Linear Analysis Lecture 3

$E_{r s} \in \mathbb{F}^{m \times n}$ have a 1 is the (r, s)-entry and 0 elsewhere, e.g. in $\mathbb{F}^{4 \times 5}$

$$
E_{24}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Note $C_{f}=E_{n 1}+S_{n}$.

The elementary matrices form the standard basis for $\mathbb{F}^{m \times n}$.

Multiplication by Elementary Matrices

Left multiplication of $T \in \mathbb{F}^{m \times n}$ by $E_{r s} \in \mathbb{F}^{m \times m}$ moves the s th row of T to the r th row and zeros out all other elements.

That is, the elements of the matrix $E_{r s} T$ are all zero except for those in the r th row which is just the sth row of T.

Right multiplication of $T \in \mathbb{F}^{m \times n}$ by $E_{r s} \in \mathbb{F}^{n \times n}$ moves the r th column of T to the s th column and zeros out all other elements.

That is, the elements of the matrix $T E_{r s}$ are all zero except for those in the s th column which is just the r th column of T.

$$
\left(I+\alpha E_{r s}\right)
$$

Let $T \in \mathbb{F}^{n \times n}$. Left multiplication of T by the matrix $\left(I+\alpha E_{r s}\right)$ adds α times the sth row of T to the r th row of T.

This is one of the elementary row operation used in Gaussian elimination.
Note that $E_{r s}^{2}=0$ whenever $r \neq s$, and so

$$
\left(I-\alpha E_{r s}\right)\left(I+\alpha E_{r s}\right)=I-\alpha E_{r s}+\alpha E_{r s}-\alpha E_{r s}^{2}=I .
$$

That is,

$$
\left(I+\alpha E_{r s}\right)^{-1}=\left(I-\alpha E_{r s}\right),
$$

which makes sense since the inverse of adding α times the s th row to the r th row is to subtract it.

More Examples of Linear Transformations

Construct $G: \mathbb{F}^{\infty} \rightarrow \mathbb{F}^{\infty}$ by matrix multiplication. Let

$$
T=\left(\begin{array}{ccc}
t_{11} & t_{12} & \cdots \\
t_{21} & \ddots & \\
\vdots & &
\end{array}\right)
$$

be an infinite matrix, each row having only finitely many nonzeros.

$$
T x \quad \text { for } \quad x=\binom{x_{1}}{\vdots} \in \mathbb{F}^{\infty}
$$

is well-defined since each entry in $T x$ is a finite sum.
Clearly, T is a linear transformation from \mathbb{F}^{∞} to itself.
Shift operators

$$
\left(x_{1}, x_{2}, \ldots\right)^{T} \mapsto\left(0, x_{1}, x_{2}, \ldots\right)^{T}
$$

and

$$
\left(x_{1}, x_{2}, \ldots\right)^{T} \mapsto\left(x_{2}, x_{3}, \ldots\right)^{T}
$$

are of this form.
(a) Let $k \in C([c, d] \times[a, b])$ where $[a, b],[c, d]$ are closed bounded intervals. Define $L: C[a, b] \rightarrow C[c, d]$ by

$$
L(u)(x)=\int_{a}^{b} k(x, y) u(y) d y .
$$

L is called an integral operator with kernel $k(x, y)$.
(b) Let $m \in C[a, b]$. Then

$$
L(u)(x)=m(x) u(x)
$$

defines a multiplier operator L on $C[a, b]$.
(c) Let $g:[c, d] \rightarrow[a, b]$. Then

$$
L(u)(x)=u(g(x))
$$

defines a composition operator $L: C[a, b] \rightarrow C[c, d]$.
(d) $u \mapsto u^{\prime}$ defines a differential operator $L: C^{1}[a, b] \rightarrow C[a, b]$.

