Linear Analysis
Lecture 22




The Cauchy-Peano Existence Theorem

Let I = [to, to + ] and

Q=B (n)={zeF": |z —a| <r},

and suppose f(t, z) is continuous on I x Q.
Then there exists a solution z.(t) of the integral equation

(IE) o) =+ [ flsva(s)ds
in C(I,) where I, = [to, tp + o],
a = min (6, M) ,

and
M = t
omax f (¢, )],

and so z.(t) is a C! solution of the initial value problem
IVP: II:f(t,CU), CE(t(]):x()

in I,.



Uniqueness

Uniqueness theorems are typically proved by comparison theorems for
solutions of scalar differential equations, or by inequalities.

The most fundamental of these inequalities is Gronwall’s inequality.
Recall that a first-order linear scalar IVP

u' = a(t)u+b(t), ulto) = uo.

Rewrite this as
u' —a(t)u=b(t), u(ty) = u,
and multiply by the integrating factor

- fm a(é)dl’
to get
W N CLO a(t)e Joo @, _ o, "0, ulte) = w.
That is,

% (e fm a(e)deu(t)> e fm a(e)dzb(t).



Uniqueness

Now integrate from ty to t:
- bd ([ -[a
f e, (t)—u = / (e fto (04 u(s)> ds
t, ds

to
u(t) = wue ‘0 ol / ﬁ “(Z)dé
Since f(t) < g(t) on [c, d] implies

/Cdf(t)dt < /Cdg(t)dt,

the identical argument with “=" replaced by “<" gives Gronwall's
inequality.



Theorem (Gronwall’s Inequality - Differential Form)

Let I = [ty, t1]. Suppose a: I — R and b: I — R are continuous, and
suppose u : I — R is in C1(I) and satisfies

u'(t) < a(t)u(t) + b(t) for tel,

and u(ty) = up. Then

t t t
ul(t) < erfto a(f)de n ej; a(E)dlb(s)dsl

to

Remarks
(1) Thus a solution of the differential inequality is bounded above by the
solution of the differential equality.

(2) Clearly, Gronwall's Inequality still holds if u is only continuous and
piecewise C'!, and a(t) and b(t) are only piecewise continuous.



Theorem: (Uniqueness for Locally Lipschitz f)

Suppose for « > 0, > 0, f(t,z) is in (C,Lip) on I, X B,(xp).

Further suppose both z(t) and y(t) map I, into B,(z0) and are C*
solutions of the IVP

¥ =f(t,x); z(th) =70 on I,

where I, = [to, to + @].

Then z(t) = y(t) for t € I,.
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Proof of Uniqueness for Locally Lipschitz f

Set  u(t) =|a(t) — y(t)* = (a(t) — y(t),2(t) — y(1))
(in the Euclidean inner product on F™). Then u : I, — [0, 00) and
u € C(I,) and for t € 1,,

/

uo= ey =)+ =y -y
= 2Relz—y, 2’ — )

< 2z -y, 2’ =)

= 2z -y, (f(t,z) = f(t, )]
< 2z —yl-[f(t,z) = f(L, )l
< 2Lz —y*=2Lu.

Thus v/ < 2Lw on I, and
u(to) = z(to) — y(to) = 70 — 70 = 0.
By Gronwall's inequality,
u(t) < upe?™ =0 on I,
since u(t) > 0 on I, we have

uw(t)=0 on I,. O



Corollary to Uniqueness for Locally Lipschitz f

Corollary.
(i) The same result holds if I, = [ty — «, o).
(ii) The same result holds if I, = [t — «, o + a.

Proof: For (i), let
#(t) = 22t — £), §(t) = y(2to — 1), and

f(t,z) = —f(2to — t, ).

