt{n}$ but the operator norm of $I$ is always 1 .
Denote $\nu_{m, n}(A)$ by $\|A\|_{2}$ (or, sometimes $\|A\|_{F}$ ).

For $A \in \mathbb{F}^{m \times n}$ and $x \in \mathbb{F}^{n}$, we have

$$
\|A x\|_{2} \leq\|A\|_{2} \cdot\|x\|_{2}
$$

so for $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times k}$,

$$
\|A B\|_{2} \leq\|A\|_{2} \cdot\|B\|_{2} .
$$

Fact (2) above gives the important inequality

$$
\|A\|_{F} \geq\|A\|_{2} \quad \forall A \in \mathbb{F}^{m \times n} .
$$

Thus the operator norm induced by the $\ell^{2}$-norms on $\mathbb{F}^{m}$ and $\mathbb{F}^{n}$ is dominated by the Frobenius norm.

## Condition Number and Error Sensitivity

Let $A \in \mathbb{C}^{n \times n}$ be invertible. How sensitive is the solution to $A x=b$ to changes in $b$ and $A$ ? Let $\|\cdot\|$ be a consistent martrix norm on $\mathbb{C}^{n \times n}$. Suppose $A x=b$ and $A \hat{x}=\hat{b}$. How far is $\hat{x}$ from $x$ ?
$e:=x-\hat{x}=$ the error vector

$$
\|e\|:=\text { the error }
$$

$$
r:=b-\hat{b}=\text { the residual vector }
$$

$$
\|r\|:=\text { the residual }
$$

$$
\|e\| /\|x\|:=\text { the relative error }
$$

$$
\|r\| /\|b\|:=\text { the relative residual }
$$

Then $A e=A(x-\hat{x})=b-\hat{b}=r$, so

$$
\|e\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\|\|r\| \quad \text { and } \quad\|b\| \leq\|A\|\|x\|
$$

so

$$
\|e\| \cdot\|b\| \leq\|A\| \cdot\left\|A^{-1}\right\| \cdot\|x\| \cdot\|r\|
$$

which implies

$$
\frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

where $\kappa(A):=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of $A$.

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|=\text { condition number of } A
$$

Note that for any operator norm

$$
1=\|I\|=\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\|=\kappa(A) .
$$

A matrix is said to be perfectly conditioned if $\kappa(A)=1$, and is said to be ill-conditioned if $\kappa(A)$ is large.

If $\widehat{x}$ is the result of a numerical algorithm for solving $A x=b$ (with round-off error), then the error $e=x-\widehat{x}$ is not computable. However, the residual $r=b-A \widehat{x}$ is computable, so we obtain an upper bound on the relative error

$$
\frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

In practice, we don't know $\kappa(A)$ (although we may be able to estimate it), and this upper bound may be much larger than the actual relative error.

## Condition Number and Error Sensitivity

Now assume that both $A$ and $b$ are perturbed:

$$
\hat{A}=A+E \quad \text { and } \quad \hat{b}=b-r
$$

Obtain a bound on the relative error $\|e\| /\|x\|$ where

$$
e=x-\hat{x} \quad \text { with } \hat{x} \text { solving } \hat{A} \hat{x}=\hat{b}
$$

First use the Neumann Lemma to note that if

$$
\left\|A^{-1} E\right\| \leq\left\|A^{-1}\right\|\|E\|<1
$$

then

$$
\begin{aligned}
\left\|(A+E)^{-1}\right\| & =\left\|\left(I+A^{-1} E\right)^{-1} A^{-1}\right\| \\
& \leq\left\|\left(I+A^{-1} E\right)^{-1}\right\|\left\|A^{-1}\right\| \leq \frac{1}{1-\left\|A^{-1}\right\|\|E\|}\left\|A^{-1}\right\|
\end{aligned}
$$

Also, $(A+E) x=b+E x$ and $(A+E) \widehat{x}=\widehat{b}$ so

$$
e=x-\hat{x}=(A+E)^{-1}(E x+r)
$$

and so

$$
\begin{aligned}
\|e\| & \leq\left\|(A+E)^{-1}\right\|[\|E\|\|x\|+\|r\|] \\
& \leq \frac{1}{1-\left\|A^{-1}\right\|\|E\|}\left\|A^{-1}\right\|\left[\frac{\|E\|}{\|A\|}\|A\|\|x\|+\frac{\|r\|}{\|b\|}\|A\|\|x\|\right] .
\end{aligned}
$$

Therefore,

$$
\frac{\|e\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A) \frac{\|E\|}{\|A\|}}\left[\frac{\|E\|}{\|A\|}+\frac{\|r\|}{\|b\|}\right]
$$

