Linear Analysis Lecture 22

Let $I=\left[t_{0}, t_{0}+\beta\right]$ and

$$
\Omega=\overline{B_{r}\left(x_{0}\right)}=\left\{x \in \mathbb{F}^{n}:\left|x-x_{0}\right| \leq r\right\},
$$

and suppose $f(t, x)$ is continuous on $I \times \Omega$.
Then there exists a solution $x_{*}(t)$ of the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \tag{IE}
\end{equation*}
$$

in $C\left(I_{\alpha}\right)$ where $I_{\alpha}=\left[t_{0}, t_{0}+\alpha\right]$,

$$
\alpha=\min \left(\beta, \frac{r}{M}\right),
$$

and

$$
M=\max _{(t, x) \in I \times \Omega}|f(t, x)|,
$$

and so $x_{*}(t)$ is a C^{1} solution of the initial value problem

$$
I V P: \quad x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

in I_{α}.

Uniqueness

Uniqueness theorems are typically proved by comparison theorems for solutions of scalar differential equations, or by inequalities.
The most fundamental of these inequalities is Gronwall's inequality. Recall that a first-order linear scalar IVP

$$
u^{\prime}=a(t) u+b(t), \quad u\left(t_{0}\right)=u_{0}
$$

Rewrite this as

$$
u^{\prime}-a(t) u=b(t), \quad u\left(t_{0}\right)=u_{0}
$$

and multiply by the integrating factor

$$
e^{-\int_{t_{0}}^{t} a(\ell) d \ell}
$$

to get

$$
u^{\prime} e^{-\int_{t_{0}}^{t} a(\ell) d \ell}-a(t) e^{-\int_{t_{0}}^{t} a(\ell) d \ell} u=e^{-\int_{t_{0}}^{t} a(\ell) d \ell} b(t), \quad u\left(t_{0}\right)=u_{0}
$$

That is,

$$
\frac{d}{d t}\left(e^{-\int_{t_{0}}^{t} a(\ell) d \ell} u(t)\right)=e^{-\int_{t_{0}}^{t} a(\ell) d \ell} b(t)
$$

Now integrate from t_{0} to t :

$$
\begin{aligned}
e^{-\int_{t_{0}}^{t} a(\ell) d \ell} u(t)-u_{0} & =\int_{t_{0}}^{t} \frac{d}{d s}\left(e^{-\int_{t_{0}}^{s} a(\ell) d \ell} u(s)\right) d s \\
& =\int_{t_{0}}^{t} e^{-\int_{t_{0}}^{s} a(\ell) d \ell} b(s) d s \\
& \Rightarrow u_{0} e^{\int_{t_{0}}^{t} a(\ell) d \ell}+\int_{t_{0}}^{t} e^{\int_{s}^{t} a(\ell) d \ell} b(s) d s
\end{aligned}
$$

Since $f(t) \leq g(t)$ on $[c, d]$ implies

$$
\int_{c}^{d} f(t) d t \leq \int_{c}^{d} g(t) d t
$$

the identical argument with " =" replaced by " \leq " gives Gronwall's inequality.

Theorem (Gronwall's Inequality - Differential Form)

Let $I=\left[t_{0}, t_{1}\right]$. Suppose $a: I \rightarrow \mathbb{R}$ and $b: I \rightarrow \mathbb{R}$ are continuous, and suppose $u: I \rightarrow \mathbb{R}$ is in $C^{1}(I)$ and satisfies

$$
u^{\prime}(t) \leq a(t) u(t)+b(t) \quad \text { for } \quad t \in I
$$

and $u\left(t_{0}\right)=u_{0}$. Then

$$
u(t) \leq u_{0} e^{\int_{t_{0}}^{t} a(\ell) d \ell}+\int_{t_{0}}^{t} e^{\int_{s}^{t} a(\ell) d \ell} b(s) d s
$$

Remarks

(1) Thus a solution of the differential inequality is bounded above by the solution of the differential equality.
(2) Clearly, Gronwall's Inequality still holds if u is only continuous and piecewise C^{1}, and $a(t)$ and $b(t)$ are only piecewise continuous.

Theorem: (Uniqueness for Locally Lipschitz f)

Suppose for $\alpha>0, r>0, f(t, x)$ is in (C, Lip) on $I_{\alpha} \times \overline{B_{r}\left(x_{0}\right)}$.

Further suppose both $x(t)$ and $y(t)$ map I_{α} into $\overline{B_{r}\left(x_{0}\right)}$ and are C^{1} solutions of the IVP

$$
x^{\prime}=f(t, x) ; \quad x\left(t_{0}\right)=x_{0} \quad \text { on } \quad I_{\alpha},
$$

where $I_{\alpha}=\left[t_{0}, t_{0}+\alpha\right]$.

