
Linear Analysis
Lecture 22



The Cauchy-Peano Existence Theorem
Let I = [t0, t0 + β] and

Ω = Br(x0) = {x ∈ Fn : |x − x0| ≤ r},

and suppose f (t, x) is continuous on I × Ω.
Then there exists a solution x∗(t) of the integral equation

(IE) x(t) = x0 +
∫ t

t0

f (s, x(s))ds

in C (Iα) where Iα = [t0, t0 + α],

α = min
(
β,

r
M

)
,

and
M = max

(t,x)∈I×Ω
|f (t, x)|,

and so x∗(t) is a C 1 solution of the initial value problem

IVP : x ′ = f (t, x), x(t0) = x0

in Iα.
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Uniqueness
Uniqueness theorems are typically proved by comparison theorems for
solutions of scalar differential equations, or by inequalities.
The most fundamental of these inequalities is Gronwall’s inequality.
Recall that a first-order linear scalar IVP

u′ = a(t)u + b(t), u(t0) = u0.

Rewrite this as
u′ − a(t)u = b(t), u(t0) = u0,

and multiply by the integrating factor

e−
∫ t

t0
a(`)d`

,

to get

u′e−
∫ t

t0
a(`)d` − a(t)e−

∫ t

t0
a(`)d`u = e−

∫ t

t0
a(`)d`b(t), u(t0) = u0.

That is,
d
dt

(
e−
∫ t

t0
a(`)d`u(t)

)
= e−

∫ t

t0
a(`)d`b(t).
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Uniqueness

Now integrate from t0 to t:

e−
∫ t

t0
a(`)d`u(t)− u0 =

∫ t

t0

d
ds

(
e−
∫ s

t0
a(`)d`u(s)

)
ds

=
∫ t

t0

e−
∫ s

t0
a(`)d`b(s)ds

⇒

u(t) = u0e
∫ t

t0
a(`)d` +

∫ t

t0

e
∫ t

s
a(`)d`b(s)ds .

Since f (t) ≤ g(t) on [c, d] implies∫ d

c
f (t)dt ≤

∫ d

c
g(t)dt,

the identical argument with “=” replaced by “≤” gives Gronwall’s
inequality.
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Theorem (Gronwall’s Inequality - Differential Form)

Let I = [t0, t1]. Suppose a : I → R and b : I → R are continuous, and
suppose u : I → R is in C 1(I ) and satisfies

u′(t) ≤ a(t)u(t) + b(t) for t ∈ I ,

and u(t0) = u0. Then

u(t) ≤ u0e
∫ t

t0
a(`)d` +

∫ t

t0

e
∫ t

s
a(`)d`b(s)ds.

Remarks
(1) Thus a solution of the differential inequality is bounded above by the
solution of the differential equality.

(2) Clearly, Gronwall’s Inequality still holds if u is only continuous and
piecewise C 1, and a(t) and b(t) are only piecewise continuous.
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Theorem: (Uniqueness for Locally Lipschitz f )

Suppose for α > 0, r > 0, f (t, x) is in (C ,Lip) on Iα × Br(x0).

Further suppose both x(t) and y(t) map Iα into Br(x0) and are C 1

solutions of the IVP

x ′ = f (t, x) ; x(t0) = x0 on Iα,

where Iα = [t0, t0 + α].

Then x(t) = y(t) for t ∈ Iα.

6 / 32



Proof of Uniqueness for Locally Lipschitz f
Set u(t) = |x(t)− y(t)|2 = 〈x(t)− y(t), x(t)− y(t)〉
(in the Euclidean inner product on Fn). Then u : Iα → [0,∞) and
u ∈ C 1(Iα) and for t ∈ Iα,

u′ = 〈x − y, x ′ − y′〉+ 〈x ′ − y′, x − y〉
= 2Re〈x − y, x ′ − y′〉
≤ 2|〈x − y, x ′ − y′〉|
= 2|〈x − y, (f (t, x)− f (t, y))〉|
≤ 2|x − y| · |f (t, x)− f (t, y)|
≤ 2L|x − y|2 = 2Lu .