Then f is in (C, Lip) on [f, fo + ] x By(z), and % and 7 both satisfy

o =f(t,z); (k) =xz on [t o+ al
So by the Theorem, Z(¢t) = y(t) for ¢ € [y, to + @], i.e., z(t) = y(t) for
t € [to — «, tp]. Now (ii) follows immediately by applying the Theorem in
[to, to + & and applying (ii) in [to — «, ). O
Remark. The idea used in the proof of (i) is often called “time-reversal.”
The important part is that Z(¢) = z(c — t), for some constant ¢, so that
T'(t) = —a'(c¢ — t). The choice of ¢ = 2% is convenient but not
essential.



Local Lipschitz Contnuity

Before stating our main uniqueness result, we introduce a local form of
Lipschitz continuity of the function f(¢, ) in the x argument.

Definition. Let D be an open set in R x F”. We say that f(¢, z)
mapping D into F" is locally Lipschitz continuous with respect to z if

V(th,n) €D, I a>0, r>0 and L>0

for which [t — o, &y + @] X B,(z1) C D and

(Vie[ti—a,t1 +a]) (Vz,y € B-(11))

‘f(tax) 7f(t’ y)‘ < L‘If y| ’

i.e., f is uniformly Lipschitz continuous with respect to z in

[tl —Q, t1 + OZ} X Br(xl).

We say f € (C,Lip,.) (not a standard notation) on D if f is continuous
on D and locally Lipschitz continuous wrt z on D.



Local Lipschitz Contnuity: Example

Let D be an open set in R x F™. Suppose f(t,z) maps D into F", f is
continuous on D, and

af; . . . .
for 1<14, j<mn, i exists and is continuous in D,

(9£Ej

i.e., f is continuous on D and C' with respect to = on D. Then
f € (Ca Liploc) on D.

10 /32



Main Uniqueness Theorem

Let D be an open set in R x [F™, and suppose
(a) f € (C7Liploc) on D,

(b) (thxO) € D|
(c) I C Ris an interval containing t; (which may be open or closed at
either end), and

(d) z(t) and y(t) are both solutions of the IVP
o' = f(t2); a(to) =2 in C'(I)
which satisfy
(t,z(t)) €D and (t,y(t))eD Viel.

Then z(t) = y(t) on I.
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Main Uniqueness Theorem: Proof

We first show z(t) = y(t) on {t € I : t > to}. If not, let
ti=inf{t € I: >ty and 2(t) £ y(t)}.

Then z(t) = y(t) on [ty, t1) so by continuity z(t1) = y(t1) (if t1 = o,
is obvious). By continuity and the openness of D (as (1, z(t1)) € D)
Ja>0 and r>0suchthat [t —a,t1+a] X B.(11) CD, fis
uniformly Lipschitz continuous with respect to z in

[tl —Q, 1+ O[} X Br(xl),

and

z(t) € Br(r1) and y(t) € Bo(zy) VtelINn[t —a,t +al.

By the previous theorem, z(t) = y(t) in I N[t — «, t; + o], contradicting
the definition of ¢;. Hence

z(t)=y(t) on {tel:t>1t}.
Similarly,

z(t)=y(t) on {tel:t<iy}.
Hence z(t) = y(t) on I. O
Remark. t is allowed to be the left or right endpoint of I.



Comparison Theorem for Real Scalar Equations

Theorem. Let n =1, F =R, and suppose f(t, u) is continuous in ¢ and
Lipschitz continuous in u.
Assume u(t), v(t) are C! for t >t (on an interval [to, b) or [ty, b]) and

satisfy
u'(t) < f(t,u(t)), V' (t) = f(t v(t))
and u(tp) < v(ty). Then

u(t) < wo(t) for t>to.
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Comparison Theorem for Real Scalar Equations: Proof

If to the contrary u(T") > v(T) for some T > ty, then set
tir=sup{t:tp <t<T and wu(t) <wv(t)}.
Then
o<t <T, u(t)=v(t), and wu(t)>ov(t) for t <t<T

(by continuity of u — v). For

th<t<T, Ju(t)—ov(t)=u(t)— o),
so we have

(u—wv) < f(t,u) = f(t,v) < Llu—v] = L(u — v).
By Gronwall’s inequality applied to u — v on [t1, T, with
(u—v)(t1) =0, a(t) = L, b(t) =0,

(u—wv)(t) <0on [t1, T], a contradiction.
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Comparison Theorem for Real Scalar Equations: Remarks

Remarks.