Matrices and Basis Transformations

Let the vector space V and W over \mathbb{F} have bases $\mathcal{B}_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{B}_{2}=\left\{w_{1}, \ldots, w_{m}\right\}$, resp.ly. Let $L: V \rightarrow W$ be linear. For $1 \leq j \leq n$, write $L v_{j}=\sum_{i=1}^{m} t_{i j} w_{i}$.
We call

$$
T=\left(\begin{array}{ccc}
t_{11} & \cdots & t_{1 n} \\
\vdots & & \vdots \\
t_{m 1} & \cdots & t_{m n}
\end{array}\right) \in \mathbb{F}^{m \times n}
$$

the matrix of L w.r.t. the basis \mathcal{B}_{1} and \mathcal{B}_{2}.
Formally we have

$$
L\left(v_{1}, \ldots, v_{n}\right)=\left(w_{1}, \ldots, w_{m}\right) T
$$

Let $v \in V$ and $L v \in W$ have \mathcal{B}_{1} and \mathcal{B}_{2} coordinates

$$
v=\left(v_{1}, \ldots, v_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad L v=\left(w_{1}, \ldots, w_{n}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right),
$$

respectively. Then

$$
\left(w_{1}, \ldots, w_{n}\right) y=L v=L\left(v_{1}, \ldots, v_{n}\right) x=\left(w_{1}, \ldots, w_{m}\right) T x .
$$

That is, $y=T x$.

Matrices and Basis Transformations

Let $\mathcal{B}_{1}^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $\mathcal{B}_{2}^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right\}$ be different basis for V and W with change-of-bases matrix $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, resp.ly. Then

$$
\left(v_{1}^{\prime} \cdots v_{n}^{\prime}\right)=\left(v_{1} \cdots v_{n}\right) A \quad \text { and } \quad\left(w_{1}^{\prime} \cdots w_{m}^{\prime}\right)=\left(w_{1} \cdots w_{m}\right) B
$$

Consequently,

$$
\begin{aligned}
L\left(v_{1}^{\prime} \cdots v_{n}^{\prime}\right) & =L\left(v_{1} \cdots v_{n}\right) A \\
& =\left(w_{1} \cdots w_{n}\right) T A \\
& =\left(w_{1}^{\prime} \cdots w_{m}^{\prime}\right) B^{-1} T A
\end{aligned}
$$

Therefore, the matrix of L in the new bases is $B^{-1} T A$.
If $W=V, \mathcal{B}_{2}=\mathcal{B}_{1}$, and $\mathcal{B}_{2}^{\prime}=\mathcal{B}_{1}^{\prime}$, then $B=A$, so the matrix of L in the new basis is $A^{-1} T A$.

Similarity Transformations

$A^{-1} T A$ said to be similar to T.

The transformation $T \mapsto A^{-1} T A$ is said to be a similarity transformation of A.

A similarity transformation of a matrix corresponds to the representation of the same linear transformation with respect to different bases.

Matrices vs Linear Transformations

Linear transformations can be studied abstractly or in terms of matrix representations.
For $L: V \rightarrow W$,

$$
\begin{gathered}
\text { the range } \mathcal{R}(L), \\
\text { null space } \mathcal{N}(L), \\
\operatorname{rank}(L)=\operatorname{dim}(\mathcal{R}(L)), \\
\text { etc., }
\end{gathered}
$$

can be defined directly in terms of L, or in terms of matrix representations.
If $T \in \mathbb{F}^{n \times n}$ is the matrix of $L: V \rightarrow V$ in some basis, it is easiest to define

$$
\operatorname{det} L=\operatorname{det} T \quad \text { and } \quad \operatorname{tr} L=\operatorname{tr} T .
$$

Since

$$
\operatorname{det}\left(A^{-1} T A\right)=\operatorname{det} T \quad \text { and } \quad \operatorname{tr}\left(A^{-1} T A\right)=\operatorname{tr}(T),
$$

these are independent of the choice of basis.

Vector Spaces of Transformations

Let V, W be vector spaces.
If $L_{1}: V \rightarrow W, L_{2}: V \rightarrow W$ are linear, define

$$
\begin{gathered}
\alpha_{1} L_{1}+\alpha_{2} L_{2}: V \rightarrow W \quad \text { for } \alpha_{1}, \alpha_{2} \in \mathbb{F} \text { by } \\
\left(\alpha_{1} L_{1}+\alpha_{2} L_{2}\right) v=\alpha_{1} L_{1}(v)+\alpha_{2} L_{2}(v)
\end{gathered}
$$

Therefore, the space of all linear transformations from V to W is naturally a vector space over \mathbb{F} which we denote as $\mathcal{L}(V, W)$, or simply $\mathcal{L}(V)$ if $V=W$.

