Linear Analysis
Lecture 4




Dual Transformations

Suppose U, V and W are vector spaces, possibly infinite dim.

L € L(V, W) the space of all linear transformations from V to W.

Define the dual, or adjoint transformation L* : W/ — V' by
(L*g)(v) = g(Lv) for ge W', ve V.

L — L* is a linear transformation from £(V, W) to L(W', V'), and
(LoM)* = M*oL* if MeL(U,V).

since

(Lo M)"g)(u) = g((LoM)u) = g(L(Mu))
L*(g)(Mu) = M*(L"g)(u)
= (Mo L)(g)(u) -
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Matrices for Dual Transformations

Suppose V and W are finite dimensional. Let bases for V and W be
chosen along with corresponding dual bases for V* and W*.

Let L € L(V, W) have the matrix representation T in the given bases.
Let v € V and Lv € W have coordinates

I n

r= and y= , respectively, so y= T=.

In Ym
If g has coordinates b = (by - - - byy,), then

g(Lv):(bl"'bm)T )

In
so L*g has coordinates

(ay+-an)=(by -+ byp)T or a=0bT.



Matrices for Dual Transformations

Thus, L is represented by left-multiplication by T on column vectors, and
L* is represented by right-multiplication by 7" on row vectors.

Using the obvious isometry, one can also represent the dual coordinate
vectors also as column vectors.

Taking the transpose in

(a1 an) = (b bu) T
gives

ay b1

an, b,

That is L* can also be represented through left-multiplication by 7" on
column vectors. (7™ is the transpose of T (T7); = tj;.)



The Double Algebraic Dual

The algebraic dual of V' is V. There is a natural inclusion V — V",
If v e V, then f — f(v) defines a linear functional on V’. This map is
injective (one to one). Indeed, if v # 0, there is an f € V' for which

f(0) 0.
We identify V with its image, so we can regard V C V"
If V is finite dimensional, then V = V' since

dim V = dim V' = dim V"

If V is infinite dimensional, however, then there may be elements of V'
which are not in V.



Annihilators

Let S C V. Define the annihilator S+ C V' by
T={fe V' :(VveS) flv) =0}

Clearly S+ = (Span(S))* , and S++ c V.

Proposition. If dim V < oo, then S+ = Span(S).

Proof: As above we make the identification V = V" and so
Span(S) C S*++.

For the reverse, we assume WLOG that S is a subspace with basis
{s1,...,8m} which we complete to the basis {s1,..., Smt1,...,8} of
V. Then the dual basis vectors {fnt1,--.,f.} are a basis for S*. So

dim S+ =n —dim St =n— (n —dim $) = dim S .
Since S C S+, the proof is complete.
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The Fundamental Theorem of the Alternative

Proposition. Suppose L € L(V, W). Then N(L*) = R(L)*.
Proof: Clearly both are subspaces of W’. Let g € W'. Then

geN(L*) < L*'g=0
— MveV)(L9v)=0
— (MveV)g(lv)=0
— geR(L)*. O
The result is called the Fundamental Theorem of the Alternative since it
is equivalent to the following:

One of the two alternatives (A) and (B) must hold, and both (A) and
(B) cannot hold.

The system
(4) y=Lz
is solvable.
There exists w € W' such that
(B) L*w=0
and w(y) # 0.



Bilinear Forms

A function ¢ : V x V — F is called a bilinear form if it is linear in each
variable separately:

<P(Z TiVis Z Yivj) = szﬂiyj@(vi, vj) -

i=1 j=1
Examples:

(1) For A € F™*™ the function n
o(z,y) = Z Z a3 T;Yj
i=1 j=1
is a bilinear form. In fact, all bilinear forms on F™ are of this form, as

n n
gp(z T Z yjej) = Z Z z;yjp(e;, ), so just set a; = (e, €)).

i=1 j=1

In general, let V be finite-dimensional with basis {vy,...,v,}. Let
v,w € V with v =>"z;u; and w =" y;v;. If ¢ is bilinear on V, then

o(v, w) = Z Z zy0(vi, vj) = 7 Ay,

o=l =1
where A € F™*™ satisfies a;; = ¢(v;, v;).
A is called the matrix of ¢ with respect to the basis {vy, ..., v, }.