(1) As with the differential form of Gronwall's inequality a solution of the
differential inequality «’ < f(¢, u) is bounded above by the solution of
the equality (i.e., the DE v/ = f(¢,v)).

(2) It can be shown under the same hypotheses that if u(ty) < v(#), then
u(t) < v(t) for t > to.

(3) Caution: It may happen that u/(t) > /() for some t > ty:

u(t) < o(t) & /(1) < V'(1).
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Comparison Theorem for Real Scalar Equations: Corollary

Corollary. Let n =1, F = R. Suppose f(t, u) < g(t, u) are continuous in
t and u, and one of them is Lipschitz continuous in u. Suppose also that
u(t), v(t) are C* for t > to (on [to, b) or [y, b]) and satisfy

u' = f(t,u), v =g(t,v), and u(ty) < v(tp).

Then
u(t) <o(t) for ¢>t.

Proof: Suppose first that g satisfies the Lipschitz condition. Then

u = f(t,u) < g(t,u).

Now apply the theorem. If f satisfies the Lipschitz condition, apply the
first part of this proof to

ﬁ(t) = 71}(t), Fﬂ(t) = 7u(t)a f(tv u) = *g(tv *u)a E(t’ u) = 7f(t7 *u)'
g
Remark. Again, if u(ty) < v(t), then u(t) < v(t) for ¢t > to.
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Continuation of Solutions in Time

We consider two kinds of results

(1) local continuation (no Lipschitz condition on f)

(2) global continuation (for locally Lipschitz f)

Local Continuation (Continuation at a Point)

Assume x(t) is a solution of the DE 2’ = f(¢,z) on an interval I and f is
continuous on a subset S C R x F" containing {(¢,z(¢)) : t € I}.

Case 1: ] is closed at the right end, i.e., I = (—00, b], [a, ], or (a, b].
Assume further that (b, z(b)) is in the interior of S. Then the solution
can be extended (by Cauchy-Peano) to an interval with right end b+
for some § > 0. This is done by solving the IVP

2’ = f(t,x) with initial value z(b) at t = b

on an interval [b, b+ 3]. To show that the continuation is C! at t = b,
note that the extended z(t) satisfies the integral equation

x(t):x(b)+/b F(s,2(s))ds on TU[b, b+ fAl.

Note we do not assume Lipschitz continuity.
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Continuation of Solutions in Time; Case 2

Case 2: [ is open at the right end, i.e., I = (—00,b), [a, b), or (a, b)
with b < co. Assume further that f(¢,z(t)) is bounded on [fy, b) for
some tg < b with [y, b) C I, say |f(t,z(t))] < M on [to, b).

In this case the integral equation

t
() o) =att)+ [ fs,a(5))ds
to
holds for ¢ € I. In particular, for tg < 7 <t < b,

o(t) — a()| = < [ 1fsa(o)lds < Mt~ 7.

/ Fs, () ds

Thus, for any sequence t, T b, {z(t,)} is Cauchy. This implies
lim, ,,- z(t) exists; call it 2(b~). So z(¢) has a continuous extension
from I to I U {b}.
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Comments

o If in addition (b, z(b7)) is in S, then (x) holds on I U {b} as well, so
z(t) is a C* solution of 2’ = f(t,x) on T U {b}.

o If (b,z(b7)) is in the interior of S, we are back in Case 1 and can
extend the solution x(t) beyond ¢ = b.

e The assumption that f(¢,z(t)) is bounded on [fy, b) can be restated
with a slightly different emphasis: for some t, € I,

{(t,z(t)) : ty <t < b} stays within a subset of S on which f is bounded.
For example, if {(¢,z(t)) : & < t < b} stays within a compact subset of
S, this condition is satisfied.

e The technique of Case 1 can be applied to I is closed at the left end.

e The technique of Case 2 can be applied to I is open at the left end.
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Global Continuation

Assume f(t,z) is continuous on an open set D C R x F™ and is locally
Lipschitz continuous with respect to z on D. Write f € (C, Lipy,.) on D.

