Linear Analysis Lecture 4

Dual Transformations

Suppose U, V and W are vector spaces, possibly infinite dim.

 $L \in \mathcal{L}(V, W)$ the space of all linear transformations from V to W.

Define the **dual**, or **adjoint** transformation $L^*: W' \to V'$ by

$$(L^*g)(v) = g(Lv)$$
 for $g \in W', v \in V$.

 $L\mapsto L^*$ is a linear transformation from $\mathcal{L}(V,W)$ to $\mathcal{L}(W',V')$, and

$$(L \circ M)^* = M^* \circ L^* \text{ if } M \in \mathcal{L}(U, V).$$

since

$$\begin{aligned} ((L \circ M)^*g)(u) &= g((L \circ M)u) = g(L(Mu)) \\ &= L^*(g)(Mu) = M^*(L^*g)(u) \\ &= (M^* \circ L^*)(g)(u) \;. \end{aligned}$$

Matrices for Dual Transformations

Suppose V and W are finite dimensional. Let bases for V and W be chosen along with corresponding dual bases for V^* and W^* .

Let $L \in \mathcal{L}(V, W)$ have the matrix representation T in the given bases. Let $v \in V$ and $Lv \in W$ have coordinates

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$, respectively, so $y = Tx$.

If g has coordinates $b=(b_1\cdots b_m)$, then

$$g(Lv) = (b_1 \cdots b_m) T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

so L^*g has coordinates

$$(a_1 \cdots a_n) = (b_1 \cdots b_m) T$$
 or $a = b T$.

Thus, L is represented by left-multiplication by T on column vectors, and L^* is represented by right-multiplication by T on row vectors.

Using the obvious isometry, one can also represent the dual coordinate vectors also as column vectors.

Taking the transpose in

$$(a_1\cdots a_n)=(b_1\cdots b_m)T.$$

gives

$$\left(\begin{array}{c}a_1\\\vdots\\a_n\end{array}\right) = T^{\mathrm{T}} \left(\begin{array}{c}b_1\\\vdots\\b_m\end{array}\right).$$

That is L^* can also be represented through left-multiplication by T^{T} on column vectors. (T^{T} is the transpose of T: $(T^{\mathrm{T}})_{ij} = t_{ji}$.)

The algebraic dual of V' is V''. There is a natural inclusion $V \to V''$. If $v \in V$, then $f \mapsto f(v)$ defines a linear functional on V'. This map is injective (one to one). Indeed, if $v \neq 0$, there is an $f \in V'$ for which $f(v) \neq 0$.

We identify V with its image, so we can regard $V \subset V''$.

If V is finite dimensional, then V = V'' since

 $\dim V = \dim V' = \dim V''.$

If V is infinite dimensional, however, then there may be elements of V'' which are not in V.

Annihilators

Let $S \subset V.$ Define the annihilator $S^\perp \subset V'$ by

$$S^{\perp} = \{ f \in V' : (\forall v \in S) \ f(v) = 0 \}.$$

Clearly $S^{\perp} = (\mathrm{Span}(S))^{\perp}$, and $S^{\perp \perp} \subset V''.$

Proposition. If dim $V < \infty$, then $S^{\perp \perp} = \text{Span}(S)$.

Proof: As above we make the identification V = V'' and so

 $\operatorname{Span}(S) \subset S^{\perp \perp}.$

For the reverse, we assume WLOG that S is a subspace with basis $\{s_1, \ldots, s_m\}$ which we complete to the basis $\{s_1, \ldots, s_{m+1}, \ldots, s_n\}$ of V. Then the dual basis vectors $\{f_{m+1}, \ldots, f_n\}$ are a basis for S^{\perp} . So

$$\dim S^{\perp \perp} = n - \dim S^{\perp} = n - (n - \dim S) = \dim S$$

Since $S \subset S^{\perp \perp}$, the proof is complete.

The Fundamental Theorem of the Alternative

Proposition. Suppose $L \in \mathcal{L}(V, W)$. Then $\mathcal{N}(L^*) = \mathcal{R}(L)^{\perp}$.

