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Lecture 23



Continuation of Solutions in Time

We consider two kinds of results
(1) local continuation (no Lipschitz condition on f )
(2) global continuation (for locally Lipschitz f )
Local Continuation (Continuation at a Point)
Assume x(t) is a solution of the DE x ′ = f (t, x) on an interval I and f is
continuous on a subset S ⊂ R× Fn containing {(t, x(t)) : t ∈ I}.
Case 1: I is closed at the right end, i.e., I = (−∞, b], [a, b], or (a, b].
Assume further that (b, x(b)) is in the interior of S. Then the solution
can be extended (by Cauchy-Peano) to an interval with right end b + β
for some β > 0. This is done by solving the IVP

x ′ = f (t, x) with initial value x(b) at t = b

on an interval [b, b + β]. To show that the continuation is C 1 at t = b,
note that the extended x(t) satisfies the integral equation

x(t) = x(b) +
∫ t

b
f (s, x(s))ds on I

⋃
[b, b + β].

Note we do not assume Lipschitz continuity.
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Continuation of Solutions in Time; Case 2

Case 2: I is open at the right end, i.e., I = (−∞, b), [a, b), or (a, b)
with b <∞. Assume further that f (t, x(t)) is bounded on [t0, b) for
some t0 < b with [t0, b) ⊂ I , say |f (t, x(t))| ≤ M on [t0, b).
In this case the integral equation

(∗) x(t) = x(t0) +
∫ t

t0

f (s, x(s))ds

holds for t ∈ I . In particular, for t0 ≤ τ ≤ t < b,

|x(t)− x(τ)| =
∣∣∣∣∫ t

τ

f (s, x(s))ds
∣∣∣∣ ≤ ∫ t

τ

|f (s, x(s))|ds ≤ M |t − τ |.

Thus, for any sequence tn ↑ b, {x(tn)} is Cauchy. This implies
limt→b− x(t) exists; call it x(b−). So x(t) has a continuous extension
from I to I ∪ {b}.
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Comments

• If in addition (b, x(b−)) is in S, then (∗) holds on I ∪ {b} as well, so
x(t) is a C 1 solution of x ′ = f (t, x) on I ∪ {b}.

• If (b, x(b−)) is in the interior of S, we are back in Case 1 and can
extend the solution x(t) beyond t = b.

• The assumption that f (t, x(t)) is bounded on [t0, b) can be restated
with a slightly different emphasis: for some t0 ∈ I ,
{(t, x(t)) : t0 ≤ t < b} stays within a subset of S on which f is bounded.
For example, if {(t, x(t)) : t0 ≤ t < b} stays within a compact subset of
S, this condition is satisfied.

• The technique of Case 1 can be applied to I is closed at the left end.

• The technique of Case 2 can be applied to I is open at the left end.
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Global Continuation

Assume f (t, x) is continuous on an open set D ⊂ R× Fn and is locally
Lipschitz continuous with respect to x on D. Write f ∈ (C , Liploc) on D.

Let (t0, x0) ∈ D and consider the IVP

x ′ = f (t, x), x(t0) = x0.

It has been shown that a unique solutions exist on both [t0, t0 + α+) and
(−α− + t0, t0], and that this gives a unique solution on
(−α− + t0, t0 + α+) for some α+, α− > 0. Set

T+ = sup{t > t0 : ∃ a solution of IVP on [t0, t)}, and
T− = inf{t < t0 : ∃ a solution of IVP on (t, t0]}.

(T−,T+) is the maximal interval of existence of the solution of the IVP.
It is possible that T+ =∞ and/or T− = −∞.

The maximal interval (T−,T+) must be open: if the solution could be
extended to T+ (or T−), this would contradict the local continuation
results since D is open. Ideally, T+ = +∞ and T− = −∞.
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Global Continuation

Another posibility is if f (t, x) is not defined for t ≥ T+. For example, if
a(t) = 1

1−t , and x ′(t) = a(t). Here we don’t expect the solution to exist
beyond t = 1.

But less desirable behavior can occur.

For example, for the IVP:

x ′ = x2, x(0) = x0 > 0, t0 = 0,

and D = R× R. The solution x(t) = (x−1
0 − t)−1 blows up at

T+ = 1/x0 (note that T− = −∞). Observe that x(t)→∞ as
t → (T+)−. So the solution does not just “stop” in the interior of D.

