Linear Analysis Lecture 5

Inner Products and V'

Let dim $V < \infty$ with inner product $\langle \cdot, \cdot \rangle$.

Choose a basis ${\mathcal B}$ and let $v,w\in V$ have coordinates in ${\mathbb F}^n$ given by

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) \quad \text{and} \quad \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right), \quad \text{respectively}.$$

Let $A \in \mathbb{F}^{n \times n}$ be the inner product matrix in this basis, then

$$w^*(v) = \langle v, w \rangle = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} \overline{y_j} \right) x_i.$$

It follows that \boldsymbol{w}^* has components

$$b_i = \sum_{i=1}^n a_{ij} \overline{y_j}$$

with respect to the dual basis.

Therefore, the map $w\mapsto w^*$ corresponds to a mapping of its coordinates in the basis $\mathcal B$ to its coordinates in the dual basis $\mathcal B'$ given by the matrix-vector product

$$\left(\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array}\right) = A \overline{\left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right)}.$$

Annihilators and Orthogonal Projections

Suppose $W\subset V$ is a subspace and define the orthogonal complement (read W "perp")

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \quad (\forall w \in W) \}.$$

The orthogonal complement W^{\perp} is a subspace of V.

The use of the same notation as used for the annihilator of W is justified since the image of W^{\perp} under the map $w \to w^*$ is precisely the annihilator of W.

If $\dim\,V<\infty,$ a dimension count and the obvious $\,W\cap\,W^\perp=\{0\}$ show that

$$V = W \oplus W^{\perp}$$
.

So in a finite dimensional inner product space, a subspace W determines a natural complement, namely $W^\perp.$

The induced projection onto W (along W^{\perp}) is called the *orthogonal* projection onto W.

Norms

A norm on a vector space $\,V\,$ is a function $\|\cdot\|:\,V\to[0,\infty)$ satisfying

- (i) $(\forall v \in V)$ $||v|| \ge 0$, and ||v|| = 0 iff v = 0
- (ii) $(\forall \, \alpha \in \mathbb{F})(\forall \, v \in \, V) \quad \|\alpha v\| = |\alpha| \cdot \|v\|$, and
- (iii) (triangle inequality) $(\forall v, w \in V) \quad \|v + w\| \le \|v\| + \|w\|.$

The pair $(V,\|\cdot\|)$ is called a *normed linear space* (or normed vector space).

Fact: A norm $\|\cdot\|$ on a vector space V induces a metric d on V by

$$d(v, w) = ||v - w||.$$

Examples of Normed Linear Spaces

(1) ℓ^p -norm on \mathbb{F}^n $(1 \le p \le \infty)$

(a)
$$p = \infty$$
: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|, x \in \mathbb{F}^n$

(b)
$$1 \le p < \infty$$
: $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, x \in \mathbb{F}^n$.

The triangle inequality

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

is known as "Minkowski's inequality." It is a consequence of Hölder's inequality.

Integral versions of these inequalities are proved in real analysis texts, e.g., Folland, Royden or Rudin. The proofs for vectors in \mathbb{F}^n are analogous to the proofs for integrals

Examples of Normed Linear Spaces

- (2) ℓ^p -norm on ℓ^p (subspace of \mathbb{F}^{∞}) $(1 \leq p \leq \infty)$
 - (a) $p=\infty$:

$$\ell^{\infty} = \{ x \in \mathbb{F}^{\infty} : \sup_{i \ge 1} |x_i| < \infty \} \quad ||x||_{\infty} = \sup_{i \ge 1} |x_i|$$

for $x \in \ell^{\infty}$.

(b) $1 \le p < \infty$:

$$\ell^{p} = \left\{ x \in \mathbb{F}^{\infty} : \left(\sum_{i=1}^{\infty} |x_{i}|^{p} \right)^{\frac{1}{p}} < \infty \right\}, \quad \|x\|_{p} = \left(\sum_{i=1}^{\infty} |x|^{p} \right)^{\frac{1}{p}}$$

for $x \in \ell^p$.

Examples of Normed Linear Spaces

- (3) L^p norm on C([a,b]) $(1 \le p \le \infty)$
 - (a) $p=\infty$: $\|f\|_{\infty}=\sup_{a\leq x\leq b}|f(x)|$. Since |f(x)| is a continuous, real-valued function on the compact set [a,b], it takes on its maximum, so the "sup" is actually a "max" here:

$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|.$$

(b) $1 \le p < \infty$: $||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$. Use continuity of f to show that

$$||f||_p = 0 \Rightarrow f(x) \equiv 0$$
 on $[a, b]$.

