Linear Analysis
Lecture 6




(1) The Euclidean norm [i.e. £? norm] on F" is induced by the standard
inner product
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(2) Let A € F™™™ be Hermitian-symmetric and positive definite, and let
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(x,y)a = ZinaijE for z,y € F™.
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Then (-, ) 4 is an inner product on F”, which induces the norm
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(3) The £2-norm on 2 (subspace of F>°) is induced by the inner product

o0 o0 o0
o) =S am ¢ falla= | S am= |3l
=1 i=1 =1

(4) The L? norm
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on C([a, b)) is induced by the inner product



A subset C of a vector space V is called convex if

Vo,we C)(Vtelo,1]) tv+(1—-tue C.
Let B={v e V:|v|| <1} denote the closed unit ball in a finite
dimensional normed linear space.

Facts.
(1) B is convex.
(2) B is compact.
(3) B is symmetric (if v € B and o € F with |a| =1, then av € B).
(4) The origin is in the interior of B.

Lemma. If dim V < 0o and B C V satisfies the four conditions above,
then there is a unique norm on V for which B is the closed unit ball:

o] = inf{e >0 % € B}.



Completeness

(V-1 a normed linear space. We say (V|| - ||) is complete if
every Cauchy sequence in V has a limit in V.

o {v,} C Vis Cauchy if (Ve > 0)(IN)(Vn,m > N) |lv, —vn|| <€.
e {v,} C V has limit v if ||v — v,|| — 0.

For example, (F™, ||-||,) is complete.

Topological properties are those that depend only on the collection of
open sets (e.g., open, closed, compact, whether a sequence converges,
etc.). Completeness is not a topological property.

Example: Let f: [1,00) — (0,1] be given by f(z) = 1 (with the usual
metric on R). Then f is a homeomorphism (bijective, bicontinuous), but
[1,00) is complete while (0, 1] is not complete.

Completeness is a uniform property.

Theorem:If (X, p) and (Y,0) are metric spaces, and

v : (X,p) = (Y,0) is a uniform homeomorphism (i.e., bijective,

bicontinuous and  and ¢~ are both uniformly continuous), then (X, p)
is complete iff (Y, o) is complete.



Completeness

Since bounded linear operators between normed linear spaces are
automatically uniformly continuous, several facts follow immediately.

Corollary. If two norms || - ||; and || - ||2 on a vector space V are
equivalent, then (V|| - ||1) is complete iff (V|| - ||2) is complete.

Corollary. Every finite-dim normed linear space is complete.
But not every infinite-dim normed linear space is complete.

Definition. A complete normed linear space is called a Banach space.
An inner product space for which the induced norm is complete is called
a Hilbert space.

To show that a normed linear space is complete, we must show that
every Cauchy sequence converges in that space. The basic strategy for
showing completeness is a three step process that can be described as
follows: Given a Cauchy sequence,

(i) construct what you think is its limit;
(ii) show the limit is in the space V;

(i) show the sequence converges to the limit in V.
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Example: (Cy(M).| - ||), M a metric space

C(M) the vector space of continuous functions u : M — .
Cy(M) the subspace of C(M) of all bounded continuous functions.
On Cy(M), define the sup-norm |lu|| = sup ¢, |u(z)].

Fact: (Cy(M),] -||) is complete.

Proof: Let {u,} C Cy(M) be Cauchy in || -||. Given € > 0, 3N so that
(Vn,m> N) ||wn, — wm|| < €. For each z € M,
[t (2) = U (z)] < ||t — ]|, so for each z € M, {u,(z)} is a Cauchy
sequence in F, which has a limit in F (which we will call u(z)) since F is
complete: u(z) = lim, o0 un(x). Let € > 0, then

3N)¥Vn,m>N)NVze M) [tn (T) — U (z)| < €.
Take the limit (for each fixed z) to get

(Vn>N)(Vze M) |un(z) — u(z)] <e.

Thus u,, — u uniformly, so u is continuous (since the uniform limit of
continuous functions is continuous). Clearly u is bounded, so u € Cy(M).
We have ||u, — u|| = 0 as n — oo, i.e., u, = win (Co(M), | - |- O



/P is complete for 1 < p <

p = 0o. This is a special case of C,(M) where M =N ={1,2,3,...}.
1< p<oo. Let {z} C ¢? be Cauchy. Write z;, = (zx1, Zg2, - - .). Given
e>0, (3K)VkL>K) |k — 2|p <e Foreach meN,

1

00 P
|Tkm — Zem| < (Z | ks — l’h|p> = |lzi — ],

i=1

so, for each m € N, {xy, }32, is Cauchy with limit z, = limy_, 00 Tpm.