If V, W are finite-dimensional, we denote this vector space by $\mathcal{B}(V, W)$ so that

$$
\mathcal{L}(V, W)=\mathcal{B}(V, W) \quad \text { and } \quad \mathcal{L}(V)=\mathcal{B}(V) .
$$

In the infinite-dimensional case, we use the notation $\mathcal{B}(V, W)$ to mean all bounded linear transformations (to be defined) from V to W with respect to norms on V, W.

$\mathcal{L}(V)$ as a Linear Algebra

A linear algebra over the field \mathbb{F} is a vector space $\mathcal{L}(V)$ over \mathbb{F} with an additional operation called multiplication.

The multiplication in a linear algebra associates with each pair of vectors $S, T \in \mathcal{L}$ a vector $S T$ in \mathcal{L} called the product of S and T.

Multiplication of vectors in a linear algebra satisfies
1 Associativity: $\forall R, S, T \in \mathcal{L}(V) R(S T)=(R S) T$
2 Distributivity wrt vector addition: $\forall R, S, T \in \mathcal{L}(V)$

$$
R(S+T)=R S+R T \quad \text { and } \quad(R+S) T=R T+S T
$$

3 Distributivity of scalar multiplication: $\forall \alpha \in \mathbb{F}, S, T \in \mathcal{L}$

$$
\alpha(S T)=(\alpha S) T=S(\alpha T) .
$$

If there exists $I \in \mathcal{L}(V)$ such that

$$
I S=S \quad \forall S \in \mathcal{L}
$$

then $\mathcal{L}(V)$ is called a linear algebra with identity, and I is called the identity.

The algebra \mathcal{L} is called commutative if

$$
S T=T S \quad \forall S, T \in \mathcal{L} .
$$

Fact For any vector space V, the vector space $\mathcal{L}(V)$ is a linear algebra with identity where multiplication on $\mathcal{L}(V)$ is defined as composition of two linear transformations of V to itself, and the identity is the identity transformation.
$\mathcal{L}(V)$ is not commutative if $\operatorname{dim}(V)>1$.
V a vector space. Subspaces W_{1} and W_{2} are said to be complementary if

$$
V=W_{1} \oplus W_{2} .
$$

In this case, every $v \in V$ has a unique representation

$$
v=w_{1}+w_{2} \quad \text { with } \quad w_{1} \in W_{1}, w_{2} \in W_{2}
$$

Using this decomposition, we define mappings

$$
P_{1}: V \rightarrow W_{1} \quad \text { and } \quad P_{2}: V \rightarrow W_{2}
$$

by

$$
P_{1} v=w_{1} \quad \text { and } \quad P_{2} v=w_{2} .
$$

Each P_{i} is a mapping from V to itself.
P_{1} is called the projection onto W_{1} along W_{2}.
P_{1} is determined by both W_{1} and W_{2}.
P_{i} is linear: $v_{1}=w_{11}+w_{12}, v_{2}=w_{21}+w_{22}$, then

$$
\begin{aligned}
P_{1}\left(\alpha v_{1}+\beta v_{2}\right) & =P_{1}\left(\left(\alpha w_{11}+\beta w_{21}\right)+\left(\alpha w_{21}+\beta w_{22}\right)\right) \\
& =\alpha w_{11}+\beta w_{21}=\alpha P_{1}\left(v_{1}\right)+\beta P_{1}\left(v_{2}\right) .
\end{aligned}
$$

It follows that

$$
P_{1}^{2}=P_{1}, \quad P_{2}^{2}=P_{2}, \quad P_{1}+P_{2}=I, \quad \text { and } \quad P_{1} P_{2}=P_{2} P_{1}=0
$$

An element q of an algebra is call idempotent if $q^{2}=q$.
If $P: V \rightarrow V$ is a linear transformation and P is idempotent, then P is the projection onto $\mathcal{R}(P)$ along $\mathcal{N}(P)$.
We extend this to $V=W_{1} \oplus \cdots \oplus W_{m}$ for subspaces W_{i}.
Define projections $P_{i}: V \rightarrow W_{i}$ in the obvious way:

$$
\begin{gathered}
P_{i} \text { the projection onto } W_{i} \text { along } \\
W_{1} \oplus \cdots \oplus W_{i-1} \oplus W_{i+1} \oplus \cdots \oplus W_{m} .
\end{gathered}
$$

