Linear Analysis Lecture 5

Inner Products and V^{\prime}

Let $\operatorname{dim} V<\infty$ with inner product $\langle\cdot, \cdot\rangle$.
Choose a basis \mathcal{B} and let $v, w \in V$ have coordinates in \mathbb{F}^{n} given by

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad \text { respectively. }
$$

Let $A \in \mathbb{F}^{n \times n}$ be the inner product matrix in this basis, then

$$
w^{*}(v)=\langle v, w\rangle=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} \overline{y_{j}}\right) x_{i} .
$$

It follows that w^{*} has components

$$
b_{i}=\sum_{j=1}^{n} a_{i j} \overline{y_{j}}
$$

with respect to the dual basis.
Therefore, the map $w \mapsto w^{*}$ corresponds to a mapping of its coordinates in the basis \mathcal{B} to its coordinates in the dual basis \mathcal{B}^{\prime} given by the matrix-vector product

$$
\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=A \overline{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)}
$$

Annihilators and Orthogonal Projections

Suppose $W \subset V$ is a subspace and define the orthogonal complement (read W "perp")

$$
W^{\perp}=\{v \in V:\langle v, w\rangle=0 \quad(\forall w \in W)\} .
$$

The orthogonal complement W^{\perp} is a subspace of V.
The use of the same notation as used for the annihilator of W is justified since the image of W^{\perp} under the map $w \rightarrow w^{*}$ is precisely the annihilator of W.

If $\operatorname{dim} V<\infty$, a dimension count and the obvious $W \cap W^{\perp}=\{0\}$ show that

$$
V=W \oplus W^{\perp}
$$

So in a finite dimensional inner product space, a subspace W determines a natural complement, namely W^{\perp}.

The induced projection onto W (along W^{\perp}) is called the orthogonal projection onto W.

Norms

A norm on a vector space V is a function $\|\cdot\|: V \rightarrow[0, \infty)$ satisfying
(i) $(\forall v \in V) \quad\|v\| \geq 0$, and $\|v\|=0$ iff $v=0$
(ii) $(\forall \alpha \in \mathbb{F})(\forall v \in V) \quad\|\alpha v\|=|\alpha| \cdot\|v\|$, and
(iii) (triangle inequality) $(\forall v, w \in V) \quad\|v+w\| \leq\|v\|+\|w\|$.

The pair $(V,\|\cdot\|)$ is called a normed linear space (or normed vector space).

Fact: A norm $\|\cdot\|$ on a vector space V induces a metric d on V by

$$
d(v, w)=\|v-w\| .
$$

Examples of Normed Linear Spaces

(1) ℓ^{p}-norm on $\mathbb{F}^{n}(1 \leq p \leq \infty)$
(a) $p=\infty: \quad\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|, x \in \mathbb{F}^{n}$
(b) $1 \leq p<\infty: \quad\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, x \in \mathbb{F}^{n}$.

The triangle inequality

$$
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

is known as "Minkowski's inequality." It is a consequence of Hölder's inequality.

Integral versions of these inequalities are proved in real analysis texts, e.g., Folland, Royden or Rudin. The proofs for vectors in \mathbb{F}^{n} are analogous to the proofs for integrals

Examples of Normed Linear Spaces

(2) ℓ^{p}-norm on ℓ^{p} (subspace of $\left.\mathbb{F}^{\infty}\right)(1 \leq p \leq \infty)$
(a) $p=\infty$:

$$
\ell^{\infty}=\left\{x \in \mathbb{F}^{\infty}: \sup _{i \geq 1}\left|x_{i}\right|<\infty\right\} \quad\|x\|_{\infty}=\sup _{i \geq 1}\left|x_{i}\right|
$$

for $x \in \ell^{\infty}$.
(b) $1 \leq p<\infty$:

$$
\ell^{p}=\left\{x \in \mathbb{F}^{\infty}:\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\}, \quad\|x\|_{p}=\left(\sum_{i=1}^{\infty}|x|^{p}\right)^{\frac{1}{p}}
$$

for $x \in \ell^{p}$.

Examples of Normed Linear Spaces

(3) L^{p} norm on $C([a, b]) \quad(1 \leq p \leq \infty)$
(a) $p=\infty$: $\quad\|f\|_{\infty}=\sup _{a \leq x \leq b}|f(x)|$. Since $|f(x)|$ is a continuous, real-valued function on the compact set $[a, b]$, it takes on its maximum, so the "sup" is actually a "max" here:

$$
\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|
$$

(b) $1 \leq p<\infty: \quad\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}$. Use continuity of f to show that

$$
\|f\|_{p}=0 \Rightarrow f(x) \equiv 0 \quad \text { on } \quad[a, b] .
$$

The triangle inequality

$$
\left(\int_{a}^{b}|f(x)+g(x)|^{p} d x\right)^{\frac{1}{p}} \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{a}^{b}|g(x)|^{p} d x\right)^{\frac{1}{p}}
$$

is Minkowski's inequality, a consequence of Hölder's inequality:

$$
\int_{a}^{b} f(x) g(x) d x \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{\frac{1}{q}}
$$

where

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Continuous Linear Operators on Normed Linear Spaces

Theorem: $\left(V,\|\cdot\|_{v}\right)$ and $\left(W,\|\cdot\|_{w}\right)$ are normed linear spaces.
$L: V \rightarrow W$ is a linear transformation. Then the following are equivalent:
(a) L is continuous
(b) L is uniformly continuous (Lipschitz continuous)
(c) $(\exists C)$ so that $(\forall v \in V) \quad\|L v\|_{w} \leq C\|v\|_{v}$.

