Linear Analysis Lecture 4

Dual Transformations

Suppose U, V and W are vector spaces, possibly infinite dim.
$L \in \mathcal{L}(V, W)$ the space of all linear transformations from V to W.
Define the dual, or adjoint transformation $L^{*}: W^{\prime} \rightarrow V^{\prime}$ by

$$
\left(L^{*} g\right)(v)=g(L v) \quad \text { for } \quad g \in W^{\prime}, v \in V .
$$

$L \mapsto L^{*}$ is a linear transformation from $\mathcal{L}(V, W)$ to $\mathcal{L}\left(W^{\prime}, V^{\prime}\right)$, and

$$
(L \circ M)^{*}=M^{*} \circ L^{*} \quad \text { if } \quad M \in \mathcal{L}(U, V)
$$

since

$$
\begin{aligned}
\left((L \circ M)^{*} g\right)(u) & =g((L \circ M) u)=g(L(M u)) \\
& =L^{*}(g)(M u)=M^{*}\left(L^{*} g\right)(u) \\
& =\left(M^{*} \circ L^{*}\right)(g)(u) .
\end{aligned}
$$

Matrices for Dual Transformations

Suppose V and W are finite dimensional. Let bases for V and W be chosen along with corresponding dual bases for V^{*} and W^{*}.
Let $L \in \mathcal{L}(V, W)$ have the matrix representation T in the given bases. Let $v \in V$ and $L v \in W$ have coordinates

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right), \quad \text { respectively, } \quad \text { so } \quad y=T x .
$$

If g has coordinates $b=\left(b_{1} \cdots b_{m}\right)$, then

$$
g(L v)=\left(b_{1} \cdots b_{m}\right) T\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right),
$$

so $L^{*} g$ has coordinates

$$
\left(a_{1} \cdots a_{n}\right)=\left(b_{1} \cdots b_{m}\right) T \quad \text { or } \quad a=b T .
$$

Matrices for Dual Transformations

Thus, L is represented by left-multiplication by T on column vectors, and L^{*} is represented by right-multiplication by T on row vectors.

Using the obvious isometry, one can also represent the dual coordinate vectors also as column vectors.

Taking the transpose in

$$
\left(a_{1} \cdots a_{n}\right)=\left(b_{1} \cdots b_{m}\right) T
$$

gives

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=T^{\mathrm{T}}\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right) .
$$

That is L^{*} can also be represented through left-multiplication by T^{T} on column vectors. (T^{T} is the transpose of T : $\left(T^{\mathrm{T}}\right)_{i j}=t_{j i}$.)

The algebraic dual of V^{\prime} is $V^{\prime \prime}$. There is a natural inclusion $V \rightarrow V^{\prime \prime}$. If $v \in V$, then $f \mapsto f(v)$ defines a linear functional on V^{\prime}. This map is injective (one to one). Indeed, if $v \neq 0$, there is an $f \in V^{\prime}$ for which $f(v) \neq 0$.

We identify V with its image, so we can regard $V \subset V^{\prime \prime}$.

If V is finite dimensional, then $V=V^{\prime \prime}$ since

$$
\operatorname{dim} V=\operatorname{dim} V^{\prime}=\operatorname{dim} V^{\prime \prime}
$$

If V is infinite dimensional, however, then there may be elements of $V^{\prime \prime}$ which are not in V.

Annihilators

Let $S \subset V$. Define the annihilator $S^{\perp} \subset V^{\prime}$ by

$$
S^{\perp}=\left\{f \in V^{\prime}:(\forall v \in S) f(v)=0\right\} .
$$

Clearly $S^{\perp}=(\operatorname{Span}(S))^{\perp}$, and $S^{\perp \perp} \subset V^{\prime \prime}$.
Proposition. If $\operatorname{dim} V<\infty$, then $S^{\perp \perp}=\operatorname{Span}(S)$.
Proof: As above we make the identification $V=V^{\prime \prime}$ and so

$$
\operatorname{Span}(S) \subset S^{\perp \perp}
$$

For the reverse, we assume WLOG that S is a subspace with basis $\left\{s_{1}, \ldots, s_{m}\right\}$ which we complete to the basis $\left\{s_{1}, \ldots, s_{m+1}, \ldots, s_{n}\right\}$ of V. Then the dual basis vectors $\left\{f_{m+1}, \ldots, f_{n}\right\}$ are a basis for S^{\perp}. So

$$
\operatorname{dim} S^{\perp \perp}=n-\operatorname{dim} S^{\perp}=n-(n-\operatorname{dim} S)=\operatorname{dim} S
$$

Since $S \subset S^{\perp \perp}$, the proof is complete.