Then $x(t)=y(t)$ for $t \in I_{\alpha}$.

Proof of Uniqueness for Locally Lipschitz f

Set $\quad u(t)=|x(t)-y(t)|^{2}=\langle x(t)-y(t), x(t)-y(t)\rangle$
(in the Euclidean inner product on \mathbb{F}^{n}). Then $u: I_{\alpha} \rightarrow[0, \infty)$ and $u \in C^{1}\left(I_{\alpha}\right)$ and for $t \in I_{\alpha}$,

$$
\begin{aligned}
u^{\prime} & =\left\langle x-y, x^{\prime}-y^{\prime}\right\rangle+\left\langle x^{\prime}-y^{\prime}, x-y\right\rangle \\
& =2 \mathcal{R} e\left\langle x-y, x^{\prime}-y^{\prime}\right\rangle \\
& \leq 2\left|\left\langle x-y, x^{\prime}-y^{\prime}\right\rangle\right| \\
& =2|\langle x-y,(f(t, x)-f(t, y))\rangle| \\
& \leq 2|x-y| \cdot|f(t, x)-f(t, y)| \\
& \leq 2 L|x-y|^{2}=2 L u
\end{aligned}
$$

Thus $u^{\prime} \leq 2 L u$ on I_{α} and

$$
u\left(t_{0}\right)=x\left(t_{0}\right)-y\left(t_{0}\right)=x_{0}-x_{0}=0
$$

By Gronwall's inequality,

$$
u(t) \leq u_{0} e^{2 L t}=0 \quad \text { on } \quad I_{\alpha}
$$

since $u(t) \geq 0$ on I_{α}, we have

$$
u(t) \equiv 0 \quad \text { on } \quad I_{\alpha}
$$

Corollary to Uniqueness for Locally Lipschitz f

Corollary.

(i) The same result holds if $I_{\alpha}=\left[t_{0}-\alpha, t_{0}\right]$.
(ii) The same result holds if $I_{\alpha}=\left[t_{0}-\alpha, t_{0}+\alpha\right]$.

Proof: For (i), let

$$
\begin{gathered}
\widetilde{x}(t)=x\left(2 t_{0}-t\right), \widetilde{y}(t)=y\left(2 t_{0}-t\right), \text { and } \\
\widetilde{f}(t, x)=-f\left(2 t_{0}-t, x\right) .
\end{gathered}
$$

Then \tilde{f} is in (C, Lip) on $\left[t_{0}, t_{0}+\alpha\right] \times \overline{B_{r}\left(x_{0}\right)}$, and \widetilde{x} and \widetilde{y} both satisfy

$$
x^{\prime}=\widetilde{f}(t, x) ; \quad x^{\prime}\left(t_{0}\right)=x_{0} \quad \text { on } \quad\left[t_{0}, t_{0}+\alpha\right] .
$$

So by the Theorem, $\widetilde{x}(t)=\widetilde{y}(t)$ for $t \in\left[t_{0}, t_{0}+\alpha\right]$, i.e., $x(t)=y(t)$ for $t \in\left[t_{0}-\alpha, t_{0}\right]$. Now (ii) follows immediately by applying the Theorem in $\left[t_{0}, t_{0}+\alpha\right]$ and applying (ii) in $\left[t_{0}-\alpha, t_{0}\right]$.
Remark. The idea used in the proof of (i) is often called "time-reversal." The important part is that $\widetilde{x}(t)=x(c-t)$, for some constant c, so that $\widetilde{x}^{\prime}(t)=-x^{\prime}(c-t)$. The choice of $c=2 t_{0}$ is convenient but not essential.

Local Lipschitz Contnuity

Before stating our main uniqueness result, we introduce a local form of Lipschitz continuity of the function $f(t, x)$ in the x argument.

Definition. Let \mathcal{D} be an open set in $\mathbb{R} \times \mathbb{F}^{n}$. We say that $f(t, x)$ mapping \mathcal{D} into \mathbb{F}^{n} is locally Lipschitz continuous with respect to x if

$$
\forall\left(t_{1}, x_{1}\right) \in \mathcal{D}, \quad \exists \quad \alpha>0, \quad r>0 \quad \text { and } \quad L>0
$$

for which $\left[t_{1}-\alpha, t_{1}+\alpha\right] \times \overline{B_{r}\left(x_{1}\right)} \subset \mathcal{D}$ and

$$
\begin{gathered}
\left(\forall t \in\left[t_{1}-\alpha, t_{1}+\alpha\right]\right)\left(\forall x, y \in \overline{B_{r}\left(x_{1}\right)}\right) \\
|f(t, x)-f(t, y)| \leq L|x-y|,
\end{gathered}
$$

i.e., f is uniformly Lipschitz continuous with respect to x in

$$
\left[t_{1}-\alpha, t_{1}+\alpha\right] \times \overline{B_{r}\left(x_{1}\right)} .
$$

We say $f \in\left(C\right.$, Lip $\left._{\text {loc }}\right)$ (not a standard notation) on \mathcal{D} if f is continuous on \mathcal{D} and locally Lipschitz continuous wrt x on \mathcal{D}.

