Linear Analysis Lecture 22

The Cauchy-Peano Existence Theorem

Let
$$I = [t_0, t_0 + \beta]$$
 and
$$\Omega = \overline{B_r(x_0)} = \{x \in \mathbb{F}^n : |x - x_0| \le r\},\$$

and suppose f(t, x) is continuous on $I \times \Omega$. Then there exists a solution $x_*(t)$ of the integral equation

(IE)
$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$

in $C(I_{\alpha})$ where $I_{\alpha} = [t_0, t_0 + \alpha]$,

$$\alpha = \min\left(\beta, \frac{r}{M}\right),\,$$

and

$$M = \max_{(t,x)\in I\times\Omega} |f(t,x)|,$$

and so $x_*(t)$ is a C^1 solution of the initial value problem

$$IVP: x' = f(t, x), x(t_0) = x_0$$

in I_{α} .

Uniqueness

Uniqueness theorems are typically proved by comparison theorems for solutions of scalar differential equations, or by inequalities. The most fundamental of these inequalities is **Gronwall's inequality**. Recall that a first-order linear scalar IVP

$$u' = a(t)u + b(t), \quad u(t_0) = u_0.$$

Rewrite this as

$$u' - a(t)u = b(t), \quad u(t_0) = u_0,$$

and multiply by the integrating factor

$$e^{-\int_{t_0}^t a(\ell)d\ell}$$

$$u'e^{-\int_{t_0}^t a(\ell)d\ell} - a(t)e^{-\int_{t_0}^t a(\ell)d\ell}u = e^{-\int_{t_0}^t a(\ell)d\ell}b(t), \quad u(t_0) = u_0.$$

That is,

$$\frac{d}{dt}\left(e^{-\int_{t_0}^t a(\ell)d\ell}u(t)\right) = e^{-\int_{t_0}^t a(\ell)d\ell}b(t).$$

Now integrate from t_0 to t:

$$e^{-\int_{t_0}^t a(\ell)d\ell} u(t) - u_0 = \int_{t_0}^t \frac{d}{ds} \left(e^{-\int_{t_0}^s a(\ell)d\ell} u(s) \right) ds$$

= $\int_{t_0}^t e^{-\int_{t_0}^s a(\ell)d\ell} b(s) ds$
 \Rightarrow
 $u(t) = u_0 e^{\int_{t_0}^t a(\ell)d\ell} + \int_{t_0}^t e^{\int_s^t a(\ell)d\ell} b(s) ds$.

Since $f(t) \leq g(t)$ on [c, d] implies

$$\int_{c}^{d} f(t)dt \leq \int_{c}^{d} g(t)dt,$$

the identical argument with "=" replaced by " \leq " gives Gronwall's inequality.

Theorem (Gronwall's Inequality - Differential Form)

Let $I = [t_0, t_1]$. Suppose $a : I \to \mathbb{R}$ and $b : I \to \mathbb{R}$ are continuous, and suppose $u : I \to \mathbb{R}$ is in $C^1(I)$ and satisfies

$$u'(t) \le a(t)u(t) + b(t) \quad for \quad t \in I,$$

and $u(t_0) = u_0$. Then

$$u(t) \le u_0 e^{\int_{t_0}^t a(\ell) d\ell} + \int_{t_0}^t e^{\int_s^t a(\ell) d\ell} b(s) ds.$$

Remarks

(1) Thus a solution of the differential inequality is bounded above by the solution of the differential equality.

(2) Clearly, Gronwall's Inequality still holds if u is only continuous and piecewise C^1 , and a(t) and b(t) are only piecewise continuous.

Suppose for $\alpha > 0$, r > 0, f(t, x) is in (C, Lip) on $I_{\alpha} \times \overline{B_r(x_0)}$.

Further suppose both x(t) and y(t) map I_{α} into $\overline{B_r(x_0)}$ and are C^1 solutions of the IVP

$$x' = f(t, x); \quad x(t_0) = x_0 \quad \text{on} \quad I_\alpha,$$

where $I_{\alpha} = [t_0, t_0 + \alpha]$.

Then x(t) = y(t) for $t \in I_{\alpha}$.