Thus u′ ≤ 2Lu on Iα and
u(t0) = x(t0)− y(t0) = x0 − x0 = 0.

By Gronwall’s inequality,
u(t) ≤ u0e2Lt = 0 on Iα,

since u(t) ≥ 0 on Iα, we have
u(t) ≡ 0 on Iα. �
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Corollary to Uniqueness for Locally Lipschitz f

Corollary.
(i) The same result holds if Iα = [t0 − α, t0].

(ii) The same result holds if Iα = [t0 − α, t0 + α].

Proof: For (i), let

x̃(t) = x(2t0 − t), ỹ(t) = y(2t0 − t), and

f̃ (t, x) = −f (2t0 − t, x).

Then f̃ is in (C ,Lip) on [t0, t0 + α]× Br(x0), and x̃ and ỹ both satisfy

x ′ = f̃ (t, x); x ′(t0) = x0 on [t0, t0 + α].

So by the Theorem, x̃(t) = ỹ(t) for t ∈ [t0, t0 + α], i.e., x(t) = y(t) for
t ∈ [t0 − α, t0]. Now (ii) follows immediately by applying the Theorem in
[t0, t0 + α] and applying (ii) in [t0 − α, t0]. �

Remark. The idea used in the proof of (i) is often called “time-reversal.”
The important part is that x̃(t) = x(c − t), for some constant c, so that
x̃ ′(t) = −x ′(c − t). The choice of c = 2t0 is convenient but not
essential.
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Local Lipschitz Contnuity

Before stating our main uniqueness result, we introduce a local form of
Lipschitz continuity of the function f (t, x) in the x argument.

Definition. Let D be an open set in R× Fn. We say that f (t, x)
mapping D into Fn is locally Lipschitz continuous with respect to x if

∀ (t1, x1) ∈ D, ∃ α > 0, r > 0 and L > 0

for which [t1 − α, t1 + α]× Br(x1) ⊂ D and

(∀ t ∈ [t1 − α, t1 + α]) (∀ x, y ∈ Br(x1))

|f (t, x)− f (t, y)| ≤ L|x − y| ,

i.e., f is uniformly Lipschitz continuous with respect to x in

[t1 − α, t1 + α]× Br(x1).

We say f ∈ (C ,Liploc) (not a standard notation) on D if f is continuous
on D and locally Lipschitz continuous wrt x on D.
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Local Lipschitz Contnuity: Example

Let D be an open set in R× Fn. Suppose f (t, x) maps D into Fn, f is
continuous on D, and

for 1 ≤ i, j ≤ n, ∂fi
∂xj

exists and is continuous in D,

i.e., f is continuous on D and C 1 with respect to x on D. Then
f ∈ (C ,Liploc) on D.
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Main Uniqueness Theorem

Let D be an open set in R× Fn, and suppose
(a) f ∈ (C ,Liploc) on D,
(b) (t0, x0) ∈ D,
(c) I ⊂ R is an interval containing t0 (which may be open or closed at

either end), and
(d) x(t) and y(t) are both solutions of the IVP

x ′ = f (t, x); x(t0) = x0 in C 1(I )

which satisfy

(t, x(t)) ∈ D and (t, y(t)) ∈ D ∀ t ∈ I .