This kind of blow-up behavior must occur if a solution cannot be
continued to the whole real line.
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Theorem on Solution Blow-Up

Suppose f ∈ (C ,Liploc) on a closed set containing the open set
D ⊂ R× Fn. Let (t0, x0) ∈ D, and let (T−,T+) be the maximal interval
of existence of the solution of the IVP

x ′ = f (t, x), x(t0) = x0 .

If T+ < +∞ (T− > −∞), then for any compact set K ⊂ D, there exists
a T < T+ (T− < T ) for which (t, x(t)) 6∈ K for t > T (t < T ).
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Proof of Theorem on Solution Blow-Up

If not, ∃ tj → T+ with (tj , x(tj))) ∈ K for all j. By taking a subsequence,
we may assume that x(tj) also converges to x+ ∈ Fn, and

(tj , x(tj))→ (T+, x+) ∈ K ⊂ D.

We can thus choose r > 0, τ > 0, N ∈ N such that

S =
∞⋃

j=N
{(t, x) : |t − tj | ≤ τ, |x − x(tj)| ≤ r} ⊂ D.

Since S ⊂ D is bounded, there is an M for which |f (t, x)| ≤ M on S. By
the local existence theorem, the solution of x ′ = f (t, x) starting at the
initial point (tj , x(tj)) exists for a time interval of length

T ′ ≡ min
{
τ,

r
M

}
,

independent of i. Choose j for which tj > t+ − T ′. Then (t, x(t))
exists in D beyond time T+, which is a contradiction.
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Autonomous Systems
The ODE x ′(t) = f (t, x) is called an autonomous system if f (t, x) is
independent of t, i.e., the ODE is of the form

x ′ = f (x).

Remarks.
(1) Time translates of solutions of an autonomous system are again

solutions:
x(t) a solution =⇒ x(t − c) is a solution for any constant c.

(2) Any ODE x ′ = f (t, x) is equivalent to an autonomous system. Define
“xn+1 = t” and set

x̃ = (xn+1, x) ∈ Fn+1

x̃ ′ = f̃ (x̃) = f̃ (xn+1, x) =
[

1
f (xn+1, x)

]
∈ Fn+1

and consider the autonomous IVP

x̃ ′ = f̃ (x̃), x̃(t0) =
[

t0
x0

]
.

This IVP is equivalent to the IVP
x ′ = f (t, x), x(t0) = x0.
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Continuation for Autonomous Systems

Suppose f (x) is defined and locally Lipschitz continuous on an open set
U ⊂ Fn. Take D = R×U . Suppose T+ <∞ and C is a compact subset
of U . Take K = [t0,T+]× C in the ODE Blow-Up Theorem. Then

∃T < T+ such that x(t) 6∈ C for T < t < T+.

In this case we say that

x(t)→ ∂U ∪ {∞} as t → (T+)−,

meaning that

(∀C compact ⊂ U)(∃T < T+) such that for t ∈ (T ,T+), x(t) 6∈ C .

Stated briefly, eventually x(t) stays out of any given compact set.
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Continuation of Linear Systems

Consider the linear IVP

x ′(t) = A(t)x(t) + b(t), x(t0) = x0 on (a, b) with t0 ∈ (a, b),

where A(t) ∈ Fn×n and b(t) ∈ Fn are continuous on (a, b). Let
D = (a, b)× Fn. Then

f (t, x) = A(t)x + b(t) ∈ (C ,Liploc) on D.

Moreover, for c, d satisfying

a < c ≤ t0 ≤ d < b,

f is uniformly Lipschitz continuous with respect to x on [c, d]× Fn,

take L = max
c≤t≤d

|A(t)|.

The Picard global existence theorem implies there is a solution of the IVP
on [c, d], which is unique by the uniqueness theorem for locally Lipschitz
f . This implies that T− = a and T+ = b.
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Dependence of Solutions on Initial Values

Definition.
We say that x(t) is an ε-approximate solution of the DE

x ′ = f (t, x) on I ⊂ R

if

|x ′(t)− f (t, x(t))| ≤ ε (∀ t ∈ I ).
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Fundamental Estimate

Let f (t, x) be continuous in t and x, and uniformly Lipschitz continuous
in x with Lipschitz constant L. Consider the DE

(∗) x ′ = f (t, x) .

