## Linear Analysis Lecture 7

## Norms on Operators

If $V, W$ are vector spaces, then so is the space of linear transformations from $V$ to $W$ denoted $\mathcal{L}(V, W)$. When $V=W, \mathcal{L}(V, V)=\mathcal{L}(V)$ is an algebra with composition as multiplication.
Norms on $\mathcal{L}(V)$ compatible with composition are particularly useful. A norm on $\mathcal{L}(V)$ is said to be it submultiplicative if

$$
\|A \circ B\| \leq\|A\| \cdot\|B\| .
$$

Not all matrix norms are submultiplicative.
For $A \in \mathbb{C}^{n \times n}$, define

$$
\|A\|=\sup _{1 \leq i, j \leq n}\left|a_{i j}\right|
$$

Then, if

$$
A=B=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{array}\right)
$$

then $\|A\|=\|B\|=1$, but $A B=A^{2}=n A$ so $\|A B\|=n$.
But it can be shown that the norm

$$
A \mapsto n \sup _{1 \leq i, j \leq n}\left|a_{i j}\right|
$$

is submultiplicative.

Let ( $V,\|\cdot\|_{v}$ ) and ( $W,\|\cdot\|_{w}$ ) be normed linear spaces. $L \in \mathcal{L}(V, W)$ is called a bounded linear operator if

$$
\sup _{\|v\|_{v}=1}\|L v\|_{w}<\infty
$$

$\mathcal{B}(V, W)$ denotes the set of all bounded linear operators from $V$ to $W$.

If $W=\mathbb{F}$, this gives the set of bounded linear functionals, and we set

$$
V^{*}=\mathcal{B}(V, \mathbb{F})
$$

If $\operatorname{dim} V<\infty$, then $\mathcal{L}(V, W)=\mathcal{B}(V, W)$, so also $V^{*}=V^{\prime}$.

Let $V=\mathcal{P}$ be the space of polynomials with norm

$$
\|p\|=\sup _{0 \leq x \leq 1}|p(x)|
$$

Then $\frac{d}{d x}: \mathcal{P} \rightarrow \mathcal{P}$ is not a bounded linear operator:

$$
\left\|x^{n}\right\|=1 \quad \text { for all } \quad n \geq 1 \quad \text { but } \quad\left\|\frac{d}{d x} x^{n}\right\|=\left\|n x^{n-1}\right\|=n
$$

Definition. Let $L \in \mathcal{B}(V, W)$. The operator norm of $L$ is

$$
\|L\|=\sup _{\|v\|_{v} \leq 1}\|L v\|_{w}
$$

This makes $\mathcal{B}(V, W)$ a normed linear space.
In the special case $W=\mathbb{F}$, the norm

$$
\|f\|_{*}=\sup _{\|v\| \leq 1}|f(v)|
$$

on $V^{*}$ is called the dual norm.
Therefore,

$$
|f(v)| \leq\|f\|_{*}\|v\|, \quad \forall v \in V, f \in V^{*} .
$$

If $\operatorname{dim} V<\infty$, choose bases to identify $V$ and $V^{*}$ with $\mathbb{F}^{n}$. Thus, every norm $\|\cdot\|$ on $\mathbb{F}^{n}$ has a dual norm $\|\cdot\|_{*}$ on $\mathbb{F}^{n}$ satisfying

$$
|\langle v, w\rangle| \leq\|v\|\|w\|_{*} .
$$

We sometimes write $\mathbb{F}^{n^{*}}$ for $\mathbb{F}^{n}$ when it is being identified with $V^{*}$.
$V$ a finite dimensional vector space with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and dual basis $\left\{f_{1}, \ldots, f_{n}\right\}$.
Let $v \in V$ and $f \in V^{*}$ have coordinates

$$
v \mapsto\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \text { and } \quad f \mapsto\left(f_{1}, \ldots, f_{n}\right), \quad \text { respectively. }
$$

Given $1 \leq p \leq \infty$, the mapping

$$
\|v\|=\left\|\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right\|_{p}
$$

defines a norm on $V$.
The norm dual to this norm is

$$
\|f\|_{*}=\left\|\left(f_{1}, \ldots, f_{n}\right)^{T}\right\|_{q},
$$

where

$$
\frac{1}{p}+\frac{1}{q}=1
$$

This is a consequence of Hölder's inequality.