Proof: Clearly both are subspaces of W'. Let $g \in W'$. Then

$$g \in \mathcal{N}(L^*) \iff L^*g = 0$$

$$\iff (\forall v \in V) \ (L^*g)(v) = 0$$

$$\iff (\forall v \in V) \ g(Lv) = 0$$

$$\iff g \in \mathcal{R}(L)^{\perp} .$$

The result is called the *Fundamental Theorem of the Alternative* since it is equivalent to the following:

One of the two alternatives (A) and (B) must hold, and both (A) and (B) cannot hold.

$$(A) \begin{bmatrix} \text{The system} \\ y = Lx \\ \text{is solvable.} \end{bmatrix}$$
$$(B) \begin{bmatrix} \text{There exists } w \in W' \text{ such that} \\ L^*w = 0 \\ \text{and } w(y) \neq 0. \end{bmatrix}$$

Bilinear Forms

A function $\varphi: V \times V \to \mathbb{F}$ is called a **bilinear form** if it is linear in each variable separately:

$$\varphi(\sum x_i v_i, \ \sum y_j v_j) = \sum_{i=1}^n \sum_{j=1}^n x_i y_j \varphi(v_i, v_j) \ .$$

Examples:

(1) For
$$A \in \mathbb{F}^{n \times n}$$
, the function
 $\varphi(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j$

is a bilinear form. In fact, all bilinear forms on \mathbb{F}^n are of this form, as

$$\varphi(\sum x_i e_i \sum y_j e_j) = \sum_{i=1}^n \sum_{j=1}^n x_i y_j \varphi(e_i, e_j), \quad \text{so just set } a_{ij} = \varphi(e_i, e_j).$$

In general, let V be finite-dimensional with basis $\{v_1, \ldots, v_n\}$. Let $v, w \in V$ with $v = \sum x_i v_i$ and $w = \sum y_j v_j$. If φ is bilinear on V, then

$$\varphi(v, w) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \varphi(v_i, v_j) = x^T A y,$$

where $A \in \mathbb{F}^{n \times n}$ satisfies $a_{ij} = \varphi(v_i, v_j)$. A is called the **matrix of** φ with respect to the basis $\{v_1, \ldots, v_n\}$. (2) One can also use infinite matrices $(a_{ij})_{i,j\geq 1}$ for $V = \mathbb{F}^{\infty}$ as long as convergence conditions are imposed. For example, if all $|a_{ij}| \leq M$, then

$$\varphi(x,y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} x_i y_j$$

defines a bilinear form on ℓ^1 since

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij} x_i y_j| \le M(\sum_{i=1}^{\infty} |x_i|) (\sum_{j=1}^{\infty} |y_j|)$$

(3) If $f,g\in V'$, then $\varphi(x,y)=f(x)g(y)$ is a bilinear form.

(4) If
$$V = C[a, b]$$
, then
(i) for $k \in C([a, b] \times [a, b])$, $\int_a^b \int_a^b k(x, y)u(x)v(y)dxdy$
(ii) for $h \in C([a, b])$, $\int_a^b h(x)u(x)v(x)dx$
(iii) for $x_0 \in [a, b]$, $u(x_0) \int_a^b v(x)dx$
are all examples of bilinear forms.

A bilinear form is symmetric if

$$(\forall v, w \in V) \quad \varphi(v, w) = \varphi(w, v).$$

In the finite-dimensional case, this implies the matrix ${\cal A}$ be symmetric (wrt any basis), i.e.,

$$A = A^{\mathrm{T}}, \quad \text{or} \quad (\forall i, j) \ a_{ij} = a_{ji}.$$

Sesquilinear Forms

Let $\mathbb{F} = \mathbb{C}$, a sesquilinear form on V, $\varphi : V \times V \to \mathbb{C}$, is linear in the first variable and conjugate-linear in the second variable, i.e.,

$$\varphi(v,\alpha_1w_1+\alpha_2w_2)=\bar{\alpha}_1\varphi(v_1,w_1)+\bar{\alpha}_2\varphi(v,w_2).$$

On \mathbb{C}^n all sesquilinear forms are of the form

$$\varphi(z,w) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} z_i \bar{w}_j \qquad \text{for some } A \in \mathbb{C}^{n \times n}.$$

To be able to discuss bilinear forms over \mathbb{R} and sesquilinear forms over \mathbb{C} at the same time, we will speak of a sesquilinear form over \mathbb{R} and mean just a bilinear form over \mathbb{R} .

A sesquilinear form is said to be Hermitian-symmetric (or Hermitian) if

 $(\forall\,v,w\in\,V)\quad\varphi(v,w)=\overline{\varphi(w,v)}$

(when $\mathbb{F} = \mathbb{R}$, we say the form is symmetric). This corresponds to the condition that $A = A^{\mathrm{H}}$ where $A^{\mathrm{H}} = \overline{A}^{\mathrm{T}}$ i.e., $(A^{\mathrm{H}})_{ij} = \overline{A_{ji}}$. A^{H} is the Hermitian transpose (or conjugate transpose) of A when $\mathbb{F} = \mathbb{C}$.