Then x(t) ≡ y(t) on I .
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Main Uniqueness Theorem: Proof
We first show x(t) ≡ y(t) on {t ∈ I : t ≥ t0}. If not, let

t1 = inf{t ∈ I : t ≥ t0 and x(t) 6= y(t)}.
Then x(t) = y(t) on [t0, t1) so by continuity x(t1) = y(t1) (if t1 = t0, this
is obvious). By continuity and the openness of D (as (t1, x(t1)) ∈ D),
∃ α > 0 and r > 0 such that [t1 − α, t1 + α]× Br(x1) ⊂ D, f is
uniformly Lipschitz continuous with respect to x in

[t1 − α, t1 + α]× Br(x1),
and

x(t) ∈ Br(x1) and y(t) ∈ Br(x1) ∀ t ∈ I ∩ [t1 − α, t1 + α].
By the previous theorem, x(t) ≡ y(t) in I ∩ [t1 −α, t1 +α], contradicting
the definition of t1. Hence

x(t) ≡ y(t) on {t ∈ I : t ≥ t0}.
Similarly,

x(t) ≡ y(t) on {t ∈ I : t ≤ t0}.
Hence x(t) ≡ y(t) on I . �

Remark. t0 is allowed to be the left or right endpoint of I .
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Comparison Theorem for Real Scalar Equations

Theorem. Let n = 1, F = R, and suppose f (t, u) is continuous in t and
Lipschitz continuous in u.
Assume u(t), v(t) are C 1 for t ≥ t0 (on an interval [t0, b) or [t0, b]) and
satisfy

u′(t) ≤ f (t, u(t)), v′(t) = f (t, v(t))

and u(t0) ≤ v(t0). Then

u(t) ≤ v(t) for t ≥ t0.
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Comparison Theorem for Real Scalar Equations: Proof

If to the contrary u(T ) > v(T ) for some T > t0, then set

t1 = sup{t : t0 ≤ t < T and u(t) ≤ v(t)}.

Then

t0 ≤ t1 < T , u(t1) = v(t1), and u(t) > v(t) for t1 < t ≤ T

(by continuity of u − v). For

t1 ≤ t ≤ T , |u(t)− v(t)| = u(t)− v(t),

so we have

(u − v)′ ≤ f (t, u)− f (t, v) ≤ L|u − v| = L(u − v).

By Gronwall’s inequality applied to u − v on [t1,T ], with

(u − v)(t1) = 0, a(t) ≡ L, b(t) ≡ 0,

(u − v)(t) ≤ 0 on [t1,T ], a contradiction.
14 / 32



Comparison Theorem for Real Scalar Equations: Remarks

Remarks.
(1) As with the differential form of Gronwall’s inequality a solution of the

differential inequality u′ ≤ f (t, u) is bounded above by the solution of
the equality (i.e., the DE v′ = f (t, v)).

(2) It can be shown under the same hypotheses that if u(t0) < v(t0), then
u(t) < v(t) for t ≥ t0.

(3) Caution: It may happen that u′(t) > v′(t) for some t ≥ t0:
u(t) ≤ v(t) 6⇒ u′(t) ≤ v′(t).
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Comparison Theorem for Real Scalar Equations: Corollary

Corollary. Let n = 1, F = R. Suppose f (t, u) ≤ g(t, u) are continuous in
t and u, and one of them is Lipschitz continuous in u. Suppose also that
u(t), v(t) are C 1 for t ≥ t0 (on [t0, b) or [t0, b]) and satisfy

u′ = f (t, u), v′ = g(t, v), and u(t0) ≤ v(t0).

Then
u(t) ≤ v(t) for t ≥ t0.

Proof: Suppose first that g satisfies the Lipschitz condition. Then

u′ = f (t, u) ≤ g(t, u).

Now apply the theorem. If f satisfies the Lipschitz condition, apply the
first part of this proof to

ũ(t) ≡ −v(t), ṽ(t) ≡ −u(t), f̃ (t, u) = −g(t,−u), g̃(t, u) = −f (t,−u).