Proof of Uniqueness for Locally Lipschitz f

Set $u(t) = |x(t) - y(t)|^2 = \langle x(t) - y(t), x(t) - y(t) \rangle$ (in the Euclidean inner product on \mathbb{F}^n). Then $u: I_\alpha \to [0, \infty)$ and $u \in C^1(I_\alpha)$ and for $t \in I_\alpha$,

$$\begin{array}{lll} u' &=& \langle x-y, x'-y'\rangle + \langle x'-y', x-y\rangle \\ &=& 2\mathcal{R}e\langle x-y, x'-y'\rangle \\ &\leq& 2|\langle x-y, x'-y'\rangle| \\ &=& 2|\langle x-y, (f(t,x)-f(t,y))\rangle| \\ &\leq& 2|x-y|\cdot |f(t,x)-f(t,y)| \\ &\leq& 2L|x-y|^2 = 2Lu \ . \end{array}$$

Thus $u' \leq 2Lu$ on I_{α} and

$$u(t_0) = x(t_0) - y(t_0) = x_0 - x_0 = 0.$$

By Gronwall's inequality,

$$u(t) \le u_0 e^{2Lt} = 0 \quad \text{on} \quad I_\alpha,$$

since $u(t) \ge 0$ on I_{α} , we have

$$u(t) \equiv 0$$
 on I_{α} .

Corollary.

(i) The same result holds if $I_{\alpha} = [t_0 - \alpha, t_0]$.

(ii) The same result holds if $I_{\alpha} = [t_0 - \alpha, t_0 + \alpha]$.

Proof: For (i), let

$$\widetilde{x}(t)=x(2t_0-t),\ \widetilde{y}(t)=y(2t_0-t),\ {\rm and}$$

 $\widetilde{f}(t,x)=-f(2t_0-t,x).$

Then \widetilde{f} is in (C, Lip) on $[t_0, t_0 + \alpha] \times \overline{B_r(x_0)}$, and \widetilde{x} and \widetilde{y} both satisfy

$$x' = \widetilde{f}(t, x);$$
 $x'(t_0) = x_0$ on $[t_0, t_0 + \alpha]$

So by the Theorem, $\tilde{x}(t) = \tilde{y}(t)$ for $t \in [t_0, t_0 + \alpha]$, i.e., x(t) = y(t) for $t \in [t_0 - \alpha, t_0]$. Now (ii) follows immediately by applying the Theorem in $[t_0, t_0 + \alpha]$ and applying (ii) in $[t_0 - \alpha, t_0]$.

Remark. The idea used in the proof of (i) is often called "time-reversal." The important part is that $\tilde{x}(t) = x(c - t)$, for some constant c, so that $\tilde{x}'(t) = -x'(c - t)$. The choice of $c = 2t_0$ is convenient but not essential.

Local Lipschitz Contnuity

Before stating our main uniqueness result, we introduce a local form of Lipschitz continuity of the function f(t, x) in the x argument.

Definition. Let \mathcal{D} be an open set in $\mathbb{R} \times \mathbb{F}^n$. We say that f(t, x) mapping \mathcal{D} into \mathbb{F}^n is **locally Lipschitz continuous with respect to** x if

$$\forall (t_1, x_1) \in \mathcal{D}, \quad \exists \quad \alpha > 0, \quad r > 0 \quad and \quad L > 0$$

for which $[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)} \subset \mathcal{D}$ and

$$(\forall t \in [t_1 - \alpha, t_1 + \alpha]) \ (\forall x, y \in \overline{B_r(x_1)})$$

$$|f(t,x) - f(t,y)| \le L|x - y|$$
,

i.e., f is uniformly Lipschitz continuous with respect to x in

$$[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)}.$$

We say $f \in (C, \operatorname{Lip}_{\operatorname{loc}})$ (not a standard notation) on \mathcal{D} if f is continuous on \mathcal{D} and locally Lipschitz continuous wrt x on \mathcal{D} .