Then

$$
P_{i}^{2}=P_{i} \quad \text { for } \quad 1 \leq i \leq m, \quad P_{i} P_{j}=P_{j} P_{i}=0 \text { for } i \neq j
$$

and

$$
P_{1}+\cdots+P_{m}=I
$$

If V is finite dimensional, we say that a basis

$$
\left\{w_{1}, \ldots, w_{p}, u_{1}, \ldots, u_{q}\right\} \quad \text { for } \quad V=W_{1} \oplus W_{2}
$$

is adapted to the decomposition $W_{1} \oplus W_{2}$ if

$$
\left\{w_{1}, \ldots, w_{p}\right\} \text { is a basis for } W_{1}
$$

and

$$
\left\{u_{1}, \ldots, u_{q}\right\} \text { is a basis for } W_{2} .
$$

Wrt such a basis, the matrix representations of P_{1} and P_{2} are

$$
\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right],
$$

where the block structure is

$$
\left.\left[\begin{array}{cc}
p \times p & p \times q \\
q \times p & q \times q
\end{array}\right], \quad \text { abbreviated } \begin{array}{c}
p \\
q
\end{array} \begin{array}{cc}
p & q \\
* & * \\
* & *
\end{array}\right] .
$$

Invariant Subspaces

A subspace $W \subset V$ is invariant under $L: V \rightarrow V$ if $L(W) \subset W$.
Assume V has a basis $\left\{w_{1}, \ldots, w_{p}, u_{1}, \ldots, u_{q}\right\}$, where $\mathcal{B}=\left\{w_{1}, \ldots, w_{p}\right\}$ is a basis for W. Then W is invariant under L iff the matrix of L in this basis is of the form

$$
\left.\left.\begin{array}{c}
p \\
p \\
p
\end{array} \begin{array}{c}
p \\
q
\end{array}\right], \quad \begin{array}{l}
* \\
0
\end{array}\right], \quad \text { i.e., block upper-triangular. }
$$

We say that $L: V \rightarrow V$ preserves the decomposition

$$
V=W_{1} \oplus \cdots \oplus W_{m}
$$

if each W_{i} is invariant under L. In this case, L defines linear trans.'s $L_{i}: W_{i} \rightarrow W_{i}, 1 \leq i \leq m$, and write $L=L_{1} \oplus \cdots \oplus L_{m}$.
L preserves the decomposition iff the matrix T of L with respect to an adapted basis is of block diagonal form

$$
T=\left[\begin{array}{cccc}
T_{1} & & & 0 \\
& T_{2} & & \\
& & \ddots & \\
0 & & & T_{m}
\end{array}\right]
$$

where the T_{i} 's are the matrices of the L_{i} 's in the bases of the W_{i} 's.

Nilpotents

A linear transformation $L: V \rightarrow V$ is called nilpotent if

$$
L^{r}=0 \quad \text { for some } r>0 .
$$

Shifts revisited:
The proto-typical example of a nilpotent operator on \mathbb{F}^{n} is the shift operator S :

$$
S e_{i}=e_{i-1} \quad(i \geq 2), \quad S e_{1}=0 .
$$

The matrix representation for S^{m} is

$$
S^{m}=\left(S_{n}\right)^{m}=\left[\begin{array}{ccccc}
0 & \cdots & 1 & \ldots & 0 \\
& \ddots & & \ddots & \vdots \\
& & \ddots & & 1 \\
& & & \ddots & \vdots \\
0 & & & & 0
\end{array}\right] \quad \longleftarrow(1, m+1) \text { element }
$$

Note, however that the shift operator on \mathbb{F}^{∞} :

$$
S e_{i}=e_{i-1} \quad(i \geq 2), \quad S e_{1}=0
$$

is not nilpotent.

Structure of Nilpotent Operators in Finite Dimensions

$L: V \rightarrow V$ is nilpotent and V finite dimentional.

Fact: There is a basis of V in which L is the direct sum of shift operators.

This decomposition results from a direct sum decomposition of V. The decomposition is built on the structure of the subspaces $\mathcal{R}\left(L^{k}\right)$ and the corresponding the structure of the subspaces $\mathcal{N}\left(L^{k}\right)$.

This is a key step in showing that every matrix is similar to a matrix in Jordan form.