�

Remark. Again, if u(t0) < v(t0), then u(t) < v(t) for t ≥ t0.
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Continuation of Solutions in Time

We consider two kinds of results
(1) local continuation (no Lipschitz condition on f )
(2) global continuation (for locally Lipschitz f )
Local Continuation (Continuation at a Point)
Assume x(t) is a solution of the DE x ′ = f (t, x) on an interval I and f is
continuous on a subset S ⊂ R× Fn containing {(t, x(t)) : t ∈ I}.
Case 1: I is closed at the right end, i.e., I = (−∞, b], [a, b], or (a, b].
Assume further that (b, x(b)) is in the interior of S. Then the solution
can be extended (by Cauchy-Peano) to an interval with right end b + β
for some β > 0. This is done by solving the IVP

x ′ = f (t, x) with initial value x(b) at t = b

on an interval [b, b + β]. To show that the continuation is C 1 at t = b,
note that the extended x(t) satisfies the integral equation

x(t) = x(b) +
∫ t

b
f (s, x(s))ds on I

⋃
[b, b + β].

Note we do not assume Lipschitz continuity.
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Continuation of Solutions in Time; Case 2

Case 2: I is open at the right end, i.e., I = (−∞, b), [a, b), or (a, b)
with b <∞. Assume further that f (t, x(t)) is bounded on [t0, b) for
some t0 < b with [t0, b) ⊂ I , say |f (t, x(t))| ≤ M on [t0, b).
In this case the integral equation

(∗) x(t) = x(t0) +
∫ t

t0

f (s, x(s))ds

holds for t ∈ I . In particular, for t0 ≤ τ ≤ t < b,

|x(t)− x(τ)| =
∣∣∣∣∫ t

τ

f (s, x(s))ds
∣∣∣∣ ≤ ∫ t

τ

|f (s, x(s))|ds ≤ M |t − τ |.

Thus, for any sequence tn ↑ b, {x(tn)} is Cauchy. This implies
limt→b− x(t) exists; call it x(b−). So x(t) has a continuous extension
from I to I ∪ {b}.
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Comments

• If in addition (b, x(b−)) is in S, then (∗) holds on I ∪ {b} as well, so
x(t) is a C 1 solution of x ′ = f (t, x) on I ∪ {b}.

• If (b, x(b−)) is in the interior of S, we are back in Case 1 and can
extend the solution x(t) beyond t = b.

• The assumption that f (t, x(t)) is bounded on [t0, b) can be restated
with a slightly different emphasis: for some t0 ∈ I ,
{(t, x(t)) : t0 ≤ t < b} stays within a subset of S on which f is bounded.
For example, if {(t, x(t)) : t0 ≤ t < b} stays within a compact subset of
S, this condition is satisfied.

• The technique of Case 1 can be applied to I is closed at the left end.

• The technique of Case 2 can be applied to I is open at the left end.
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Global Continuation

Assume f (t, x) is continuous on an open set D ⊂ R× Fn and is locally
Lipschitz continuous with respect to x on D. Write f ∈ (C , Liploc) on D.

Let (t0, x0) ∈ D and consider the IVP

x ′ = f (t, x), x(t0) = x0.

It has been shown that a unique solutions exist on both [t0, t0 + α+) and
(−α− + t0, t0], and that this gives a unique solution on
(−α− + t0, t0 + α+) for some α+, α− > 0. Set

T+ = sup{t > t0 : ∃ a solution of IVP on [t0, t)}, and
T− = inf{t < t0 : ∃ a solution of IVP on (t, t0]}.

(T−,T+) is the maximal interval of existence of the solution of the IVP.
It is possible that T+ =∞ and/or T− = −∞.

The maximal interval (T−,T+) must be open: if the solution could be
extended to T+ (or T−), this would contradict the local continuation
results since D is open. Ideally, T+ = +∞ and T− = −∞.
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Global Continuation

Another posibility is if f (t, x) is not defined for t ≥ T+. For example, if
a(t) = 1

1−t , and x ′(t) = a(t). Here we don’t expect the solution to exist
beyond t = 1.

But less desirable behavior can occur.