Let \mathcal{D} be an open set in $\mathbb{R} \times \mathbb{F}^n$. Suppose f(t, x) maps \mathcal{D} into \mathbb{F}^n , f is continuous on \mathcal{D} , and

for
$$1 \leq i, j \leq n, \quad \frac{\partial f_i}{\partial x_j}$$
 exists and is continuous in \mathcal{D} ,

i.e., f is continuous on \mathcal{D} and C^1 with respect to x on \mathcal{D} . Then $f \in (C, \operatorname{Lip}_{\operatorname{loc}})$ on \mathcal{D} .

Let ${\mathcal D}$ be an open set in ${\mathbb R}\times {\mathbb F}^n$, and suppose

- (a) $f \in (C, \operatorname{Lip}_{\operatorname{loc}})$ on \mathcal{D} ,
- **(b)** $(t_0, x_0) \in \mathcal{D}$,
- (c) $I \subset \mathbb{R}$ is an interval containing t_0 (which may be open or closed at either end), and
- (d) x(t) and y(t) are both solutions of the IVP

$$x' = f(t, x);$$
 $x(t_0) = x_0$ in $C^1(I)$

which satisfy

$$(t, x(t)) \in \mathcal{D}$$
 and $(t, y(t)) \in \mathcal{D}$ $\forall t \in I.$

Then $x(t) \equiv y(t)$ on I.

Main Uniqueness Theorem: Proof

We first show $x(t) \equiv y(t)$ on $\{t \in I : t \ge t_0\}$. If not, let

 $t_1 = \inf\{t \in I : t \ge t_0 \text{ and } x(t) \ne y(t)\}.$

Then x(t) = y(t) on $[t_0, t_1)$ so by continuity $x(t_1) = y(t_1)$ (if $t_1 = t_0$, this is obvious). By continuity and the openness of \mathcal{D} (as $(t_1, x(t_1)) \in \mathcal{D}$), $\exists \alpha > 0$ and r > 0 such that $[t_1 - \alpha, t_1 + \alpha] \times B_r(x_1) \subset \mathcal{D}$, f is uniformly Lipschitz continuous with respect to x in

$$[t_1 - \alpha, t_1 + \alpha] \times \overline{B_r(x_1)},$$

and

$$x(t)\in \overline{B_r(x_1)} \quad \text{and} \quad y(t)\in \overline{B_r(x_1)} \quad \forall \ t\in I\cap [t_1-\alpha,t_1+\alpha].$$

By the previous theorem, $x(t) \equiv y(t)$ in $I \cap [t_1 - \alpha, t_1 + \alpha]$, contradicting the definition of t_1 . Hence

$$x(t) \equiv y(t)$$
 on $\{t \in I : t \ge t_0\}.$

Similarly,

$$x(t) \equiv y(t)$$
 on $\{t \in I : t \le t_0\}.$

Hence $x(t) \equiv y(t)$ on I.

Remark. t_0 is allowed to be the left or right endpoint of *I*.

П

Theorem. Let n = 1, $\mathbb{F} = \mathbb{R}$, and suppose f(t, u) is continuous in t and Lipschitz continuous in u.

Assume u(t), v(t) are C^1 for $t \ge t_0$ (on an interval $[t_0, b)$ or $[t_0, b]$) and satisfy

 $u'(t) \le f(t, u(t)),$ v'(t) = f(t, v(t))

and $u(t_0) \leq v(t_0)$. Then

 $u(t) \le v(t)$ for $t \ge t_0$.

Comparison Theorem for Real Scalar Equations: Proof

If to the contrary u(T) > v(T) for some $T > t_0$, then set

$$t_1 = \sup\{t : t_0 \le t < T \text{ and } u(t) \le v(t)\}.$$

Then

 $t_0 \le t_1 < T, \quad u(t_1) = v(t_1), \quad \text{and} \quad u(t) > v(t) \quad \text{for} \quad t_1 < t \le T$

(by continuity of u - v). For

$$t_1 \le t \le T$$
, $|u(t) - v(t)| = u(t) - v(t)$,

so we have

$$(u-v)' \le f(t,u) - f(t,v) \le L|u-v| = L(u-v).$$

By Gronwall's inequality applied to u - v on $[t_1, T]$, with

$$(u-v)(t_1) = 0, \ a(t) \equiv L, \ b(t) \equiv 0,$$

 $(u-v)(t) \leq 0$ on $[t_1, T]$, a contradiction.