## Hyperplane Geometry and Duality

Let $V$ be a vector space over $\mathbb{F}$. A hyperplane in $V$ is a set of the form

$$
H(f, c)=\{v \in V: f(v)=c\}, \quad \text { where } f \in V^{*} \text { and } c \in \mathbb{F} \text {. }
$$

If $c=0$, then $H(f, 0)$ is a subspace of codimension 1 .
If $\mathbb{F}=\mathbb{C}$, it is often more desirable to use the real hyperplanes:

$$
H_{r}(f, c)=\{v \in V: \mathcal{R} e(f(v))=c\}
$$

Proposition. If $(V,\|\cdot\|)$ is a normed linear space and $f \in V^{*}$, then the dual norm of $f$ satisfies

$$
\|f\|_{*}=\sup _{\|v\| \leq 1} \mathcal{R} e(f(v))
$$

Proof Since $\mathcal{R} e(f(v)) \leq|f(v)|$,

$$
\sup _{\|v\| \leq 1} \mathcal{R} e(f(v)) \leq \sup _{\|v\| \leq 1}|f(v)|=\|f\|_{*} .
$$

For the other direction, choose a sequence $\left\{v_{j}\right\}$ from $V$ with $\left\|v_{j}\right\|=1$ and $\left|f\left(v_{j}\right)\right| \rightarrow\|f\|_{*}$. Taking $\theta_{j}=-\arg f\left(v_{j}\right)$ and setting $w_{j}=e^{i \theta_{j}} v_{j}$, we have $\left\|w_{j}\right\|=1$ and $f\left(w_{j}\right)=\left|f\left(v_{j}\right)\right| \rightarrow\|f\|_{*}$, so

$$
\sup _{\|v\| \leq 1} \mathcal{R} e(f(v)) \geq f\left(w_{j}\right)=\left|f\left(v_{j}\right)\right| \rightarrow\|f\|_{*}
$$

## Hyperplane Geometry and Duality

The previous Proposition provides a dual description of the closed unit ball $\mathcal{B} \subset V^{*}$ as an intersection of closed half-spaces.
To see this, recall that every hyperplane defines two closed halfspaces
$H_{r}^{-}(f, c)=\{v \in V: \mathcal{R} e(f(v)) \leq c\}$ and $H_{r}^{+}(f, c)=\{v \in V: \mathcal{R} e(f(v)) \geq c\}$.
Let $\mathbb{B}^{\circ}$ denote the unit ball of the dual norm on $V^{*}$ :

$$
\mathbb{B}^{\circ}=\left\{f \in V^{*}:\|f\|_{*} \leq 1\right\}=\left\{f \in V^{*}: \mathcal{R} e(f(v)) \leq 1 \forall v \in \mathbb{B}\right\} .
$$

The Proposition implies that given $v \in \mathbb{B}$,

$$
\mathcal{R} e(f(v)) \leq\|f\| \leq 1 \quad \forall f \in \mathbb{B}^{\circ}
$$

or equivalently,

$$
\mathbb{B} \subset \bigcap_{f \in \mathbb{B}^{\circ}} H_{r}^{-}(f, 1)=\left\{v \in V: \mathcal{R} e(f(v)) \leq 1 \forall f \in \mathbb{B}^{\circ}\right\} .
$$

Alternatively,

$$
v \notin \mathbb{B} \quad \Leftrightarrow \quad \exists f \in \mathbb{B}^{\circ} \text { such that } f(v)>1 \text {. }
$$

## The Hanh-Banach Theorem (Geometric Form: Mazur's Thm.)

## Proposition.(Geometric Form of the Hahn-Banach Theorem)

Let $C$ be a convex subset of the normed linear space ( $V,\|\cdot\|$ ) with non-empty interior. If $v \notin \operatorname{int}(V)$, then there exists $f \in V^{*}$ such that

$$
\mathcal{R} e(f(v))>\sup _{u \in C} \mathcal{R} e(f(u))
$$

Corollary. If $(V,\|\cdot\|)$ is a normed linear space and $v \in V$, then there exists $f \in V^{*}$ such that

$$
f(v)=\|v\|\|f\| .
$$

The Geometric Form of the Hahn-Banach Theorem is also known as the fundamental separation theorem for convex sets on a normed linear space. The linear functional $f$ in the Proposition is said to properly separate $v$ from the set $C$. Equivalently, $f$ determines a a hyperplane such that $v$ and $\operatorname{int}(C)$ lie in opposing open half spaces.

Consider the normed linear space $(V,\|\cdot\|)$ and its dual $\left(V^{*},\|\cdot\|\right)$. Given $v \in V$, define $v^{* *} \in V^{* *}$ by

$$
v^{* *}(f)=f(v) .
$$

Then

$$
\left|v^{* *}(f)\right|=|f(v)| \leq\|f\| \cdot\|v\| \quad \Longrightarrow \quad\left\|v^{* *}\right\| \leq\|v\|
$$

The Hahn-Banach theorem $\Rightarrow$

$$
\exists f \in V^{*} \ni\|f\|=1 \text { and } v^{* *}(f)=f(v)=\|v\|,
$$

SO

$$
\left\|v^{* *}\right\|=\sup _{\|f\|=1}\left|v^{* *}(f)\right| \geq\|v\| .
$$

Hence $\left\|v^{* *}\right\|=\|v\|$. That is, the mapping $v \mapsto v^{* *}$ from $V$ into $V^{* *}$ is an isometry of $V$ onto the range of this map.
This embedding is not, in general, surjective; however, when it is, ( $V,\|\cdot\|$ ) is called a reflexive Banach space.
In finite dimensions, dimension arguments imply this map is surjective. Thus the dual of the dual norm is the original norm on $V$.