Proof: $(\mathrm{a}) \Rightarrow(\mathrm{c})$: Suppose L is continuous. Then L is continuous at $v=0$. Let $\epsilon=1$. Then $\exists \delta>0$ such that

$$
\|v\|_{v} \leq \delta \quad \Rightarrow \quad\|L v\|_{w} \leq 1
$$

(as $L(0)=0$). For any $v \neq 0$,

$$
\|\delta v /\| v\left\|_{v}\right\|_{v} \leq \delta \quad \Rightarrow \quad\left\|L\left(\delta v /\|v\|_{v}\right)\right\|_{w} \leq 1,
$$

i.e., $\|L v\|_{w} \leq \frac{1}{\delta}\|v\|_{v}$. Let $C=\frac{1}{\delta}$.
(c) \Rightarrow (b): Condition (c) implies that

$$
\left(\forall v_{1}, v_{2} \in V\right) \quad\left\|L v_{1}-L v_{2}\right\|_{w}=\left\|L\left(v_{1}-v_{2}\right)\right\|_{w} \leq C\left\|v_{1}-v_{2}\right\|_{v}
$$

Hence L is uniformly continuous (given ϵ, let $\delta=\frac{\epsilon}{c}$, etc.). In fact, L is uniformly Lipschitz continuous with Lipschitz constant C. (b) \Rightarrow (a) is immediate.

Definition: V and W are normed linear spaces. $L: V \rightarrow W$ a linear operator. If

$$
\|L\|:=\sup _{v \in V, v \neq 0} \frac{\|L v\|_{w}}{\|v\|_{v}}<\infty
$$

then L is called a bounded linear operator from V to W, in which case we call $\|L\|$ the operator norm of L.
Remarks.
(1) Note that it is the norm ratio $\frac{\|L v\|_{w}}{\|v\|_{v}}$ (or "stretching factor") that is bounded, not $\left\{\|L v\|_{w}: v \in V\right\}$.
(2) The theorem above says that if V and W are normed linear spaces and $L: V \rightarrow W$ is linear, then
L is continuous $\Leftrightarrow L$ is uniformly continuous $\Leftrightarrow L$ is a bounded linear operator.

It is easily seen that the norm in a normed linear space is a continuous mapping from the space into \mathbb{R}. This follows from the other half of the triangle inequality:

$$
|\|u\|-\|v\|| \leq\|u-v\| .
$$

Definition: Two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, both on the same vector space V, are called equivalent norms on V if \exists constants $C_{1}, C_{2}>0$ for which

$$
(\forall v \in V) \quad C_{1}\|v\|_{2} \leq\|v\|_{1} \leq C_{2}\|v\|_{2} .
$$

Fact: V is finite-dim if and only if any two norms on V are equivalent.

Remarks.

(1) All norms on a fixed finite dimensional vector space are equivalent. However, the constants C_{1} and C_{2} can depend on the dimension. For example, in \mathbb{F}^{n}

$$
\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
$$

(2) In a normed linear space V, the closed unit ball $\mathbb{B}:=\{v \in V:\|v\| \leq 1\}$ is compact iff $\operatorname{dim} V<\infty$.

Examples

(1) Set

$$
\mathbb{F}_{0}^{\infty}=\left\{x \in \mathbb{F}^{\infty}:(\exists N)(\forall n \geq N) \quad x_{n}=0\right\} .
$$

For $1 \leq p<q \leq \infty$, the ℓ^{p} and ℓ^{q} norms are not equivalent.
Consider $p=1, q=\infty$. Note that

But if

$$
\|x\|_{\infty} \leq \sum_{i=1}^{\infty}\left|x_{i}\right|=\|x\|_{1}
$$

$$
y_{1}=(1,0,0 \cdots), y_{2}=(1,1,0, \cdots), y_{3}=(1,1,1,0, \cdots), \ldots
$$

then

$$
\left\|y_{n}\right\|_{\infty}=1 \quad \text { and } \quad\left\|y_{n}\right\|_{1}=n \quad \forall n .
$$

So there does not exist a constant C for which

$$
\left(\forall x \in \mathbb{F}_{0}^{\infty}\right) \quad\|x\|_{1} \leq C\|x\|_{\infty} .
$$

(2) In ℓ^{2} (a subspace of \mathbb{F}^{∞}) with norm $\|x\|_{2}=\sqrt{\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}}$, the closed unit ball $\left\{x \in \ell^{2}:\|x\|_{2} \leq 1\right\}$ is not compact. The sequence $e_{1}, e_{2}, e_{3}, \ldots$ is bounded, $\left\|e_{i}\right\|_{\ell^{2}} \leq 1$, and all are in the closed unit ball, but no subsequence can converge because $\left\|e_{i}-e_{j}\right\|_{\ell^{2}}=\sqrt{2} \quad$ for $\quad i \neq j$.