Local Lipschitz Contnuity: Example

Let \mathcal{D} be an open set in $\mathbb{R} \times \mathbb{F}^{n}$. Suppose $f(t, x)$ maps \mathcal{D} into \mathbb{F}^{n}, f is continuous on \mathcal{D}, and
for $\quad 1 \leq i, j \leq n, \quad \frac{\partial f_{i}}{\partial x_{j}}$ exists and is continuous in \mathcal{D},
i.e., f is continuous on \mathcal{D} and C^{1} with respect to x on \mathcal{D}. Then $f \in\left(C, \operatorname{Lip}_{\text {loc }}\right)$ on \mathcal{D}.

Let \mathcal{D} be an open set in $\mathbb{R} \times \mathbb{F}^{n}$, and suppose
(a) $f \in\left(C, \operatorname{Lip}_{\text {loc }}\right)$ on \mathcal{D},
(b) $\left(t_{0}, x_{0}\right) \in \mathcal{D}$,
(c) $I \subset \mathbb{R}$ is an interval containing t_{0} (which may be open or closed at either end), and
(d) $x(t)$ and $y(t)$ are both solutions of the IVP

$$
x^{\prime}=f(t, x) ; \quad x\left(t_{0}\right)=x_{0} \quad \text { in } \quad C^{1}(I)
$$

which satisfy

$$
(t, x(t)) \in \mathcal{D} \quad \text { and } \quad(t, y(t)) \in \mathcal{D} \quad \forall t \in I
$$

Then $x(t) \equiv y(t)$ on I.

Main Uniqueness Theorem: Proof

We first show $x(t) \equiv y(t)$ on $\left\{t \in I: t \geq t_{0}\right\}$. If not, let

$$
t_{1}=\inf \left\{t \in I: t \geq t_{0} \text { and } x(t) \neq y(t)\right\} .
$$

Then $x(t)=y(t)$ on $\left[t_{0}, t_{1}\right)$ so by continuity $x\left(t_{1}\right)=y\left(t_{1}\right)$ (if $t_{1}=t_{0}$, this is obvious). By continuity and the openness of $\mathcal{D}\left(\underline{\text { as }}\left(t_{1}, x\left(t_{1}\right)\right) \in \mathcal{D}\right)$, $\exists \alpha>0 \quad$ and $\quad r>0$ such that $\left[t_{1}-\alpha, t_{1}+\alpha\right] \times \overline{B_{r}\left(x_{1}\right)} \subset \mathcal{D}, f$ is uniformly Lipschitz continuous with respect to x in

$$
\left[t_{1}-\alpha, t_{1}+\alpha\right] \times \overline{B_{r}\left(x_{1}\right)}
$$

and

$$
x(t) \in \overline{B_{r}\left(x_{1}\right)} \quad \text { and } \quad y(t) \in \overline{B_{r}\left(x_{1}\right)} \quad \forall t \in I \cap\left[t_{1}-\alpha, t_{1}+\alpha\right] .
$$

By the previous theorem, $x(t) \equiv y(t)$ in $I \cap\left[t_{1}-\alpha, t_{1}+\alpha\right]$, contradicting the definition of t_{1}. Hence

$$
x(t) \equiv y(t) \quad \text { on } \quad\left\{t \in I: t \geq t_{0}\right\} .
$$

Similarly,

$$
x(t) \equiv y(t) \quad \text { on } \quad\left\{t \in I: t \leq t_{0}\right\} .
$$

Hence $x(t) \equiv y(t)$ on I.
Remark. t_{0} is allowed to be the left or right endpoint of I.

Theorem. Let $n=1, \mathbb{F}=\mathbb{R}$, and suppose $f(t, u)$ is continuous in t and Lipschitz continuous in u.
Assume $u(t), v(t)$ are C^{1} for $t \geq t_{0}$ (on an interval $\left[t_{0}, b\right)$ or $\left[t_{0}, b\right]$) and satisfy

$$
u^{\prime}(t) \leq f(t, u(t)), \quad v^{\prime}(t)=f(t, v(t))
$$

and $u\left(t_{0}\right) \leq v\left(t_{0}\right)$. Then

$$
u(t) \leq v(t) \quad \text { for } \quad t \geq t_{0} .
$$

Comparison Theorem for Real Scalar Equations: Proof

If to the contrary $u(T)>v(T)$ for some $T>t_{0}$, then set

$$
t_{1}=\sup \left\{t: t_{0} \leq t<T \quad \text { and } \quad u(t) \leq v(t)\right\}
$$