The triangle inequality

$$\left(\int_{a}^{b} |f(x) + g(x)|^{p} dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{1}{p}} + \left(\int_{a}^{b} |g(x)|^{p} dx\right)^{\frac{1}{p}}$$

is Minkowski's inequality, a consequence of Hölder's inequality:

$$\int_{a}^{b} f(x)g(x)dx \leq \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{\frac{1}{q}},$$

where

$$\frac{1}{p} + \frac{1}{q} = 1 \ .$$

Continuous Linear Operators on Normed Linear Spaces

Theorem: $(V, \|\cdot\|_v)$ and $(W, \|\cdot\|_w)$ are normed linear spaces.

L:V o W is a linear transformation. Then the following are equivalent:

- (a) L is continuous
- **(b)** L is uniformly continuous (Lipschitz continuous)
- (c) $(\exists C)$ so that $(\forall v \in V) \quad ||Lv||_w \le C||v||_v$.

Proof: (a) \Rightarrow (c): Suppose L is continuous. Then L is continuous at v=0. Let $\epsilon=1$. Then $\exists\,\delta>0$ such that

$$||v||_v \le \delta \quad \Rightarrow \quad ||Lv||_w \le 1$$

(as L(0) = 0). For any $v \neq 0$,

$$\|\delta v/\|v\|_v\|_v \le \delta \quad \Rightarrow \quad \|L\left(\delta v/\|v\|_v\right)\|_w \le 1,$$

i.e., $||Lv||_w \leq \frac{1}{\delta} ||v||_v$. Let $C = \frac{1}{\delta}$.

(c) \Rightarrow (b): Condition (c) implies that

$$(\forall v_1, v_2 \in V) \quad ||Lv_1 - Lv_2||_w = ||L(v_1 - v_2)||_w \le C||v_1 - v_2||_v.$$

Hence L is uniformly continuous (given ϵ , let $\delta=\frac{\epsilon}{c}$, etc.). In fact, L is uniformly Lipschitz continuous with Lipschitz constant C. (b) \Rightarrow (a) is immediate.

Bounded Linear Operators and Their Norms

Definition: V and W are normed linear spaces. $L:V\to W$ a linear operator. If

 $||L|| := \sup_{v \in V, v \neq 0} \frac{||Lv||_w}{||v||_v} < \infty,$

then L is called a bounded linear operator from V to W, in which case we call ||L|| the operator norm of L.

Remarks.

- (1) Note that it is the *norm ratio* $\frac{\|Lv\|_w}{\|v\|_v}$ (or "stretching factor") that is bounded, *not* $\{\|Lv\|_w:v\in V\}$.
- (2) The theorem above says that if V and W are normed linear spaces and $L:V\to W$ is linear, then

L is continuous $\Leftrightarrow L$ is uniformly continuous $\Leftrightarrow L$ is a bounded linear operator.

Equivalence of Norms

It is easily seen that the norm in a normed linear space is a continuous mapping from the space into \mathbb{R} . This follows from the *other half* of the triangle inequality:

$$||u|| - ||v|| | \le ||u - v||$$
.

Definition: Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$, both on the same vector space V, are called *equivalent norms* on V if \exists constants $C_1, C_2 > 0$ for which

$$(\forall v \in V) \quad C_1 ||v||_2 \le ||v||_1 \le C_2 ||v||_2.$$

Fact: V is finite-dim if and only if any two norms on V are equivalent.

Remarks.

(1) All norms on a fixed finite dimensional vector space are equivalent. However, the constants C_1 and C_2 can depend on the dimension. For example, in \mathbb{F}^n

$$||x||_2 \le \sqrt{n} ||x||_{\infty} .$$

(2) In a normed linear space V, the closed unit ball $\mathbb{B}:=\{v\in V:\|v\|\leq 1\}$ is compact iff $\dim V<\infty$.

Examples

then

(1) Set
$$\mathbb{F}_0^{\infty} = \{x \in \mathbb{F}^{\infty} : (\exists N)(\forall n \ge N) \mid x_n = 0\}.$$

For $1 \le p < q \le \infty$, the ℓ^p and ℓ^q norms are *not* equivalent. Consider p = 1, $q = \infty$. Note that

$$\|x\|_{\infty} \leq \sum_{i=1} |x_i| = \|x\|_1 \ .$$
 But if
$$y_1 = (1,0,0\cdots), \ y_2 = (1,1,0,\cdots), \ y_3 = (1,1,1,0,\cdots), \ \dots$$
 then
$$\|y_n\|_{\infty} = 1 \quad \text{and} \quad \|y_n\|_1 = n \quad \forall \, n \ .$$

So there does *not* exist a constant C for which

$$(\forall x \in \mathbb{F}_0^{\infty}) \qquad \|x\|_1 \le C \|x\|_{\infty} .$$

(2) In ℓ^2 (a subspace of \mathbb{F}^{∞}) with norm $||x||_2 = \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$, the closed unit ball $\{x \in \ell^2 : ||x||_2 < 1\}$ is *not* compact. The sequence e_1, e_2, e_3, \ldots is bounded, $||e_i||_{\ell^2} \leq 1$, and all are in the closed unit ball, but no subsequence can converge because $||e_i - e_i||_{\ell^2} = \sqrt{2}$ for $i \neq i$.