Let z be the sequence x = (1, x2, 23, . . .); so far, we know that x € F>°.

Given € > 0, (3K)(Vk, ¢ > K) ||z, — x| < e. Then
N

for any N and for k,¢ > K, Z|ﬂcki—$€i|p> <€
i=1
N P
Taking the limit in £, <Z |2 — 9:1-|p> <e.
i=1
1
Taking the limit in N, (Z |k — xi|p> <e.
i=1
Thus 2 — z € P, so also x = x, — (a, — x) € P, and we have
(Vk > K) ||z — ||, < e Thus ||z — 2|, =570, ie, = zin 2. O



F ={zeF>*:3dN)¥Vn>N) =z, =0}

Fg° is not complete in any 7 norm (1 < p < o).

1 <p<oo.
Choose any z € (P\Fg°, and consider the truncated sequences

Y1 = (1'1,0,.. .), Y2 = (93'1,1'2,0,.. .), Y3 = ($1,$2,$3,0,. . .), -

{yn} is Cauchy in (Fg°, || - ||p). but there is no y € F§° for which

lyn = yllp = 0.
p = 00.
Same idea: choose any
x € L\Fg°
for which
_lim Ty = 0 s
71— 00

and consider the sequence of truncated sequences.



Every Metric Space can be Completed

Let (X, p) be a metric space. Then there exists a complete metric space
(X, p) and an “inclusion map” i : X — X for which

1 is injective,
i is an isometry from X to i[X], i.e.
(Va,y € X) p(z,y) = p(i(z), i(y))),
and
i[X] is dense in X .
Moreover, all such (X, p) are isometrically isomorphic. The metric space
(X, p) is called the completion of (X, p).

One way to construct such an X is to take equivalence classes of Cauchy
sequences in X to be elements of X.
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Representations of Completions
Sometimes the completion of a metric space can be identified with a
larger vector space which actually includes X, and whose elements are
objects of a similar nature to the elements of X. One example is R =
completion of the rationals Q.
The completion of C([a, b]) in the LP norm (for 1 < p < o) is denoted
by L”([a, b]).
LP([a, b)) is the vector space of equivalence classes of Lebesgue
measurable functions u : [a, b] — F for which f |u(z)|Pdr < oo, with

norm
s = (/ u |pdx>

A subset of a complete metric space is complete iff it is closed.

Proposition. Let V' be a Banach space, and W C V be a subspace.
The norm on V restricts to a norm on W. We have:

W is complete iff W is closed.
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Examples of Complete Spaces as Closed Subspaces

Consider the spaces Cy(R"™) and C.(R7™) .

CoR™) = {ue Cp(R"): |z1\iLnoo u(z) = 0}
C.(R") = {ue C(R"): (K >0)> (Vz with |z| > K) u(z) =0}

e Suppose M is a metric space and u : M — [ is a function. The
support of u is the closure of {x € M : u(z) # 0}. The complement of
the support of a function is the interior of {z € M : u(z) = 0}.

e Elements of C.(R™) are continuous functions with compact support.

e Cy(R™) is complete in the sup-norm. This can either be shown directly,
or by showing that Cy(R"™) is a closed subspace of Cy(R™).

e C.(R™) is not complete. In fact, C.(R"™) is dense in Cy(R™). So
Co(R™) is a representation of the completion of C.(R™) in the sup-norm.



Series in Normed Linear Spaces

Let (V.| -||) be a normed linear space. Consider a series > -, v, in V.

Definition. We say the series converges in V if
Jve V suchthat limy_,o ||Syv — v|| =0, where Sy = 25:1
the N*® partial sum. We say this series converges absolutely if

2zt llonll < oo

Caution: Strictly speaking, if a series “converges absolutely” in a normed
linear space, it does not have to converge in that space. For example, the
series (1,0---) + (0, %, 0-- ) + (0, 0, %, 0-- ) “converges absolutely” in
Fg°, but it doesn’t converge in Fg°.

Uy, IS

Proposition. A normed linear space (V|| -||) is complete iff every
absolutely convergent series converges in (V|| - ||).

Proof Sketch

(=) Given an absolutely convergent series, show that the sequence of
partial sums is Cauchy: for m > n, [|S, — Sull <3200, 4 vl -
(«=) Given a Cauchy sequence {z,}, choose n1,ny < --- inductively so
that for k=1,2,..., (Vn,m > ng) |2 — 2wl <27% . Then

| Zn, — Tnyyy || < 27F. The series 2, + >4 (T, — Tn,_, ) is absolutely
convergent. Let z be its limit. Then z,, — .
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