Proposition. Suppose $L \in \mathcal{L}(V, W)$. Then $\mathcal{N}\left(L^{*}\right)=\mathcal{R}(L)^{\perp}$.
Proof: Clearly both are subspaces of W^{\prime}. Let $g \in W^{\prime}$. Then

$$
\begin{aligned}
g \in \mathcal{N}\left(L^{*}\right) & \Longleftrightarrow L^{*} g=0 \\
& \Longleftrightarrow(\forall v \in V)\left(L^{*} g\right)(v)=0 \\
& \Longleftrightarrow(\forall v \in V) g(L v)=0 \\
& \Longleftrightarrow g \in \mathcal{R}(L)^{\perp} .
\end{aligned}
$$

The result is called the Fundamental Theorem of the Alternative since it is equivalent to the following:
One of the two alternatives (A) and (B) must hold, and both (A) and (B) cannot hold.

$$
\text { (A) } \quad\left[\begin{array}{c}
\text { The system } \\
y=L x \\
\text { is solvable. }
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\text { There exists } w \in W^{\prime} \text { such that } \tag{B}\\
L^{*} w=0 \\
\text { and } w(y) \neq 0 .
\end{array}\right]
$$

Bilinear Forms

A function $\varphi: V \times V \rightarrow \mathbb{F}$ is called a bilinear form if it is linear in each variable separately:

Examples:

$$
\varphi\left(\sum x_{i} v_{i}, \sum y_{j} v_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \varphi\left(v_{i}, v_{j}\right) .
$$

(1) For $A \in \mathbb{F}^{n \times n}$, the function

$$
\varphi(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} y_{j}
$$

is a bilinear form. In fact, all bilinear forms on \mathbb{F}^{n} are of this form, as

$$
\varphi\left(\sum x_{i} e_{i} \sum y_{j} e_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \varphi\left(e_{i}, e_{j}\right), \quad \text { so just set } a_{i j}=\varphi\left(e_{i}, e_{j}\right) .
$$

In general, let V be finite-dimensional with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Let $v, w \in V$ with $v=\sum x_{i} v_{i}$ and $w=\sum y_{j} v_{j}$. If φ is bilinear on V, then

$$
\varphi(v, w)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \varphi\left(v_{i}, v_{j}\right)=x^{T} A y
$$

where $A \in \mathbb{F}^{n \times n}$ satisfies $a_{i j}=\varphi\left(v_{i}, v_{j}\right)$.
A is called the matrix of φ with respect to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$.
(2) One can also use infinite matrices $\left(a_{i j}\right)_{i, j \geq 1}$ for $V=\mathbb{F}^{\infty}$ as long as convergence conditions are imposed. For example, if all $\left|a_{i j}\right| \leq M$, then

$$
\varphi(x, y)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} x_{i} y_{j}
$$

defines a bilinear form on ℓ^{1} since

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a_{i j} x_{i} y_{j}\right| \leq M\left(\sum_{i=1}^{\infty}\left|x_{i}\right|\right)\left(\sum_{j=1}^{\infty}\left|y_{j}\right|\right)
$$

(3) If $f, g \in V^{\prime}$, then $\varphi(x, y)=f(x) g(y)$ is a bilinear form.
(4) If $V=C[a, b]$, then
(i) for $k \in C([a, b] \times[a, b]), \int_{a}^{b} \int_{a}^{b} k(x, y) u(x) v(y) d x d y$
(ii) for $h \in C([a, b]), \int_{a}^{b} h(x) u(x) v(x) d x$
(iii) for $x_{0} \in[a, b], u\left(x_{0}\right) \int_{a}^{b} v(x) d x$
are all examples of bilinear forms.

Symmetric Bilinear Forms

A bilinear form is symmetric if

$$
(\forall v, w \in V) \quad \varphi(v, w)=\varphi(w, v) .
$$

In the finite-dimensional case, this implies the matrix A be symmetric (wrt any basis), i.e.,

$$
A=A^{\mathrm{T}}, \quad \text { or } \quad(\forall i, j) a_{i j}=a_{j i} .
$$

Sesquilinear Forms

Let $\mathbb{F}=\mathbb{C}$, a sesquilinear form on $V, \varphi: V \times V \rightarrow \mathbb{C}$, is linear in the first variable and conjugate-linear in the second variable, i.e.,

$$
\varphi\left(v, \alpha_{1} w_{1}+\alpha_{2} w_{2}\right)=\bar{\alpha}_{1} \varphi\left(v_{1}, w_{1}\right)+\bar{\alpha}_{2} \varphi\left(v, w_{2}\right)
$$

On \mathbb{C}^{n} all sesquilinear forms are of the form

$$
\varphi(z, w)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} z_{i} \bar{w}_{j} \quad \text { for some } A \in \mathbb{C}^{n \times n}
$$

To be able to discuss bilinear forms over \mathbb{R} and sesquilinear forms over \mathbb{C} at the same time, we will speak of a sesquilinear form over \mathbb{R} and mean just a bilinear form over \mathbb{R}.
A sesquilinear form is said to be Hermitian-symmetric (or Hermitian) if

$$
(\forall v, w \in V) \quad \varphi(v, w)=\overline{\varphi(w, v)}
$$

(when $\mathbb{F}=\mathbb{R}$, we say the form is symmetric). This corresponds to the condition that $A=A^{\mathrm{H}}$ where $A^{\mathrm{H}}=\bar{A}^{\mathrm{T}} \quad$ i.e., $\quad\left(A^{\mathrm{H}}\right)_{i j}=\overline{A_{j i}}$. A^{H} is the Hermitian transpose (or conjugate transpose) of A when $\mathbb{F}=\mathbb{C}$.