Let (tp,20) € D and consider the IVP
¥ =f(t,z), xz(to) = 0.

It has been shown that a unique solutions exist on both [fg, tp + a4 ) and
(—a_ + to, to], and that this gives a unique solution on
(—a— + to, to + ay) for some oy, a— > 0. Set

T, = sup{t >t : 3 asolution of IVP on [tp,?)}, and
T_ = inf{¢t <t : 3 asolution of IVP on (¢, t]}.

(T—, Ty) is the maximal interval of existence of the solution of the IVP.
It is possible that T = oo and/or T— = —oc0.

The maximal interval (T_, Tx) must be open: if the solution could be
extended to Ty (or T-), this would contradict the local continuation
results since D is open. Ideally, T4 = 400 and T_ = —o0.
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Global Continuation

Another posibility is if f(t,z) is not defined for t > T.. For example, if
a(t) = &, and 2/(t) = a(t). Here we don't expect the solution to exist
beyond ¢t = 1.

But less desirable behavior can occur.

For example, for the IVP:
v =2% z(0) =129 >0, tp =0,

and D =R x R. The solution z(t) = (z5* — )~" blows up at
T, = 1/xy (note that T— = —o0). Observe that z(¢) — oo as
t — (T4)~. So the solution does not just “stop” in the interior of D.

This kind of blow-up behavior must occur if a solution cannot be
continued to the whole real line.



Theorem on Solution Blow-Up

Suppose f € (C, Lip,.) on an open set D C R x F™. Let (ty,29) € D,
and let (T_, T) be the maximal interval of existence of the solution of
the IVP

z = f(tz), z(t) =20 .

If T4 < +oo (T- > —o0), then for any compact set K C D, there exists
aT< Ty (T- <T)forwhich (t,z(t)) ¢ K fort > T (¢t < T).



Proof of Theorem on Solution Blow-Up

If not, 3¢; — T4 with (¢, 2(¢;))) € K for all j. By taking a subsequence,
we may assume that z(t;) also converges to z; € F", and

(t.2(ty) = (T4, ) € K C D.

We can thus choose » > 0, 7 > 0, N € N such that
S=J{ta):[t—t] <7z —a(t)| < r} CD.
=N

Since D is compact, there is an M for which |f(¢,z)] < M on S. By the
local existence theorem, the solution of 2’ = f(¢, ) starting at the initial
point (t;, z(t;)) exists for a time interval of length

T = { L}
min T,M ,

independent of i. Choose j for which ¢; > t, — T’. Then (¢, z(t))
exists in D beyond time Ty, which is a contradiction.



Autonomous Systems

The ODE #/(t) = f(¢, z) is called an autonomous system if f(t, z) is
independent of ¢, i.e., the ODE is of the form

/
z' = f(x).
Remarks.
(1) Time translates of solutions of an autonomous system are again
solutions:

z(t) a solution = z(t — ¢) is a solution for any constant c.
(2) Any ODE z' = f(t,z) is equivalent to an autonomous system. Define
“Tp41 =t" and set
T = (In+1a ZL’) S }Fn+1

¥ = 1(3) = F(wnsr, 7) = [ f(%ihm) ] € Tt
and consider the autonomous IVP
7 =T@, =] "],
This IVP is equivalent to the IVP

¥ =f(t,z), z(to) = z0.



Continuation for Autonomous Systems

Suppose f(z) is defined and locally Lipschitz continuous on an open set
U CF™ Take D =R xU. Suppose Ty < oo and C'is a compact subset
of U. Take K = [ty, T+] x C in the ODE Blow-Up Theorem. Then

3T < Ty suchthat z(t)gC for T<t< T4
In this case we say that
z(t) > OUU {0} as t— (Ty)7,
meaning that
(v ceompact « () (3T < T,) such that for te (T, Ty), z(t) & C.

