
Linear Analysis
Lecture 7



Norms on Operators
If V , W are vector spaces, then so is the space of linear transformations
from V to W denoted L(V ,W ). When V = W , L(V ,V ) = L(V ) is an
algebra with composition as multiplication.
Norms on L(V ) compatible with composition are particularly useful. A
norm on L(V ) is said to be it submultiplicative if

‖A ◦ B‖ ≤ ‖A‖ · ‖B‖ .
Not all matrix norms are submultiplicative.
For A ∈ Cn×n, define

‖A‖ = sup
1≤i,j≤n

|aij | .

Then, if

A = B =

 1 · · · 1
...

...
1 · · · 1

 ,

then ‖A‖ = ‖B‖ = 1, but AB = A2 = nA so ‖AB‖ = n.
But it can be shown that the norm

A 7→ n sup
1≤i,j≤n

|aij |

is submultiplicative.
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Bounded Linear Operators

Let (V , ‖ · ‖v) and (W , ‖ · ‖w) be normed linear spaces.
L ∈ L(V ,W ) is called a bounded linear operator if

sup
‖v‖v=1

‖Lv‖w <∞ .

B(V ,W ) denotes the set of all bounded linear operators from V to W .

If W = F, this gives the set of bounded linear functionals, and we set

V ∗ = B(V ,F) .

If dim V <∞, then L(V ,W ) = B(V ,W ), so also V ∗ = V ′.
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Not all linear operators are bounded.

Let V = P be the space of polynomials with norm

‖p‖ = sup
0≤x≤1

|p(x)|.

Then d
dx : P → P is not a bounded linear operator:

‖xn‖ = 1 for all n ≥ 1 but
∥∥∥∥ d

dx xn
∥∥∥∥ = ‖nxn−1‖ = n
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Operator Norms

Definition. Let L ∈ B(V ,W ). The operator norm of L is

‖L‖ = sup
‖v‖v≤1

‖Lv‖w.

This makes B(V ,W ) a normed linear space.
In the special case W = F, the norm

‖f ‖∗ = sup
‖v‖≤1

|f (v)|

on V ∗ is called the dual norm.
Therefore,

|f (v)| ≤ ‖f ‖∗ ‖v‖, ∀ v ∈ V , f ∈ V ∗.

If dim V <∞, choose bases to identify V and V ∗ with Fn. Thus, every
norm ‖·‖ on Fn has a dual norm ‖·‖∗ on Fn satisfying

| 〈v, w〉 | ≤ ‖v‖ ‖w‖∗ .

We sometimes write Fn∗ for Fn when it is being identified with V ∗.
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Duals of `p Norms
V a finite dimensional vector space with basis {v1, . . . , vn} and dual
basis {f1, . . . , fn}.
Let v ∈ V and f ∈ V ∗ have coordinates

v 7→

 x1
...

xn

 , and f 7→ (f1, . . . , fn) , respectively.

Given 1 ≤ p ≤ ∞, the mapping

‖v‖ =

∥∥∥∥∥∥∥
 x1

...
xn


∥∥∥∥∥∥∥

p

defines a norm on V .
The norm dual to this norm is

‖f ‖∗ = ‖(f1, . . . , fn)T‖q ,

where
1
p + 1

q = 1 .
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Hyperplane Geometry and Duality
Let V be a vector space over F. A hyperplane in V is a set of the form

H (f , c) = {v ∈ V : f (v) = c } , where f ∈ V ∗ and c ∈ F.
If c = 0, then H (f , 0) is a subspace of codimension 1.
If F = C, it is often more desirable to use the real hyperplanes:

Hr(f , c) = {v ∈ V : Re(f (v)) = c } ,

Proposition. If (V , ‖ · ‖) is a normed linear space and f ∈ V ∗, then the
dual norm of f satisfies

‖f ‖∗ = sup
‖v‖≤1

Re(f (v)) .

Proof Since Re(f (v)) ≤ |f (v)|,
sup
‖v‖≤1

Re(f (v)) ≤ sup
‖v‖≤1

|f (v)| = ‖f ‖∗.

For the other direction, choose a sequence {vj} from V with ‖vj‖ = 1
and |f (vj)| → ‖f ‖∗. Taking θj = − arg f (vj) and setting wj = eiθj vj , we
have ‖wj‖ = 1 and f (wj) = |f (vj)| → ‖f ‖∗, so

sup
‖v‖≤1

Re(f (v)) ≥ f (wj) = |f (vj)| → ‖f ‖∗.
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Hyperplane Geometry and Duality
The previous Proposition provides a dual description of the closed unit
ball B ⊂ V ∗ as an intersection of closed half-spaces.
To see this, recall that every hyperplane defines two closed halfspaces

H−r (f , c) = {v ∈ V : Re(f (v)) ≤ c} and H +
r (f , c) = {v ∈ V : Re(f (v)) ≥ c} .

Let B◦ denote the unit ball of the dual norm on V ∗:

B◦ = {f ∈ V ∗ : ‖f ‖∗ ≤ 1} = {f ∈ V ∗ : Re(f (v)) ≤ 1 ∀ v ∈ B} .

The Proposition implies that given v ∈ B,

Re(f (v)) ≤ ‖f ‖ ≤ 1 ∀ f ∈ B◦.

or equivalently,

B ⊂
⋂

f∈B◦

H−r (f , 1) = {v ∈ V : Re(f (v)) ≤ 1 ∀ f ∈ B◦} .

Alternatively,

v /∈ B ⇔ ∃ f ∈ B◦ such that f (v) > 1.
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The Hanh-Banach Theorem (Geometric Form: Mazur’s Thm.)

Proposition.(Geometric Form of the Hahn-Banach Theorem)
Let C be a convex subset of the normed linear space (V , ‖ · ‖) with
non-empty interior. If v /∈ int (V ), then there exists f ∈ V ∗ such that

Re(f (v)) > sup
u∈C
Re(f (u)) .

Corollary. If (V , ‖ · ‖) is a normed linear space and v ∈ V , then there
exists f ∈ V ∗ such that

f (v) = ‖v‖ ‖f ‖ .

The Geometric Form of the Hahn-Banach Theorem is also known as the
fundamental separation theorem for convex sets on a normed linear
space. The linear functional f in the Proposition is said to properly
separate v from the set C . Equivalently, f determines a a hyperplane
such that v and int (C ) lie in opposing open half spaces.
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Consequences of the Hahn-Banach Theorem for the 2nd Dual
Consider the normed linear space (V , ‖ · ‖) and its dual (V ∗, ‖ · ‖).
Given v ∈ V , define v∗∗ ∈ V ∗∗ by

v∗∗(f ) = f (v) .

Then
|v∗∗(f )| = |f (v)| ≤ ‖f ‖ · ‖v‖ =⇒ ‖v∗∗‖ ≤ ‖v‖

The Hahn-Banach theorem ⇒

∃ f ∈ V ∗ 3 ‖f ‖ = 1 and v∗∗(f ) = f (v) = ‖v‖ ,

so
‖v∗∗‖ = sup

‖f‖=1
|v∗∗(f )| ≥ ‖v‖ .

Hence ‖v∗∗‖ = ‖v‖. That is, the mapping v 7→ v∗∗ from V into V ∗∗ is
an isometry of V onto the range of this map.
This embedding is not, in general, surjective; however, when it is,
(V , ‖ · ‖) is called a reflexive Banach space.
In finite dimensions, dimension arguments imply this map is surjective.
Thus the dual of the dual norm is the original norm on V .
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