Remarks.

- (1) As with the differential form of Gronwall's inequality a solution of the differential inequality $u' \leq f(t, u)$ is bounded above by the solution of the equality (i.e., the DE v' = f(t, v)).
- (2) It can be shown under the same hypotheses that if $u(t_0) < v(t_0)$, then u(t) < v(t) for $t \ge t_0$.
- (3) Caution: It may happen that u'(t) > v'(t) for some $t \ge t_0$: $u(t) \le v(t) \ne u'(t) \le v'(t)$.

Comparison Theorem for Real Scalar Equations: Corollary

Corollary. Let n = 1, $\mathbb{F} = \mathbb{R}$. Suppose $f(t, u) \leq g(t, u)$ are continuous in t and u, and one of them is Lipschitz continuous in u. Suppose also that u(t), v(t) are C^1 for $t \geq t_0$ (on $[t_0, b)$ or $[t_0, b]$) and satisfy

$$u' = f(t, u), \ v' = g(t, v), \text{ and } u(t_0) \le v(t_0).$$

Then

$$u(t) \le v(t)$$
 for $t \ge t_0$.

Proof: Suppose first that g satisfies the Lipschitz condition. Then

$$u' = f(t, u) \le g(t, u).$$

Now apply the theorem. If f satisfies the Lipschitz condition, apply the first part of this proof to

$$\widetilde{u}(t) \equiv -v(t), \ \widetilde{v}(t) \equiv -u(t), \ \widetilde{f}(t,u) = -g(t,-u), \ \widetilde{g}(t,u) = -f(t,-u).$$

Remark. Again, if $u(t_0) < v(t_0)$, then u(t) < v(t) for $t \ge t_0$.

 \square

Continuation of Solutions in Time

We consider two kinds of results (1) *local continuation* (no Lipschitz condition on f) (2) *global continuation* (for locally Lipschitz f) **Local Continuation (Continuation at a Point)** Assume x(t) is a solution of the DE x' = f(t, x) on an interval I and f is continuous on a subset $S \subset \mathbb{R} \times \mathbb{F}^n$ containing $\{(t, x(t)) : t \in I\}$. **Case 1:** I is closed at the right end, i.e., $I = (-\infty, b]$, [a, b], or (a, b]. Assume further that (b, x(b)) is in the interior of S. Then the solution can be extended (by Cauchy-Peano) to an interval with right end $b + \beta$ for some $\beta > 0$. This is done by solving the IVP

$$x' = f(t, x)$$
 with initial value $x(b)$ at $t = b$

on an interval $[b, b + \beta]$. To show that the continuation is C^1 at t = b, note that the extended x(t) satisfies the integral equation

$$x(t) = x(b) + \int_b^t f(s, x(s)) ds \quad \text{on } I \bigcup [b, b + \beta].$$

Note we do not assume Lipschitz continuity.

Case 2: *I* is open at the right end, i.e., $I = (-\infty, b)$, [a, b), or (a, b) with $b < \infty$. Assume further that f(t, x(t)) is **bounded** on $[t_0, b)$ for some $t_0 < b$ with $[t_0, b) \subset I$, say $|f(t, x(t))| \leq M$ on $[t_0, b)$. In this case the integral equation

(*)
$$x(t) = x(t_0) + \int_{t_0}^t f(s, x(s)) ds$$

holds for $t \in I$. In particular, for $t_0 \leq \tau \leq t < b$,

$$|x(t) - x(\tau)| = \left| \int_{\tau}^{t} f(s, x(s)) ds \right| \le \int_{\tau}^{t} |f(s, x(s))| ds \le M |t - \tau|.$$

Thus, for any sequence $t_n \uparrow b$, $\{x(t_n)\}$ is Cauchy. This implies $\lim_{t\to b^-} x(t)$ exists; call it $x(b^-)$. So x(t) has a **continuous** extension from I to $I \cup \{b\}$.

Comments

• If in addition $(b, x(b^-))$ is in S, then (*) holds on $I \cup \{b\}$ as well, so x(t) is a C^1 solution of x' = f(t, x) on $I \cup \{b\}$.