If $A=A^{\mathrm{H}} \in \mathbb{C}^{n \times n}$, we say A is Hermitian (-symmetric).
If $A=A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ and $\mathbb{F}=\mathbb{R}$, we say A is symmetric.

Inner Products

Associate the quadratic form $\varphi(v, v)$ with the sesquilinear form φ.
We say that φ is nonnegative (or positive semi-definite) if

$$
(\forall v \in V) \quad \varphi(v, v) \geq 0,
$$

and that φ is positive (or positive definite) if

$$
(\forall v \in V, v \neq 0) \quad \varphi(v, v)>0 .
$$

By an inner product on V, we will mean a positive-definite Hermitian-symmetric sesquilinear form.

> inner product
$=$
positive-definite Hermitian-symmetric sesquilinear form

$$
\mathbb{F}=\mathbb{C} \text { or } \mathbb{R}
$$

(1) \mathbb{F}^{n} with the Euclidean inner product

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}}=y^{\mathrm{H}} x .
$$

(2) Let $V=\mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times n}$ be Hermitian-symmetric and define

$$
\langle x, y\rangle_{A}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} \overline{y_{j}}=y^{\mathrm{H}} A x .
$$

The requirement that $\langle x, x\rangle_{A}>0$ for $x \neq 0$ so that $\langle\cdot, \cdot\rangle_{A}$ is an inner product serves to define positive-definite matrices.

Examples of Inner Products

(3) Let V be any finite-dimensional vector space. Choose a basis and thus identify $V \cong \mathbb{F}^{n}$. Transfer the Euclidean inner product to V in the coordinate of this basis. The resulting inner product depends on the choice of basis.
With respect to the coordinates induced by a basis, any inner product on a finite-dimensional vector space V is of the form described in example (2) above.
(4) One can define an inner product on ℓ_{∞}^{2} by

$$
\langle x, y\rangle=\sum_{i=1} x_{i} \overline{y_{i}} .
$$

To see that this sum converges absolutely, apply the finite-dimensional Cauchy-Schwarz inequality to obtain
$\sum_{i=1}^{n}\left|x_{i} \overline{y_{i}}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}$.
Let $n \rightarrow \infty$ to see that the series $\sum_{i=1}^{\infty} x_{i} \overline{y_{i}}$ converges absolutely.
(5) The L^{2}-inner product on $C([a, b])$ is given by

$$
\langle u, v\rangle=\int_{a}^{b} u(x) \overline{v(x)} d x .
$$

Inner Products and V^{\prime}

An inner product on V determines an injection $V \rightarrow V^{\prime}$.
For $w \in V$, define

$$
w \mapsto w^{*} \in V^{\prime} \quad \text { by } \quad w^{*}(v)=\langle v, w\rangle .
$$

Since $w^{*}(w)=\langle w, w\rangle$ it follows that

$$
w^{*}=0 \Rightarrow w=0,
$$

so the map $w \mapsto w^{*}$ is injective (one to one).

- The map $w \mapsto w^{*}$ is conjugate-linear since

$$
(\alpha w)^{*}=\bar{\alpha} w^{*} .
$$

It is linear if $\mathbb{F}=\mathbb{R}$.

- The image of the mapping $w \mapsto w^{*}$ is a subspace of V^{\prime}.

If $\operatorname{dim} V<\infty$, then this map is surjective too since $\operatorname{dim} V=\operatorname{dim} V^{\prime}$.
In general, the mapping $w \mapsto w^{*}$ is not surjective.

Inner Products and V^{\prime}

Let $\operatorname{dim} V<\infty$ with inner product $\langle\cdot, \cdot\rangle$.
Choose a basis \mathcal{B} and let $v, w \in V$ have coordinates in \mathbb{F}^{n} given by

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad \text { respectively. }
$$

Let $A \in \mathbb{F}^{n \times n}$ be the inner product matrix in this basis, then

$$
w^{*}(v)=\langle v, w\rangle=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} \overline{y_{j}}\right) x_{i} .
$$

It follows that w^{*} has components

$$
b_{i}=\sum_{j-1}^{n} a_{i j} \overline{y_{j}}
$$

with respect to the dual basis.
Therefore, the map $w \mapsto w^{*}$ corresponds to a mapping of its coordinates in the basis \mathcal{B} to its coordinates in the dual basis \mathcal{B}^{\prime} given by the matrix-vector product

$$
\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=A \overline{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)}
$$

