
Linear Analysis
Lecture 6



Examples

(1) The Euclidean norm [i.e. `2 norm] on Fn is induced by the standard
inner product

〈x, y〉 =
n∑

i=1
xiyi : ‖x‖2 =

√√√√ n∑
i=1

xixi =

√√√√ n∑
i=1
|xi |2.

(2) Let A ∈ Fn×n be Hermitian-symmetric and positive definite, and let

〈x, y〉A =
n∑

i=1

n∑
j=1

xiaijyj for x, y ∈ Fn.

Then 〈·, ·〉A is an inner product on Fn, which induces the norm

‖x‖A =
√
〈x, x〉A =

√√√√ n∑
i=1

n∑
j=1

xiaijxj =
√

xTAx =
√

xH Ax.
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Examples

(3) The `2-norm on `2 (subspace of F∞) is induced by the inner product

〈x, y〉 =
∞∑

i=1
xiyi : ‖x‖2 =

√√√√ ∞∑
i=1

xixi =

√√√√ ∞∑
i=1
|xi |2.

(4) The L2 norm

‖u‖2 =
(∫ b

a
|u(x)|2dx

) 1
2

on C ([a, b]) is induced by the inner product

〈u, v〉 =
∫ b

a
u(x)v(x)dx .
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Convexity

A subset C of a vector space V is called convex if

(∀ v,w ∈ C )(∀ t ∈ [0, 1]) tv + (1− t)u ∈ C .

Let B = {v ∈ V : ‖v‖ ≤ 1} denote the closed unit ball in a finite
dimensional normed linear space.

Facts.
(1) B is convex.
(2) B is compact.
(3) B is symmetric (if v ∈ B and α ∈ F with |α| = 1, then αv ∈ B).
(4) The origin is in the interior of B.

Lemma. If dim V <∞ and B ⊂ V satisfies the four conditions above,
then there is a unique norm on V for which B is the closed unit ball:

‖v‖ = inf{c > 0 : v
c ∈ B}.
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Completeness

(V , ‖ · ‖) a normed linear space. We say (V , ‖ · ‖) is complete if
every Cauchy sequence in V has a limit in V .
• {vn} ⊂ V is Cauchy if (∀ ε > 0)(∃N )(∀n,m ≥ N ) ‖vn − vm‖ < ε .
• {vn} ⊂ V has limit v if ‖v − vn‖ → 0.
For example, (Fn, ‖·‖2) is complete.
Topological properties are those that depend only on the collection of
open sets (e.g., open, closed, compact, whether a sequence converges,
etc.). Completeness is not a topological property.
Example: Let f : [1,∞)→ (0, 1] be given by f (x) = 1

x (with the usual
metric on R). Then f is a homeomorphism (bijective, bicontinuous), but
[1,∞) is complete while (0, 1] is not complete.
Completeness is a uniform property.
Theorem:If (X , ρ) and (Y , σ) are metric spaces, and
ϕ : (X , ρ)→ (Y , σ) is a uniform homeomorphism (i.e., bijective,
bicontinuous and ϕ and ϕ−1 are both uniformly continuous), then (X , ρ)
is complete iff (Y , σ) is complete.
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Completeness
Since bounded linear operators between normed linear spaces are
automatically uniformly continuous, several facts follow immediately.
Corollary. If two norms ‖ · ‖1 and ‖ · ‖2 on a vector space V are
equivalent, then (V , ‖ · ‖1) is complete iff (V , ‖ · ‖2) is complete.

Corollary. Every finite-dim normed linear space is complete.
But not every infinite-dim normed linear space is complete.
Definition. A complete normed linear space is called a Banach space.
An inner product space for which the induced norm is complete is called
a Hilbert space.
To show that a normed linear space is complete, we must show that
every Cauchy sequence converges in that space. The basic strategy for
showing completeness is a three step process that can be described as
follows: Given a Cauchy sequence,

(i) construct what you think is its limit;
(ii) show the limit is in the space V ;

(iii) show the sequence converges to the limit in V .
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Example: (Cb(M ), ‖ · ‖), M a metric space

C (M ) the vector space of continuous functions u : M → F.
Cb(M ) the subspace of C (M ) of all bounded continuous functions.
On Cb(M ), define the sup-norm ‖u‖ = supx∈M |u(x)|.

Fact: (Cb(M ), ‖ · ‖) is complete.

Proof: Let {un} ⊂ Cb(M ) be Cauchy in ‖ · ‖. Given ε > 0, ∃N so that
(∀n,m ≥ N ) ‖un − um‖ < ε. For each x ∈ M ,
|un(x)− um(x)| ≤ ‖un − um‖, so for each x ∈ M , {un(x)} is a Cauchy
sequence in F, which has a limit in F (which we will call u(x)) since F is
complete: u(x) = limn→∞ un(x). Let ε > 0, then

(∃N )(∀n,m ≥ N )(∀ x ∈ M ) |un(x)− um(x)| < ε.
Take the limit (for each fixed x) to get

(∀n ≥ N )(∀ x ∈ M ) |un(x)− u(x)| ≤ ε.
Thus un → u uniformly, so u is continuous (since the uniform limit of
continuous functions is continuous). Clearly u is bounded, so u ∈ Cb(M ).
We have ‖un − u‖ → 0 as n →∞, i.e., un → u in (Cb(M ), ‖ · ‖). �
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`p is complete for 1 ≤ p ≤ ∞
p =∞. This is a special case of Cb(M ) where M = N = {1, 2, 3, . . .}.
1 ≤ p <∞. Let {xk} ⊂ `p be Cauchy. Write xk = (xk1, xk2, . . .). Given
ε > 0, (∃K )(∀ k, ` ≥ K ) ‖xk − x`‖p < ε. For each m ∈ N,

|xkm − x`m| ≤

( ∞∑
i=1
|xki − x`i |p

) 1
p

= ‖xk − x`‖,

so, for each m ∈ N, {xkm}∞k=1 is Cauchy with limit xm = limk→∞ xkm.
Let x be the sequence x = (x1, x2, x3, . . .); so far, we know that x ∈ F∞.
Given ε > 0, (∃K )(∀ k, ` ≥ K ) ‖xk − x`‖ < ε. Then

for any N and for k, ` ≥ K ,
( N∑

i=1
|xki − x`i |p

) 1
p

< ε.

