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Elementary Matrices

Ers ∈ Fm×n have a 1 is the (r , s)-entry and 0 elsewhere, e.g. in F4×5

E24 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0


Note Cf = En1 + Sn.

The elementary matrices form the standard basis for Fm×n.
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Multiplication by Elementary Matrices

Left multiplication of T ∈ Fm×n by Ers ∈ Fm×m moves the sth row of
T to the rth row and zeros out all other elements.

That is, the elements of the matrix ErsT are all zero except for those in
the rth row which is just the sth row of T .

Right multiplication of T ∈ Fm×n by Ers ∈ Fn×n moves the rth
column of T to the sth column and zeros out all other elements.

That is, the elements of the matrix TErs are all zero except for those in
the sth column which is just the rth column of T .
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Gaussian Elimination Matrices

(I + αErs)

Let T ∈ Fn×n. Left multiplication of T by the matrix (I + αErs) adds α
times the sth row of T to the rth row of T .

This is one of the elementary row operation used in Gaussian elimination.

Note that E2
rs = 0 whenever r 6= s, and so

(I − αErs)(I + αErs) = I − αErs + αErs − αE2
rs = I .

That is,
(I + αErs)−1 = (I − αErs),

which makes sense since the inverse of adding α times the sth row to the
rth row is to subtract it.
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More Examples of Linear Transformations

Construct G : F∞ → F∞ by matrix multiplication. Let

T =


t11 t12 · · ·

t21
. . .

...


be an infinite matrix, each row having only finitely many nonzeros.

Tx for x =
(

x1
...

)
∈ F∞

is well-defined since each entry in Tx is a finite sum.
Clearly, T is a linear transformation from F∞ to itself.
Shift operators

(x1, x2, . . .)T 7→ (0, x1, x2, . . .)T

and
(x1, x2, . . .)T 7→ (x2, x3, . . .)T

are of this form.
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More Linear transformations on Function Spaces

(a) Let k ∈ C ([c, d]× [a, b]) where [a, b], [c, d] are closed bounded
intervals. Define L : C [a, b]→ C [c, d] by

L(u)(x) =
∫ b

a
k(x, y)u(y)dy.

L is called an integral operator with kernel k(x, y).
(b) Let m ∈ C [a, b]. Then

L(u)(x) = m(x)u(x)

defines a multiplier operator L on C [a, b].
(c) Let g : [c, d]→ [a, b]. Then

L(u)(x) = u(g(x))

defines a composition operator L : C [a, b]→ C [c, d].
(d) u 7→ u′ defines a differential operator L : C 1[a, b]→ C [a, b].
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Matrices and Basis Transformations
Let the vector space V and W over F have bases B1 = {v1, . . . , vn} and
B2 = {w1, . . . ,wm}, resp.ly. Let L : V →W be linear.
For 1 ≤ j ≤ n, write Lvj =

∑m
i=1 tijwi .

We call

T =

 t11 · · · t1n
...

...
tm1 · · · tmn

 ∈ Fm×n

the matrix of L w.r.t. the basis B1 and B2.
Formally we have

L(v1, . . . , vn) = (w1, . . . ,wm)T
Let v ∈ V and Lv ∈W have B1 and B2 coordinates

v = (v1, . . . , vn)

 x1
...

xn

 Lv = (w1, . . . ,wn)

 y1
...

ym

 ,

respectively. Then
(w1, . . . ,wn)y = Lv = L(v1, . . . , vn)x = (w1, . . . ,wm)Tx .
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Matrices and Basis Transformations

Let B′1 = {v′1, . . . , v′n} and B′2 = {w′1, . . . ,w′m} be different basis for V
and W with change-of-bases matrix A ∈ Fn×n and B ∈ Fm×m, resp.ly.
Then

(v′1 · · · v′n) = (v1 · · · vn)A and (w′1 · · ·w′m) = (w1 · · ·wm)B.

Consequently,

L(v′1 · · · v′n) = L(v1 · · · vn)A

= (w1 · · ·wn)TA

= (w′1 · · ·w′m)B−1TA .

Therefore, the matrix of L in the new bases is B−1TA .
If W = V , B2 = B1, and B′2 = B′1, then B = A, so the matrix of L in
the new basis is A−1TA.
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Similarity Transformations

A−1TA said to be similar to T .

The transformation T 7→ A−1TA is said to be a similarity
transformation of A.