Norms induced by inner products

Let $(V,\langle\cdot,\cdot\rangle)$ be an inner product space. Define $\|v\|=\sqrt{\langle v,v\rangle}$. We have $\|v\|\geq 0\quad\text{with}\quad \|v\|=0 \ \Leftrightarrow \ v=0\ ,\quad \text{and}$ $(\forall\,\alpha\in\mathbb{F})(\forall\,v\in V)\qquad \|\alpha v\|=|\alpha|\cdot\|v\|\ .$

To show that $\|\cdot\|$ is a norm we need the triangle inequality.

Note that for any two vectors $u, v \in V$ we have

$$\|u+v\|^{2} = \langle u+v, u+v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle} + \langle v, v \rangle$$

$$= \|u\|^{2} + 2\Re e \langle u, v \rangle + \|v\|^{2}.$$

Consequently, if u and v are orthogonal ($\langle u, v \rangle = 0$), then

$$||u + v||^2 = ||u||^2 + ||v||^2$$
.

The Cauchy-Schwarz Inequality

For all $v, w \in V$ we have

$$|\langle v, w \rangle| \le ||v|| \cdot ||w|| ,$$

with equality iff v and w are linearly dependent.

Proof: Case (i) If v = 0, we are done.

Case (ii) Assume $v \neq 0$, and set

$$u := w - \frac{\langle w, v \rangle}{\|v\|^2} v,$$

so that $\langle u, v \rangle = 0$, i.e. $u \perp v$. Then, by orthogonality,

$$\left\|w\right\|^2 = \left\|u + \frac{\langle w, v \rangle}{\left\|v\right\|^2} v\right\|^2 = \left\|u\right\|^2 + \left\|\frac{\langle w, v \rangle}{\left\|v\right\|^2} v\right\|^2 = \left\|u\right\|^2 + \frac{\left|\langle w, v \rangle\right|^2}{\left\|v\right\|^2} \ge \frac{\left|\langle w, v \rangle\right|^2}{\left\|v\right\|^2},$$

with equality iff u = 0.

The Triangle Inequality

For all $v, w \in V$ we have

$$||v + w||^{2} = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + 2\mathcal{R}e\langle v, w \rangle + \langle w, w \rangle$$

$$\leq ||v||^{2} + 2|\langle v, w \rangle| + ||w||^{2}$$

$$\leq ||v||^{2} + 2||v|| \cdot ||w|| + ||w||^{2}$$

$$= (||v|| + ||w||)^{2}.$$

So $||v|| = \sqrt{\langle v, v \rangle}$ is a norm on V.

The resulting norm is called the norm induced by the inner product $\langle \cdot, \cdot \rangle$. That is, an inner product induces a norm which, in turn, induces a metric

$$(V, \langle \cdot, \cdot \rangle) \leftrightarrow (V, ||\cdot||) \leftrightarrow (V, d)$$
.

Examples

(1) The Euclidean norm [i.e. ℓ^2 norm] on \mathbb{F}^n is induced by the standard inner product

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$
 : $||x||_2 = \sqrt{\sum_{i=1}^{n} x_i \overline{x_i}} = \sqrt{\sum_{i=1}^{n} |x_i|^2}$.

(2) Let $A \in \mathbb{F}^{n \times n}$ be Hermitian-symmetric and positive definite, and let

$$\langle x, y \rangle_A = \sum_{i=1}^n \sum_{j=1}^n x_i a_{ij} \overline{y_j}$$
 for $x, y \in \mathbb{F}^n$.

Then $\langle \cdot, \cdot \rangle_A$ is an inner product on \mathbb{F}^n , which induces the norm

$$||x||_A = \sqrt{\langle x, x \rangle_A} = \sqrt{\sum_{i=1}^n \sum_{j=1}^n x_i a_{ij} \overline{x_j}} = \sqrt{x^T A \overline{x}} = \sqrt{x^H \overline{A} x}.$$

Examples

(3) The ℓ^2 -norm on ℓ^2 (subspace of \mathbb{F}^{∞}) is induced by the inner product

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}$$
 : $||x||_2 = \sqrt{\sum_{i=1}^{\infty} x_i \overline{x_i}} = \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$.

(4) The L^2 norm

$$||u||_2 = \left(\int_a^b |u(x)|^2 dx\right)^{\frac{1}{2}}$$

on C([a,b]) is induced by the inner product

$$\langle u, v \rangle = \int_a^b u(x) \overline{v(x)} dx$$
.