Norms induced by inner products

Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space. Define $\|v\|=\sqrt{\langle v, v\rangle}$. We have

$$
\begin{gathered}
\|v\| \geq 0 \quad \text { with } \quad\|v\|=0 \Leftrightarrow v=0, \quad \text { and } \\
(\forall \alpha \in \mathbb{F})(\forall v \in V) \quad\|\alpha v\|=|\alpha| \cdot\|v\| .
\end{gathered}
$$

To show that $\|\cdot\|$ is a norm we need the triangle inequality.
Note that for any two vectors $u, v \in V$ we have

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\langle u, u\rangle+\langle u, v\rangle+\overline{\langle u, v\rangle}+\langle v, v\rangle \\
& =\|u\|^{2}+2 \mathcal{R} e\langle u, v\rangle+\|v\|^{2}
\end{aligned}
$$

Consequently, if u and v are orthogonal $(\langle u, v\rangle=0)$, then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

For all $v, w \in V$ we have

$$
|\langle v, w\rangle| \leq\|v\| \cdot\|w\|
$$

with equality iff v and w are linearly dependent.
Proof: Case (i) If $v=0$, we are done.
Case (ii) Assume $v \neq 0$, and set

$$
u:=w-\frac{\langle w, v\rangle}{\|v\|^{2}} v
$$

so that $\langle u, v\rangle=0$, i.e. $u \perp v$. Then, by orthogonality,

$$
\|w\|^{2}=\left\|u+\frac{\langle w, v\rangle}{\|v\|^{2}} v\right\|^{2}=\|u\|^{2}+\left\|\frac{\langle w, v\rangle}{\|v\|^{2}} v\right\|^{2}=\|u\|^{2}+\frac{|\langle w, v\rangle|^{2}}{\|v\|^{2}} \geq \frac{|\langle w, v\rangle|^{2}}{\|v\|^{2}}
$$

with equality iff $u=0$.

For all $v, w \in V$ we have

$$
\begin{aligned}
\|v+w\|^{2} & =\langle v+w, v+w\rangle \\
& =\langle v, v\rangle+2 \mathcal{R} e\langle v, w\rangle+\langle w, w\rangle \\
& \leq\|v\|^{2}+2|\langle v, w\rangle|+\|w\|^{2} \\
& \leq\|v\|^{2}+2\|v\| \cdot\|w\|+\|w\|^{2} \\
& =(\|v\|+\|w\|)^{2}
\end{aligned}
$$

So $\|v\|=\sqrt{\langle v, v\rangle}$ is a norm on V.

The resulting norm is called the norm induced by the inner product $\langle\cdot, \cdot\rangle$. That is, an inner product induces a norm which, in turn, induces a metric

$$
(V,\langle\cdot, \cdot\rangle) \leftrightarrow(V,\|\cdot\|) \leftrightarrow(V, d) .
$$

Examples

(1) The Euclidean norm [i.e. ℓ^{2} norm] on \mathbb{F}^{n} is induced by the standard inner product

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}} \quad: \quad\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i} \overline{x_{i}}}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} .
$$

(2) Let $A \in \mathbb{F}^{n \times n}$ be Hermitian-symmetric and positive definite, and let

$$
\langle x, y\rangle_{A}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} a_{i j} \overline{y_{j}} \quad \text { for } x, y \in \mathbb{F}^{n}
$$

Then $\langle\cdot, \cdot\rangle_{A}$ is an inner product on \mathbb{F}^{n}, which induces the norm

$$
\|x\|_{A}=\sqrt{\langle x, x\rangle_{A}}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} a_{i j} \overline{x_{j}}}=\sqrt{x^{T} A \bar{x}}=\sqrt{x^{H} \bar{A} x} .
$$

(3) The ℓ^{2}-norm on ℓ^{2} (subspace of \mathbb{F}^{∞}) is induced by the inner product

$$
\langle x, y\rangle=\sum_{i=1}^{\infty} x_{i} \overline{y_{i}} \quad: \quad\|x\|_{2}=\sqrt{\sum_{i=1}^{\infty} x_{i} \overline{x_{i}}}=\sqrt{\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}} .
$$

(4) The L^{2} norm

$$
\|u\|_{2}=\left(\int_{a}^{b}|u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

on $C([a, b])$ is induced by the inner product

$$
\langle u, v\rangle=\int_{a}^{b} u(x) \overline{v(x)} d x
$$