A similarity transformation of a matrix corresponds to the representation
of the same linear transformation with respect to different bases.
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Matrices vs Linear Transformations

Linear transformations can be studied abstractly or in terms of matrix
representations.
For L : V →W ,

the range R(L),
null space N (L),

rank (L) = dim(R(L)),
etc.,

can be defined directly in terms of L, or in terms of matrix
representations.
If T ∈ Fn×n is the matrix of L : V → V in some basis, it is easiest to
define

det L = det T and tr L = tr T .

Since
det (A−1TA) = det T and tr (A−1TA) = tr (T ),

these are independent of the choice of basis.
10 / 13



Vector Spaces of Transformations

Let V , W be vector spaces.
If L1 : V →W , L2 : V →W are linear, define

α1L1 + α2L2 : V →W for α1, α2 ∈ F by
(α1L1 + α2L2)v = α1L1(v) + α2L2(v) .

Therefore, the space of all linear transformations from V to W is
naturally a vector space over F which we denote as L(V ,W ), or simply
L(V ) if V = W .

If V , W are finite-dimensional, we denote this vector space by B(V ,W )
so that

L(V ,W ) = B(V ,W ) and L(V ) = B(V ).

In the infinite-dimensional case, we use the notation B(V ,W ) to mean
all bounded linear transformations (to be defined) from V to W with
respect to norms on V , W .
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L(V ) as a Linear Algebra

A linear algebra over the field F is a vector space L(V ) over F with an
additional operation called multiplication.

The multiplication in a linear algebra associates with each pair of vectors
S ,T ∈ L a vector ST in L called the product of S and T .

Multiplication of vectors in a linear algebra satisfies
1 Associativity: ∀ R,S ,T ∈ L(V ) R(ST ) = (RS)T
2 Distributivity wrt vector addition: ∀ R,S ,T ∈ L(V )

R(S + T ) = RS + RT and (R + S)T = RT + ST

3 Distributivity of scalar multiplication: ∀ α ∈ F, S ,T ∈ L

α(ST ) = (αS)T = S(αT ) .
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L(V ) as a Linear Algebra

If there exists I ∈ L(V ) such that

IS = S ∀S ∈ L,

then L(V ) is called a linear algebra with identity, and I is called the
identity.

The algebra L is called commutative if

ST = TS ∀S ,T ∈ L.

Fact For any vector space V , the vector space L(V ) is a linear algebra
with identity where multiplication on L(V ) is defined as composition of
two linear transformations of V to itself, and the identity is the identity
transformation.

L(V ) is not commutative if dim(V ) > 1.
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Projections
V a vector space. Subspaces W1 and W2 are said to be complementary if

V = W1 ⊕W2 .

In this case, every v ∈ V has a unique representation

v = w1 + w2 with w1 ∈W1, w2 ∈W2.

Using this decomposition, we define mappings

P1 : V →W1 and P2 : V →W2

by
P1v = w1 and P2v = w2 .

Each Pi is a mapping from V to itself.
P1 is called the projection onto W1 along W2.
P1 is determined by both W1 and W2.
Pi is linear: v1 = w11 + w12, v2 = w21 + w22, then

P1(αv1 + βv2) = P1((αw11 + βw21) + (αw21 + βw22))
= αw11 + βw21 = αP1(v1) + βP1(v2) .
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Projections

It follows that

P2
1 = P1, P2

2 = P2, P1 + P2 = I , and P1P2 = P2P1 = 0.

An element q of an algebra is call idempotent if q2 = q.
If P : V → V is a linear transformation and P is idempotent, then

P is the projection onto R(P) along N (P).
We extend this to V = W1 ⊕ · · · ⊕Wm for subspaces Wi .
Define projections Pi : V →Wi in the obvious way:

Pi the projection onto Wi along
W1 ⊕ · · · ⊕Wi−1 ⊕Wi+1 ⊕ · · · ⊕Wm .

Then

P2
i = Pi for 1 ≤ i ≤ m, PiPj = PjPi = 0 for i 6= j,

and
P1 + · · ·+ Pm = I .
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Projections
If V is finite dimensional, we say that a basis

{w1, . . . ,wp, u1, . . . , uq} for V = W1 ⊕W2

is adapted to the decomposition W1 ⊕W2 if

{w1, . . . ,wp} is a basis for W1

and
{u1, . . . , uq} is a basis for W2.