For example, for the IVP:

x ′ = x2, x(0) = x0 > 0, t0 = 0,

and D = R× R. The solution x(t) = (x−1
0 − t)−1 blows up at

T+ = 1/x0 (note that T− = −∞). Observe that x(t)→∞ as
t → (T+)−. So the solution does not just “stop” in the interior of D.

This kind of blow-up behavior must occur if a solution cannot be
continued to the whole real line.
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Theorem on Solution Blow-Up

Suppose f ∈ (C ,Liploc) on an open set D ⊂ R× Fn. Let (t0, x0) ∈ D,
and let (T−,T+) be the maximal interval of existence of the solution of
the IVP

x ′ = f (t, x), x(t0) = x0 .

If T+ < +∞ (T− > −∞), then for any compact set K ⊂ D, there exists
a T < T+ (T− < T ) for which (t, x(t)) 6∈ K for t > T (t < T ).
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Proof of Theorem on Solution Blow-Up

If not, ∃ tj → T+ with (tj , x(tj))) ∈ K for all j. By taking a subsequence,
we may assume that x(tj) also converges to x+ ∈ Fn, and

(tj , x(tj))→ (T+, x+) ∈ K ⊂ D.

We can thus choose r > 0, τ > 0, N ∈ N such that

S =
∞⋃

j=N
{(t, x) : |t − tj | ≤ τ, |x − x(tj)| ≤ r} ⊂ D.

Since D is compact, there is an M for which |f (t, x)| ≤ M on S. By the
local existence theorem, the solution of x ′ = f (t, x) starting at the initial
point (tj , x(tj)) exists for a time interval of length

T ′ ≡ min
{
τ,

r
M

}
,

independent of i. Choose j for which tj > t+ − T ′. Then (t, x(t))
exists in D beyond time T+, which is a contradiction.
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Autonomous Systems
The ODE x ′(t) = f (t, x) is called an autonomous system if f (t, x) is
independent of t, i.e., the ODE is of the form

x ′ = f (x).

Remarks.
(1) Time translates of solutions of an autonomous system are again

solutions:
x(t) a solution =⇒ x(t − c) is a solution for any constant c.

(2) Any ODE x ′ = f (t, x) is equivalent to an autonomous system. Define
“xn+1 = t” and set

x̃ = (xn+1, x) ∈ Fn+1

x̃ ′ = f̃ (x̃) = f̃ (xn+1, x) =
[

1
f (xn+1, x)

]
∈ Fn+1

and consider the autonomous IVP

x̃ ′ = f̃ (x̃), x̃(t0) =
[

t0
x0

]
.

This IVP is equivalent to the IVP
x ′ = f (t, x), x(t0) = x0.
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Continuation for Autonomous Systems

Suppose f (x) is defined and locally Lipschitz continuous on an open set
U ⊂ Fn. Take D = R×U . Suppose T+ <∞ and C is a compact subset
of U . Take K = [t0,T+]× C in the ODE Blow-Up Theorem. Then

∃T < T+ such that x(t) 6∈ C for T < t < T+.

In this case we say that

x(t)→ ∂U ∪ {∞} as t → (T+)−,

meaning that

(∀C compact ⊂ U)(∃T < T+) such that for t ∈ (T ,T+), x(t) 6∈ C .

Stated briefly, eventually x(t) stays out of any given compact set.
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Continuation of Linear Systems

Consider the linear IVP

x ′(t) = A(t)x(t) + b(t), x(t0) = x0 on (a, b) with t0 ∈ (a, b),

where A(t) ∈ Fn×n and b(t) ∈ Fn are continuous on (a, b). Let
D = (a, b)× Fn. Then

f (t, x) = A(t)x + b(t) ∈ (C ,Liploc) on D.

Moreover, for c, d satisfying

a < c ≤ t0 ≤ d < b,

f is uniformly Lipschitz continuous with respect to x on [c, d]× Fn,

take L = max
c≤t≤d

|A(t)|.