We look at the first step in the proof of this decomposition.

Structure of Nilpotent Operators in Finite Dimensions

L nilpotent $\Longrightarrow L^{r}=0 \neq L^{r-1}$ for some r.
Let $v_{1}, \ldots, v_{\ell_{1}}$ be a basis for $\mathcal{R}\left(L^{r-1}\right)$.
Choose $w_{i} \in V$ for which $v_{i}=L^{r-1} w_{i}\left(1 \leq i \leq \ell_{1}\right)$.
Then

$$
\begin{equation*}
V=\mathcal{N}\left(L^{r}\right)=\mathcal{N}\left(L^{r-1}\right) \oplus \operatorname{Span}\left\{w_{1}, \ldots, w_{\ell_{1}}\right\} . \tag{1}
\end{equation*}
$$

We claim that the set

$$
\begin{aligned}
\mathcal{S}_{1}=\{ & L^{r-1} w_{1}, L^{r-2} w_{1}, \ldots, w_{1} \\
& L^{r-1} w_{2}, L^{r-2} w_{2}, \ldots, w_{2} \\
& \ldots, \\
& \left.L^{r-1} w_{\ell_{1}}, L^{r-2} w_{\ell_{1}}, \ldots, w_{\ell_{1}}\right\}
\end{aligned}
$$

is linearly independent.

Structure of Nilpotent Operators in Finite Dimensions

Suppose

$$
0=\sum_{i=1}^{\ell_{1}} \sum_{k=0}^{r-1} c_{i k} L^{k} w_{i}
$$

Apply L^{r-1} to obtain

$$
0=\sum_{i=1}^{\ell_{1}} c_{i 0} L^{r-1} w_{i}=\sum_{i=1}^{\ell_{1}} c_{i 0} v_{i}
$$

The linear independence of the v_{i} 's gives

$$
c_{i 0}=0 \text { for } 1 \leq i \leq \ell_{1}
$$

Now apply L^{r-2} to the double sum to obtain

$$
0=\sum_{i=1}^{\ell_{1}} c_{i 1} L^{r-1} w_{i}=\sum_{i=1}^{\ell_{1}} c_{i 1} v_{i}
$$

so $c_{i 1}=0$ for $1 \leq i \leq \ell_{1}$.
Successively applying lower powers of L shows that all $c_{i k}=0$.

Structure of Nilpotent Operators in Finite Dimensions

For $1 \leq i \leq \ell_{1}$,

$$
\operatorname{Span}\left\{L^{r-1} w_{i}, L^{r-2} w_{i}, \ldots, w_{i}\right\}
$$

is invariant under L, and L acts by shifting these vectors.
It follows that on $\operatorname{Span}\left(\mathcal{S}_{1}\right), L$ is the direct sum of ℓ_{1} copies of the $(r \times r)$ shift S_{r}, and in the basis

$$
\begin{aligned}
\mathcal{S}_{1}=\{ & L^{r-1} w_{1}, L^{r-2} w_{1}, \ldots, w_{1} \\
& L^{r-1} w_{2}, L^{r-2} w_{2}, \ldots, w_{2} \\
& \ldots, \\
& \left.L^{r-1} w_{\ell_{1}}, L^{r-2} w_{\ell_{1}}, \ldots, w_{\ell_{1}}\right\}
\end{aligned}
$$

in the subspace $\operatorname{Span}\left(\mathcal{S}_{1}\right), L$ has the matrix

$$
\left[\begin{array}{ccc}
S_{r} & & 0 \\
& \ddots & \\
0 & & S_{r}
\end{array}\right]
$$

In general, $\operatorname{Span}\left(\mathcal{S}_{1}\right)$ need not be all of V, so we aren't done. Start this process again with $\mathcal{R}\left(L^{r-2}\right)$, but with much greater care.

Facts about nilpotents follow from this normal form.
For example, if $\operatorname{dim} V=n$ and $L: V \rightarrow V$ is nilpotent, then
(i) $L^{n}=0$
(ii) $\operatorname{tr} L=0$
(iii) $\operatorname{det} L=0$
(iv) $\operatorname{det}(I+L)=1$
(v) for any $\lambda \in \mathbb{F}, \operatorname{det}(\lambda I-L)=\lambda^{n}$