Wrt such a basis, the matrix representations of P1 and P2 are[
I 0
0 0

]
and

[
0 0
0 I

]
,

where the block structure is

[
p × p p × q
q × p q × q

]
, abbreviated

[ p q
p ∗ ∗
q ∗ ∗

]
.
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Invariant Subspaces
A subspace W ⊂ V is invariant under L : V → V if L(W ) ⊂W .
Assume V has a basis {w1, . . . ,wp, u1, . . . , uq}, where B = {w1, . . . ,wp}
is a basis for W . Then W is invariant under L iff the matrix of L in this
basis is of the form[ p q

p ∗ ∗
q 0 ∗

]
, i.e., block upper-triangular.

We say that L : V → V preserves the decomposition
V = W1 ⊕ · · · ⊕Wm

if each Wi is invariant under L. In this case, L defines linear trans.’s
Li : Wi →Wi , 1 ≤ i ≤ m, and write L = L1 ⊕ · · · ⊕ Lm.
L preserves the decomposition iff the matrix T of L with respect to an
adapted basis is of block diagonal form

T =


T1 0

T2
. . .

0 Tm

 ,
where the Ti ’s are the matrices of the Li ’s in the bases of the Wi ’s.
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Nilpotents
A linear transformation L : V → V is called nilpotent if

Lr = 0 for some r > 0.

Shifts revisited:
The proto-typical example of a nilpotent operator on Fn is the shift
operator S :

Sei = ei−1 (i ≥ 2), Se1 = 0 .
The matrix representation for Sm is

Sm = (Sn)m =



0 · · · 1 . . . 0
. . . . . .

...
. . . 1

. . .
...

0 0



←− (1,m + 1) element

←− (n −m,n) element.

Note, however that the shift operator on F∞:

Sei = ei−1 (i ≥ 2), Se1 = 0,

is not nilpotent.
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Structure of Nilpotent Operators in Finite Dimensions

L : V → V is nilpotent and V finite dimentional.

Fact: There is a basis of V in which L is the direct sum of shift operators.

This decomposition results from a direct sum decomposition of V .
The decomposition is built on the structure of the subspaces R(Lk) and
the corresponding the structure of the subspaces N (Lk).

This is a key step in showing that every matrix is similar to a matrix in
Jordan form.

We look at the first step in the proof of this decomposition.
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Structure of Nilpotent Operators in Finite Dimensions

L nilpotent =⇒ Lr = 0 6= Lr−1 for some r .

Let v1, . . . , v`1 be a basis for R(Lr−1).

Choose wi ∈ V for which vi = Lr−1wi (1 ≤ i ≤ `1).

Then
V = N (Lr) = N (Lr−1)⊕ Span{w1, . . . ,w`1}. (1)

We claim that the set

S1 = { Lr−1w1,Lr−2w1, . . . ,w1,

Lr−1w2,Lr−2w2, . . . ,w2,

. . . ,

Lr−1w`1 ,Lr−2w`1 , . . . ,w`1 }

is linearly independent.
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Structure of Nilpotent Operators in Finite Dimensions
Suppose

0 =
`1∑

i=1

r−1∑
k=0

cikLkwi .

Apply Lr−1 to obtain

0 =
`1∑

i=1
ci0Lr−1wi =

`1∑
i=1

ci0vi ,

The linear independence of the vi ’s gives

ci0 = 0 for 1 ≤ i ≤ `1.

Now apply Lr−2 to the double sum to obtain

0 =
`1∑

i=1
ci1Lr−1wi =

`1∑
i=1

ci1vi ,

so ci1 = 0 for 1 ≤ i ≤ `1.
Successively applying lower powers of L shows that all cik = 0.
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Structure of Nilpotent Operators in Finite Dimensions
For 1 ≤ i ≤ `1,

Span{Lr−1wi ,Lr−2wi , . . . ,wi}

is invariant under L, and L acts by shifting these vectors.
It follows that on Span(S1), L is the direct sum of `1 copies of the
(r × r) shift Sr , and in the basis

S1 = { Lr−1w1,Lr−2w1, . . . ,w1,

Lr−1w2,Lr−2w2, . . . ,w2,

. . . ,

Lr−1w`1 ,Lr−2w`1 , . . . ,w`1 }

in the subspace Span(S1), L has the matrix Sr 0
. . .

0 Sr

 .
In general, Span(S1) need not be all of V , so we aren’t done.
Start this process again with R(Lr−2), but with much greater care.
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Consequences for Nilpotent Operators

Facts about nilpotents follow from this normal form.

For example, if dim V = n and L : V → V is nilpotent, then

(i) Ln = 0

(ii) tr L = 0

(iii) det L = 0

(iv) det (I + L) = 1

(v) for any λ ∈ F, det (λI − L) = λn
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