The Picard global existence theorem implies there is a solution of the IVP
on [c, d], which is unique by the uniqueness theorem for locally Lipschitz
f . This implies that T− = a and T+ = b.
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Dependence of Solutions on Initial Values

Definition.
We say that x(t) is an ε-approximate solution of the DE

x ′ = f (t, x) on I ⊂ R

if

|x ′(t)− f (t, x(t))| ≤ ε (∀ t ∈ I ).
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Fundamental Estimate

Let f (t, x) be continuous in t and x, and uniformly Lipschitz continuous
in x with Lipschitz constant L. Consider the DE

(∗) x ′ = f (t, x) .

Let ε1, ε2 > 0, and suppose

xi(t) is an εi-approximate solution of (*) on I , i = 1, 2..

Given t0 ∈ I , suppose that

|x1(t0)− x2(t0)| ≤ δ .

Then, for t ∈ I ,

|x1(t)− x2(t)| ≤ δeL|t−t0| + ε1 + ε2
L (eL|t−t0| − 1) .
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Remarks on the Fundamental Estimate

|x1(t)− x2(t)| ≤ δeL|t−t0| + ε1 + ε2
L (eL|t−t0| − 1) .

Remarks.

(1) The first term on the RHS bounds the difference between the solutions
of the IVPs with initial values x1(t0) and x2(t0) at t0.

(2) The second term on the RHS accounts for the fact that x1(t) and
x2(t) are only approx. solutions: note that this term is 0 at t = t0.

(3) If ε1 = ε2 = δ = 0, we can again recover the uniqueness theorem for
Lipschitz f .
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Proof of the Fundamental Estimate

We may assume ε1, ε2, δ > 0 (otherwise, take limits as ε1 → 0+,
ε2 → 0+, δ → 0+). Also for simplicity, we may assume t0 = 0 and we are
considering t ≥ 0 (do time reversal for t ≤ 0). Let

u(t) = |x1(t)− x2(t)|2 = 〈x1 − x2, x2 − x2〉.

Then

u′ = 2Re〈x1 − x2, x ′1 − x ′2〉 ≤ 2|x1 − x2| · |x ′1 − x ′2|
= 2|x1 − x2| |x ′1 − f (t, x1)− (x ′2 − f (t, x2)) + f (t, x1)− f (t, x2)|
≤ 2|x1 − x2|(ε1 + ε2 + L|x1 − x2|)

= 2Lu + 2ε
√

u,

where ε = ε1 + ε2.
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Proof of the Fundamental Estimate

We want to use the Comparison Theorem to compare u to the solution v
of

v′ = 2Lv + 2ε
√

v, v(0) = δ2 > 0.

But f̃ (v) ≡ 2Lv + 2ε
√

v is not Lipschitz on v ∈ [0,∞); it is, however, for
a fixed δ > 0, uniformly Lipschitz on v ∈ [δ2,∞) since df̃

dv = 2L + ε√
v is

bounded for v ∈ [δ2,∞), and C 1 functions with bounded derivatives are
uniformly Lipschitz

(|f̃ (v1)− f̃ (v2)| =

∣∣∣∣∣
∫ v1

v2

df̃
dv dv

∣∣∣∣∣ ≤ (sup |f̃ (v)|)|v1 − v2|).
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Proof of the Fundamental Estimate

Although u(t) may leave [δ2,∞), in the proof of the Comparison
Theorem we only need f̃ to be Lipschitz to conclude that u > v cannot
occur.

Note that since v′ ≥ 0, v(t) stays in [δ2,∞) for t ≥ 0. So the
Comparison Theorem does apply, and we conclude that u ≤ v for t ≥ 0.

To solve for v, let v = w2. Then

2ww′ = (w2)′ = v′ = 2Lw2 + 2εw.

Since w > 0, we get w′ = Lw + ε, w(0) = δ, whose solution is

w = δeLt + ε

L (eLt − 1).

Since |x1 = x2| =
√

u ≤
√

v = w, the estimate follows.
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