• If $(b, x(b^{-}))$ is in the interior of S, we are back in Case 1 and can extend the solution x(t) beyond t = b.

• The assumption that f(t, x(t)) is bounded on $[t_0, b)$ can be restated with a slightly different emphasis: for some $t_0 \in I$, $\{(t, x(t)) : t_0 \le t < b\}$ stays within a subset of S on which f is bounded. For example, if $\{(t, x(t)) : t_0 \le t < b\}$ stays within a compact subset of S, this condition is satisfied.

• The technique of Case 1 can be applied to I is closed at the left end.

• The technique of Case 2 can be applied to I is open at the left end.

Global Continuation

Assume f(t, x) is continuous on an open set $\mathcal{D} \subset \mathbb{R} \times \mathbb{F}^n$ and is locally Lipschitz continuous with respect to x on \mathcal{D} . Write $f \in (C, \operatorname{Lip}_{loc})$ on \mathcal{D} . Let $(t_0, x_0) \in \mathcal{D}$ and consider the IVP

$$x' = f(t, x), \quad x(t_0) = x_0,$$

It has been shown that a unique solutions exist on both $[t_0, t_0 + \alpha_+)$ and $(-\alpha_- + t_0, t_0]$, and that this gives a unique solution on $(-\alpha_- + t_0, t_0 + \alpha_+)$ for some $\alpha_+, \alpha_- > 0$. Set

$$T_+ = \sup\{t > t_0 : \exists \text{ a solution of IVP on } [t_0, t)\}, \text{ and } T_- = \inf\{t < t_0 : \exists \text{ a solution of IVP on } (t, t_0]\}.$$

 (T_-, T_+) is the maximal interval of existence of the solution of the IVP. It is possible that $T_+ = \infty$ and/or $T_- = -\infty$.

The maximal interval (T_-, T_+) must be open: if the solution could be extended to T_+ (or T_-), this would contradict the local continuation results since \mathcal{D} is open. Ideally, $T_+ = +\infty$ and $T_- = -\infty$.

Another posibility is if f(t, x) is not defined for $t \ge T_+$. For example, if $a(t) = \frac{1}{1-t}$, and x'(t) = a(t). Here we don't expect the solution to exist beyond t = 1.

But less desirable behavior can occur.

For example, for the IVP:

$$x' = x^2, \ x(0) = x_0 > 0, \ t_0 = 0,$$

and $\mathcal{D} = \mathbb{R} \times \mathbb{R}$. The solution $x(t) = (x_0^{-1} - t)^{-1}$ blows up at $T_+ = 1/x_0$ (note that $T_- = -\infty$). Observe that $x(t) \to \infty$ as $t \to (T_+)^-$. So the solution does not just "stop" in the interior of \mathcal{D} .

This kind of blow-up behavior must occur if a solution cannot be continued to the whole real line.

Suppose $f \in (C, \operatorname{Lip}_{\operatorname{loc}})$ on an open set $\mathcal{D} \subset \mathbb{R} \times \mathbb{F}^n$. Let $(t_0, x_0) \in \mathcal{D}$, and let (T_-, T_+) be the maximal interval of existence of the solution of the IVP

$$x' = f(t, x), \quad x(t_0) = x_0 .$$

If $T_+ < +\infty$ $(T_- > -\infty)$, then for any compact set $K \subset D$, there exists a $T < T_+$ $(T_- < T)$ for which $(t, x(t)) \notin K$ for t > T (t < T).

Proof of Theorem on Solution Blow-Up

If not, $\exists t_j \to T_+$ with $(t_j, x(t_j)) \in K$ for all j. By taking a subsequence, we may assume that $x(t_j)$ also converges to $x_+ \in \mathbb{F}^n$, and

$$(t_j, x(t_j)) \to (T_+, x_+) \in K \subset \mathcal{D}.$$

We can thus choose r > 0, $\tau > 0$, $N \in \mathbb{N}$ such that

$$\mathcal{S} = \bigcup_{j=N}^{\infty} \{ (t,x) : |t - t_j| \le \tau, |x - x(t_j)| \le r \} \subset \mathcal{D}.$$

Since \mathcal{D} is compact, there is an M for which $|f(t,x)| \leq M$ on \mathcal{S} . By the local existence theorem, the solution of x' = f(t,x) starting at the initial point $(t_i, x(t_i))$ exists for a time interval of length

$$T' \equiv \min\left\{\tau, \frac{r}{M}\right\},\,$$

independent of *i*. Choose *j* for which $t_j > t_+ - T'$. Then (t, x(t)) exists in \mathcal{D} beyond time T_+ , which is a contradiction.