Stated briefly, eventually z(t) stays out of any given compact set.
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Continuation of Linear Systems

Consider the linear IVP
' (t) = A(t)z(t) + b(t), z(tp) =2 on (a, b) with ty€ (a,b),

where A(t) € F™*™ and b(t) € F™ are continuous on (a, b). Let
D = (a,b) x F™. Then

f(t,z) = A(t)z + b(t) € (C,Lip),,) on D.
Moreover, for ¢, d satisfying
a<c<ty<d<hb,
f is uniformly Lipschitz continuous with respect to z on [c, d] x F",

take L = max |A(t)].
c<t<d

The Picard global existence theorem implies there is a solution of the IVP
on [c, d], which is unique by the uniqueness theorem for locally Lipschitz
f. This implies that 7_ = @ and T = b.
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Dependence of Solutions on Initial Values

Definition.
We say that z(t) is an e-approximate solution of the DE

¥ =f(t,r) on ICR

[2'(t) = f(ta(t)| <e  (VEED).
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Fundamental Estimate

Let f(¢,x) be continuous in ¢ and z, and uniformly Lipschitz continuous
in z with Lipschitz constant L. Consider the DE

(+) 7 = f(t,3)
Let €1,€e2 > 0, and suppose
x;(t) is an e;~approximate solution of (¥*) on I, ¢ =1,2..
Given ty € I, suppose that
|l21(to) — 22(t0)| <6 .
Then, for t € I,

(eFlt=tol 1y .

|2 (1) — 22(2)] < deXlttol 4 ¥
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Remarks on the Fundamental Estimate

|21 (1) — 22(8)] < Gellt=tol 4 e1te

(eL|t7to\ _ 1) )
Remarks.
(1) The first term on the RHS bounds the difference between the solutions
of the IVPs with initial values x;(%y) and z2(%) at tp.

(2) The second term on the RHS accounts for the fact that z;(¢) and
x2(t) are only approx. solutions: note that this term is 0 at ¢ = .

(3) If e, = €2 = § =0, we can again recover the uniqueness theorem for
Lipschitz f.
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Proof of the Fundamental Estimate

We may assume €1, €2,8 > 0 (otherwise, take limits as e; — 0T,
€2 — 07, § — 07). Also for simplicity, we may assume # = 0 and we are
considering ¢ > 0 (do time reversal for ¢ < 0). Let

u(t) = |z (1) — 5172(t)|2 = (21 — 22, 12 — M2).

Then
v = 2Re(m — a9, 2] — 1) < 2|11 — @] - | W) — b
= 2|‘T1 - :E2| |LL’1 7f(t7xl) - (Ié 7f(t7 Ig)) +f(t,$1) 7f(ta I2)|
< 2|1)1—132|(€1+€2+L|131—172|)

= 2Lu+ 2e\/u,

where € = €1 + €3.
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Proof of the Fundamental Estimate

We want to use the Comparison Theorem to compare u to the solution v
of

v = 2Lv + 2ey/v, v(0) =62 > 0.
But f(v) = 2Lv + 2e4/v is not Lipschitz on v € [0, 00); it is, however, for
a fixed § > 0, uniformly Lipschitz on v € [§2, c0) since % =2L+ \% is
bounded for v € [§2,00), and C! functions with bounded derivatives are

uniformly Lipschitz
U1 dN
/ —fdv
vy AU

(If (or) = F(u2)| = < (sup [f(v)])] o1 = v2l).
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Proof of the Fundamental Estimate

Although u(t) may leave [02,c0), in the proof of the Comparison

Theorem we only need f to be Lipschitz to conclude that u > v cannot
occur.

Note that since v/ > 0, v(t) stays in [§2, 00) for t > 0. So the
Comparison Theorem does apply, and we conclude that u < v for ¢ > 0.

To solve for v, let v = w?. Then
2uw’ = (w?) = v = 2Lw? + 2ew.
Since w > 0, we get w' = Lw + ¢, w(0) = §, whose solution is

w=del + Z(eLt -1).

Since |21 = 22| = v/u < /v = w, the estimate follows.