Let ε1, ε2 > 0, and suppose

xi(t) is an εi-approximate solution of (*) on I , i = 1, 2..

Given t0 ∈ I , suppose that

|x1(t0)− x2(t0)| ≤ δ .

Then, for t ∈ I ,

|x1(t)− x2(t)| ≤ δeL|t−t0| + ε1 + ε2
L (eL|t−t0| − 1) .
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Remarks on the Fundamental Estimate

|x1(t)− x2(t)| ≤ δeL|t−t0| + ε1 + ε2
L (eL|t−t0| − 1) .

Remarks.

(1) The first term on the RHS bounds the difference between the solutions
of the IVPs with initial values x1(t0) and x2(t0) at t0.

(2) The second term on the RHS accounts for the fact that x1(t) and
x2(t) are only approx. solutions: note that this term is 0 at t = t0.

(3) If ε1 = ε2 = δ = 0, we can again recover the uniqueness theorem for
Lipschitz f .
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Proof of the Fundamental Estimate

We may assume ε1, ε2, δ > 0 (otherwise, take limits as ε1 → 0+,
ε2 → 0+, δ → 0+). Also for simplicity, we may assume t0 = 0 and we are
considering t ≥ 0 (do time reversal for t ≤ 0). Let

u(t) = |x1(t)− x2(t)|2 = 〈x1 − x2, x2 − x2〉.

Then

u′ = 2Re〈x1 − x2, x ′1 − x ′2〉 ≤ 2|x1 − x2| · |x ′1 − x ′2|
= 2|x1 − x2| |x ′1 − f (t, x1)− (x ′2 − f (t, x2)) + f (t, x1)− f (t, x2)|
≤ 2|x1 − x2|(ε1 + ε2 + L|x1 − x2|)

= 2Lu + 2ε
√

u,

where ε = ε1 + ε2.
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Proof of the Fundamental Estimate

We want to use the Comparison Theorem to compare u to the solution v
of

v′ = 2Lv + 2ε
√

v, v(0) = δ2 > 0.

But f̃ (v) ≡ 2Lv + 2ε
√

v is not Lipschitz on v ∈ [0,∞); it is, however, for
a fixed δ > 0, uniformly Lipschitz on v ∈ [δ2,∞) since df̃

dv = 2L + ε√
v is

bounded for v ∈ [δ2,∞), and C 1 functions with bounded derivatives are
uniformly Lipschitz

|f̃ (v1)− f̃ (v2)| =

∣∣∣∣∣
∫ v1

v2

df̃
dv dv

∣∣∣∣∣ ≤ (sup

∣∣∣∣∣df̃
dv

∣∣∣∣∣)|v1 − v2|).
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Proof of the Fundamental Estimate

Although u(t) may leave [δ2,∞), in the proof of the Comparison
Theorem we only need f̃ to be Lipschitz to conclude that u > v cannot
occur.

Note that since v′ ≥ 0, v(t) stays in [δ2,∞) for t ≥ 0. So the
Comparison Theorem does apply, and we conclude that u ≤ v for t ≥ 0.

To solve for v, let v = w2. Then

2ww′ = (w2)′ = v′ = 2Lw2 + 2εw.

Since w > 0, we get w′ = Lw + ε, w(0) = δ, whose solution is

w = δeLt + ε

L (eLt − 1).

Since |x1 − x2| =
√

u ≤
√

v = w, the estimate follows.
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Corollary: Uniform Convergence of Solutions to IVPs

Corollary: For j ≥ 1, suppose xj(t) is a solution to the DE

x ′j = fj(t, xj) on I := [a, b],

and suppose x(t) is a solution to the DE

x ′ = f (t, x) on I ,

where the fj ’s and f are continuous in t and x and f is Lipschitz in x.
If fj → f uniformly on [a, b]× Fn and there is a t0 ∈ I such that
xj(t0)→ x(t0), then

xj(t)→ x(t) uniformly on [a, b].

Proof: By the Fundamental Estimate, with x1 = xj and x2 = x,

|xj(t)− x(t)| ≤ |xj(t0)− x(t0)|eL|t−t0| + εj
L (eL|t−t0| − 1),

where εj := supt∈[a,b] |fj(t, xj(t))− f (t, xj(t))|.
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