Autonomous Systems

The ODE x'(t) = f(t, x) is called an **autonomous system** if f(t, x) is independent of t, i.e., the ODE is of the form

$$x' = f(x).$$

Remarks.

(1) Time translates of solutions of an autonomous system are again solutions:

x(t) a solution $\implies x(t-c)$ is a solution for any constant c.

(2) Any ODE x' = f(t, x) is equivalent to an autonomous system. Define " $x_{n+1} = t$ " and set

$$\widetilde{x} = (x_{n+1}, x) \in \mathbb{F}^{n+1}$$
$$\widetilde{x}' = \widetilde{f}(\widetilde{x}) = \widetilde{f}(x_{n+1}, x) = \begin{bmatrix} 1\\ f(x_{n+1}, x) \end{bmatrix} \in \mathbb{F}^{n+1}$$

and consider the autonomous IVP

$$\widetilde{x}' = \widetilde{f}(\widetilde{x}), \quad \widetilde{x}(t_0) = \begin{bmatrix} t_0 \\ x_0 \end{bmatrix}$$

This IVP is equivalent to the IVP

$$x' = f(t, x), \quad x(t_0) = x_0.$$

Suppose f(x) is defined and locally Lipschitz continuous on an open set $\mathcal{U} \subset \mathbb{F}^n$. Take $\mathcal{D} = \mathbb{R} \times \mathcal{U}$. Suppose $T_+ < \infty$ and C is a compact subset of \mathcal{U} . Take $K = [t_0, T_+] \times C$ in the ODE Blow-Up Theorem. Then

 $\exists T < T_+ \text{ such that } x(t) \notin C \text{ for } T < t < T_+.$

In this case we say that

$$x(t) \to \partial \mathcal{U} \cup \{\infty\} \quad \text{as} \quad t \to (T_+)^-,$$

meaning that

 $(\forall C^{\text{compact}} \subset \mathcal{U})(\exists T < T_+) \text{ such that for } t \in (T, T_+), x(t) \notin C.$

Stated briefly, eventually x(t) stays out of any given compact set.

Consider the linear IVP

 $x'(t) = A(t)x(t) + b(t), \quad x(t_0) = x_0 \quad \text{on} \quad (a, b) \quad with \quad t_0 \in (a, b),$

where $A(t) \in \mathbb{F}^{n \times n}$ and $b(t) \in \mathbb{F}^n$ are continuous on (a, b). Let $\mathcal{D} = (a, b) \times \mathbb{F}^n$. Then

$$f(t,x) = A(t)x + b(t) \in (C, \operatorname{Lip}_{\operatorname{loc}})$$
 on \mathcal{D} .

Moreover, for c, d satisfying

$$a < c \le t_0 \le d < b,$$

f is uniformly Lipschitz continuous with respect to x on $[c, d] \times \mathbb{F}^n$,

take
$$L = \max_{c \le t \le d} |A(t)|.$$

The Picard global existence theorem implies there is a solution of the IVP on [c, d], which is unique by the uniqueness theorem for locally Lipschitz f. This implies that $T_{-} = a$ and $T_{+} = b$.

Definition.

We say that x(t) is an ϵ -approximate solution of the DE

 $x' = f(t, x) \quad \text{on} \quad I \subset \mathbb{R}$

if

$$|x'(t) - f(t, x(t))| \le \epsilon \qquad (\forall t \in I).$$

Let f(t, x) be continuous in t and x, and uniformly Lipschitz continuous in x with Lipschitz constant L. Consider the DE

$$(*)$$
 $x' = f(t, x)$.