If $A = A^{H} \in \mathbb{C}^{n \times n}$, we say A is **Hermitian (-symmetric)**. If $A = A^{T} \in \mathbb{R}^{n \times n}$ and $\mathbb{F} = \mathbb{R}$, we say A is symmetric. Associate the quadratic form $\varphi(v, v)$ with the sesquilinear form φ .

We say that φ is nonnegative (or positive semi-definite) if

 $(\forall v \in V) \quad \varphi(v, v) \ge 0,$

and that φ is positive (or positive definite) if

$$(\forall v \in V, v \neq 0) \quad \varphi(v, v) > 0.$$

By an **inner product** on V, we will mean a positive-definite Hermitian-symmetric sesquilinear form.

inner product

positive-definite Hermitian-symmetric sesquilinear form

Examples of Inner Products

 $\mathbb{F}=\mathbb{C}$ or \mathbb{R}

(1) \mathbb{F}^n with the Euclidean inner product

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i} = y^{\mathsf{H}} x.$$

(2) Let $V = \mathbb{F}^n$ and $A \in \mathbb{F}^{n \times n}$ be Hermitian-symmetric and define

$$\langle x, y \rangle_A = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i \overline{y_j} = y^{\mathsf{H}} A x.$$

The requirement that $\langle x, x \rangle_A > 0$ for $x \neq 0$ so that $\langle \cdot, \cdot \rangle_A$ is an inner product serves to define positive-definite matrices.

Examples of Inner Products

(3) Let V be any finite-dimensional vector space. Choose a basis and thus identify $V \cong \mathbb{F}^n$. Transfer the Euclidean inner product to V in the coordinate of this basis. The resulting inner product depends on the choice of basis.

With respect to the coordinates induced by a basis, any inner product on a finite-dimensional vector space V is of the form described in example (2) above.

(4) One can define an inner product on ℓ_{∞}^2 by

$$\langle x, y \rangle = \sum_{i=1} x_i \overline{y_i}.$$

To see that this sum converges absolutely, apply the finite-dimensional Cauchy-Schwarz inequality to obtain

$$\sum_{i=1}^{n} |x_i \overline{y_i}| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{\infty} |y_i|^2\right)^{\frac{1}{2}}.$$
Let $n \to \infty$ to see that the series $\sum_{i=1}^{\infty} x_i \overline{y_i}$ converges absolutely.
(5) The L^2 -inner product on $C([a, b])$ is given by
 $\langle u, v \rangle = \int_a^b u(x) \overline{v(x)} dx.$

Inner Products and V'

An inner product on V determines an injection $V \to V'.$ For $w \in V,$ define

$$w \mapsto w^* \in V'$$
 by $w^*(v) = \langle v, w \rangle$.

Since $w^*(w) = \langle w, w \rangle$ it follows that

$$w^* = 0 \Rightarrow w = 0 ,$$

so the map $w \mapsto w^*$ is injective (one to one).

• The map $w \mapsto w^*$ is **conjugate-linear** since

$$(\alpha w)^* = \bar{\alpha} w^* \; .$$

It is linear if $\mathbb{F} = \mathbb{R}$.

• The image of the mapping $w \mapsto w^*$ is a subspace of V'.

If dim $V < \infty$, then this map is surjective too since dim $V = \dim V'$. In general, the mapping $w \mapsto w^*$ is not surjective.

Inner Products and V'

Let dim $V < \infty$ with inner product $\langle \cdot, \cdot \rangle$. Choose a basis \mathcal{B} and let $v, w \in V$ have coordinates in \mathbb{F}^n given by

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right) \quad \text{and} \quad \left(\begin{array}{c} y_1\\ \vdots\\ y_n \end{array}\right), \quad \text{respectively.}$$

Let $A \in \mathbb{F}^{n \times n}$ be the inner product matrix in this basis, then

$$w^*(v) = \langle v, w \rangle = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} \overline{y_j} \right) x_i.$$

It follows that w^* has components

$$b_i = \sum_{j=1}^n a_{ij} \overline{y_j}$$

with respect to the dual basis.

Therefore, the map $w \mapsto w^*$ corresponds to a mapping of its coordinates in the basis \mathcal{B} to its coordinates in the dual basis \mathcal{B}' given by the matrix-vector product

$$\left(\begin{array}{c} b_1\\ \vdots\\ b_n \end{array}\right) = A \left(\begin{array}{c} y_1\\ \vdots\\ y_n \end{array}\right).$$