Bilinear Forms: Examples

(2) One can also use infinite matrices (a;); j>1 for V=T as long as
convergence conditions are imposed. For example, if all |a;;| < M, then

o0 o0
z Z/) = § E Qi TiYj
i=1 =1
defines a bilinear form on ¢! since

ZZI%%%I < M( Z|$z Zly]

=1 j=1
(3) If f,g € V', then o(z,y) = f(z)g(y) is a bilinear form.
(4) If V.= C[a,b], then
(i) for k € C([a,b] x f f k(z, y)u(z)v(y)dzdy
(ii) for h € C([a, b]) f h(z (z)dx
(iii) for zo € [a, b], u(xp) fa v(a:)dx

are all examples of bilinear forms.



Symmetric Bilinear Forms

A bilinear form is symmetric if
Vo,we V) ov,w) =gp(w,v).

In the finite-dimensional case, this implies the matrix A be symmetric
(wrt any basis), i.e.,

A= AT, or (V Z,]) A5 = Qg
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Sesquilinear Forms

Let F = C, a sesquilinear formon V, o : V x V — C, is linear in the
first variable and conjugate-linear in the second variable, i.e.,

(v, crw + agwa) = arp(vi, wr) + a2p(v, wa).

On C™ all sesquilinear forms are of the form

n n
o(z,w) = ZZ ajziw;  for some A € C™*".
i=1 j=1
To be able to discuss bilinear forms over R and sesquilinear forms over C
at the same time, we will speak of a sesquilinear form over R and mean
just a bilinear form over R.
A sesquilinear form is said to be Hermitian-symmetric (or Hermitian) if
Vo,we V) (v, w) = o(w,v)
(when F =R, we say the form is symmetric). This corresponds to the
condition that A = A" where A" = A" e, (A");= A .
A" is the Hermitian transpose (or conjugate transpose) of A when F = C.

If A= A" € C™", we say A is Hermitian (-symmetric).
If A= A" ¢ R™"™ and F = R, we say A is symmetric.
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Inner Products

Associate the quadratic form (v, v) with the sesquilinear form ¢.
We say that ¢ is nonnegative (or positive semi-definite) if
Mve V) ¢(v,v) >0,
and that ¢ is positive (or positive definite) if
Mve V,u#0) ¢(v,v) >0.

By an inner product on V, we will mean a positive-definite
Hermitian-symmetric sesquilinear form.

inner product

positive-definite Hermitian-symmetric
sesquilinear form



Examples of Inner Products

F=CorR
(1) F™ with the Euclidean inner product

n
(z,9) =Y il = y"'z.
=1

(2) Let V=F" and A € F"*" be Hermitian-symmetric and define

n n
(z,y)a = ZZ ayzy; = y" Az.

i=1 j=1

The requirement that (z,z)4 > 0 for 2 # 0 so that (-,-) 4 is an inner
product serves to define positive-definite matrices.
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Examples of Inner Products

(3) Let V be any finite-dimensional vector space. Choose a basis and thus
identify ¥V = F". Transfer the Euclidean inner product to V in the
coordinate of this basis. The resulting inner product depends on the
choice of basis.

With respect to the coordinates induced by a basis, any inner product
on a finite-dimensional vector space V is of the form described in
example (2) above.

(4) One can define an inner product on léi by

(z,y) = Z T

i=1
To see that this sum converges absolutely, apply the finite-dimensional
Cauchy-Schwarz inequality to obtain

1 1 1 1
S ra < (S0ar) (S < () (S
i=1 i=1 i=1 i=1 i=1
Let n — oo to see that the series > -, z;J; converges absolutely.
(5) The L2-inner product on C([a, b]) is given by
b
(u, vy = uw(z)v(z)de.

a
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Inner Products and V’

An inner product on V determines an injection V — V.
For w € V, define

wew eV by w(v) = (v,w).
Since w*(w) = (w, w) it follows that
w'=0=>w=0,

so the map w — w* is injective (one to one).
e The map w+— w* is conjugate-linear since

(aw)* = aw* .

It is linear if F = R.
e The image of the mapping w — w* is a subspace of V'.
If dim V < oo, then this map is surjective too since dim V = dim V’.

In general, the mapping w +— w* is not surjective.
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Inner Products and V’

Let dim V < oo with inner product (-, -).
Choose a basis B and let v, w € V have coordinates in F™ given by

I Y1
and : ,  respectively.
Tn UYn
Let A € F™*™ be the inner product matrix in this basis, then

n

’U}*('U) = <1}, w> = Z (Z aijyj> Z;.

—
It follows that w* has components

n
bi = Z aijfj

. . i—1
with respect to the dual basis. ’

Therefore, the map w — w* corresponds to a mapping of its coordinates
in the basis B to its coordinates in the dual basis B’ given by the
matrix-vector product -
b1 (7
=4

bn Yn
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