Let $\epsilon_1, \epsilon_2 > 0$, and suppose

 $x_i(t)$ is an ϵ_i -approximate solution of (*) on I, i = 1, 2...

Given $t_0 \in I$, suppose that

$$|x_1(t_0) - x_2(t_0)| \le \delta$$
.

Then, for $t \in I$,

$$|x_1(t) - x_2(t)| \le \delta e^{L|t-t_0|} + \frac{\epsilon_1 + \epsilon_2}{L} (e^{L|t-t_0|} - 1)$$
.

$$|x_1(t) - x_2(t)| \le \delta e^{L|t-t_0|} + \frac{\epsilon_1 + \epsilon_2}{L} (e^{L|t-t_0|} - 1) .$$

Remarks.

- (1) The first term on the RHS bounds the difference between the solutions of the IVPs with initial values $x_1(t_0)$ and $x_2(t_0)$ at t_0 .
- (2) The second term on the RHS accounts for the fact that $x_1(t)$ and $x_2(t)$ are only approx. solutions: note that this term is 0 at $t = t_0$.
- (3) If $\epsilon_1 = \epsilon_2 = \delta = 0$, we can again recover the uniqueness theorem for Lipschitz f.

We may assume $\epsilon_1, \epsilon_2, \delta > 0$ (otherwise, take limits as $\epsilon_1 \to 0^+$, $\epsilon_2 \to 0^+$, $\delta \to 0^+$). Also for simplicity, we may assume $t_0 = 0$ and we are considering $t \ge 0$ (do time reversal for $t \le 0$). Let

$$u(t) = |x_1(t) - x_2(t)|^2 = \langle x_1 - x_2, x_2 - x_2 \rangle.$$

Then

$$u' = 2\mathcal{R}e\langle x_1 - x_2, x_1' - x_2' \rangle \le 2|x_1 - x_2| \cdot |x_1' - x_2'|$$

= $2|x_1 - x_2| |x_1' - f(t, x_1) - (x_2' - f(t, x_2)) + f(t, x_1) - f(t, x_2)|$
 $\le 2|x_1 - x_2|(\epsilon_1 + \epsilon_2 + L|x_1 - x_2|)$

$$= 2Lu + 2\epsilon\sqrt{u},$$

where $\epsilon = \epsilon_1 + \epsilon_2$.

We want to use the Comparison Theorem to compare \boldsymbol{u} to the solution \boldsymbol{v} of

$$v' = 2Lv + 2\epsilon\sqrt{v}, \ v(0) = \delta^2 > 0.$$

But $\tilde{f}(v) \equiv 2Lv + 2\epsilon\sqrt{v}$ is not Lipschitz on $v \in [0,\infty)$; it is, however, for a fixed $\delta > 0$, uniformly Lipschitz on $v \in [\delta^2,\infty)$ since $\frac{d\tilde{f}}{dv} = 2L + \frac{\epsilon}{\sqrt{v}}$ is bounded for $v \in [\delta^2,\infty)$, and C^1 functions with bounded derivatives are uniformly Lipschitz

$$\left(|\widetilde{f}(v_1) - \widetilde{f}(v_2)| = \left| \int_{v_2}^{v_1} \frac{d\widetilde{f}}{dv} dv \right| \le \left(\sup |\widetilde{f}(v)|\right) |v_1 - v_2|\right).$$

Although u(t) may leave $[\delta^2,\infty),$ in the proof of the Comparison Theorem we only need \widetilde{f} to be Lipschitz to conclude that u>v cannot occur.

Note that since $v' \ge 0$, v(t) stays in $[\delta^2, \infty)$ for $t \ge 0$. So the Comparison Theorem does apply, and we conclude that $u \le v$ for $t \ge 0$.

To solve for v, let $v = w^2$. Then

$$2ww' = (w^2)' = v' = 2Lw^2 + 2\epsilon w.$$

Since w>0, we get $w'=Lw+\epsilon,\;w(0)=\delta,$ whose solution is

$$w = \delta e^{Lt} + \frac{\epsilon}{L}(e^{Lt} - 1).$$

Since $|x_1 = x_2| = \sqrt{u} \le \sqrt{v} = w$, the estimate follows.