Taking the limit in `,
( N∑

i=1
|xki − xi |p

) 1
p

≤ ε.

Taking the limit in N ,
( ∞∑

i=1
|xki − xi |p

) 1
p

≤ ε.

Thus xk − x ∈ `p, so also x = xk − (xk − x) ∈ `p, and we have
(∀ k ≥ K ) ‖xk − x‖p ≤ ε. Thus ‖xk − x‖p

k→∞→ 0, i.e., xk → x in `p. �
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F∞
0 = {x ∈ F∞ : (∃N )(∀ n ≥ N ) xn = 0}

F∞0 is not complete in any `p norm (1 ≤ p ≤ ∞).

1 ≤ p <∞.
Choose any x ∈ `p\F∞0 , and consider the truncated sequences

y1 = (x1, 0, . . .), y2 = (x1, x2, 0, . . .), y3 = (x1, x2, x3, 0, . . .), . . .

{yn} is Cauchy in (F∞0 , ‖ · ‖p), but there is no y ∈ F∞0 for which
‖yn − y‖p → 0.

p =∞.
Same idea: choose any

x ∈ `∞\F∞0
for which

lim
i→∞

xi = 0 ,

and consider the sequence of truncated sequences.
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Every Metric Space can be Completed

Fact
Let (X , ρ) be a metric space. Then there exists a complete metric space
(X̄ , ρ̄) and an “inclusion map” i : X → X̄ for which

i is injective,
i is an isometry from X to i[X ], i.e.

(∀ x, y ∈ X) ρ(x, y) = ρ̄(i(x), i(y))),
and

i[X ] is dense in X̄ .
Moreover, all such (X̄ , ρ̄) are isometrically isomorphic. The metric space
(X̄ , ρ̄) is called the completion of (X , ρ).

One way to construct such an X̄ is to take equivalence classes of Cauchy
sequences in X to be elements of X̄ .
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Representations of Completions
Sometimes the completion of a metric space can be identified with a
larger vector space which actually includes X , and whose elements are
objects of a similar nature to the elements of X . One example is R =
completion of the rationals Q.
The completion of C ([a, b]) in the Lp norm (for 1 ≤ p <∞) is denoted
by Lp([a, b]).
Lp([a, b]) is the vector space of equivalence classes of Lebesgue
measurable functions u : [a, b]→ F for which

∫ b
a |u(x)|pdx <∞, with

norm

‖u‖p =
(∫ b

a
|u(x)|pdx

) 1
p

.

Fact
A subset of a complete metric space is complete iff it is closed.

Proposition. Let V be a Banach space, and W ⊂ V be a subspace.
The norm on V restricts to a norm on W . We have:

W is complete iff W is closed.
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Examples of Complete Spaces as Closed Subspaces

Consider the spaces C0(Rn) and Cc(Rn) .

C0(Rn) = {u ∈ Cb(Rn) : lim
|x|→∞

u(x) = 0}

Cc(Rn) = {u ∈ Cb(Rn) : (∃K > 0) 3 (∀ x with |x| ≥ K ) u(x) = 0}

• Suppose M is a metric space and u : M → F is a function. The
support of u is the closure of {x ∈ M : u(x) 6= 0}. The complement of
the support of a function is the interior of {x ∈ M : u(x) = 0}.

• Elements of Cc(Rn) are continuous functions with compact support.

• C0(Rn) is complete in the sup-norm. This can either be shown directly,
or by showing that C0(Rn) is a closed subspace of Cb(Rn).

• Cc(Rn) is not complete. In fact, Cc(Rn) is dense in C0(Rn). So
C0(Rn) is a representation of the completion of Cc(Rn) in the sup-norm.
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Series in Normed Linear Spaces
Let (V , ‖ · ‖) be a normed linear space. Consider a series

∑∞
n=1 vn in V .

Definition. We say the series converges in V if
∃ v ∈ V such that limN→∞ ‖SN − v‖ = 0, where SN =

∑N
n=1 vn is

the N th partial sum. We say this series converges absolutely if∑∞
n=1 ‖vn‖ <∞ .

Caution: Strictly speaking, if a series “converges absolutely” in a normed
linear space, it does not have to converge in that space. For example, the
series (1, 0 · · · ) +

(
0, 1

2 , 0 · · ·
)

+
(
0, 0, 1

4 , 0 · · ·
)

“converges absolutely” in
F∞0 , but it doesn’t converge in F∞0 .

Proposition. A normed linear space (V , ‖ · ‖) is complete iff every
absolutely convergent series converges in (V , ‖ · ‖).

Proof Sketch
(⇒) Given an absolutely convergent series, show that the sequence of
partial sums is Cauchy: for m > n, ‖Sm − Sn‖ ≤

∑m
j=n+1 ‖vj‖ .

(⇐) Given a Cauchy sequence {xn}, choose n1,n2 < · · · inductively so
that for k = 1, 2, . . . , (∀n,m ≥ nk) ‖xn − xm‖ ≤ 2−k . Then
‖xnk − xnk+1‖ ≤ 2−k . The series xn1 +

∑∞
k=2(xnk − xnk−1) is absolutely

convergent. Let x be its limit. Then xn → x.
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