Then

$$
t_{0} \leq t_{1}<T, \quad u\left(t_{1}\right)=v\left(t_{1}\right), \quad \text { and } \quad u(t)>v(t) \quad \text { for } \quad t_{1}<t \leq T
$$

(by continuity of $u-v$). For

$$
t_{1} \leq t \leq T, \quad|u(t)-v(t)|=u(t)-v(t),
$$

so we have

$$
(u-v)^{\prime} \leq f(t, u)-f(t, v) \leq L|u-v|=L(u-v) .
$$

By Gronwall's inequality applied to $u-v$ on $\left[t_{1}, T\right]$, with

$$
(u-v)\left(t_{1}\right)=0, a(t) \equiv L, \quad b(t) \equiv 0,
$$

$(u-v)(t) \leq 0$ on $\left[t_{1}, T\right]$, a contradiction.

Remarks.

(1) As with the differential form of Gronwall's inequality a solution of the differential inequality $u^{\prime} \leq f(t, u)$ is bounded above by the solution of the equality (i.e., the $\mathrm{DE} v^{\prime}=f(t, v)$).
(2) It can be shown under the same hypotheses that if $u\left(t_{0}\right)<v\left(t_{0}\right)$, then $u(t)<v(t)$ for $t \geq t_{0}$.
(3) Caution: It may happen that $u^{\prime}(t)>v^{\prime}(t)$ for some $t \geq t_{0}$: $u(t) \leq v(t) \nRightarrow u^{\prime}(t) \leq v^{\prime}(t)$.

Corollary. Let $n=1, \mathbb{F}=\mathbb{R}$. Suppose $f(t, u) \leq g(t, u)$ are continuous in t and u, and one of them is Lipschitz continuous in u. Suppose also that $u(t), v(t)$ are C^{1} for $t \geq t_{0}$ (on $\left[t_{0}, b\right)$ or $\left[t_{0}, b\right]$) and satisfy

$$
u^{\prime}=f(t, u), \quad v^{\prime}=g(t, v), \quad \text { and } \quad u\left(t_{0}\right) \leq v\left(t_{0}\right) .
$$

Then

$$
u(t) \leq v(t) \quad \text { for } \quad t \geq t_{0} .
$$

Proof: Suppose first that g satisfies the Lipschitz condition. Then

$$
u^{\prime}=f(t, u) \leq g(t, u) .
$$

Now apply the theorem. If f satisfies the Lipschitz condition, apply the first part of this proof to

$$
\widetilde{u}(t) \equiv-v(t), \widetilde{v}(t) \equiv-u(t), \widetilde{f}(t, u)=-g(t,-u), \widetilde{g}(t, u)=-f(t,-u) .
$$

Remark. Again, if $u\left(t_{0}\right)<v\left(t_{0}\right)$, then $u(t)<v(t)$ for $t \geq t_{0}$.

Continuation of Solutions in Time

We consider two kinds of results
(1) local continuation (no Lipschitz condition on f)
(2) global continuation (for locally Lipschitz f)

Local Continuation (Continuation at a Point)

Assume $x(t)$ is a solution of the $\mathrm{DE} x^{\prime}=f(t, x)$ on an interval I and f is continuous on a subset $\mathcal{S} \subset \mathbb{R} \times \mathbb{F}^{n}$ containing $\{(t, x(t)): t \in I\}$.
Case 1: I is closed at the right end, i.e., $I=(-\infty, b],[a, b]$, or $(a, b]$. Assume further that $(b, x(b))$ is in the interior of \mathcal{S}. Then the solution can be extended (by Cauchy-Peano) to an interval with right end $b+\beta$ for some $\beta>0$. This is done by solving the IVP

$$
x^{\prime}=f(t, x) \text { with initial value } x(b) \text { at } t=b
$$

on an interval $[b, b+\beta]$. To show that the continuation is C^{1} at $t=b$, note that the extended $x(t)$ satisfies the integral equation

$$
x(t)=x(b)+\int_{b}^{t} f(s, x(s)) d s \quad \text { on } I \bigcup[b, b+\beta] .
$$

Note we do not assume Lipschitz continuity.

Case 2: I is open at the right end, i.e., $I=(-\infty, b),[a, b)$, or (a, b) with $b<\infty$. Assume further that $f(t, x(t))$ is bounded on $\left[t_{0}, b\right)$ for some $t_{0}<b$ with $\left[t_{0}, b\right) \subset I$, say $|f(t, x(t))| \leq M$ on $\left[t_{0}, b\right)$. In this case the integral equation

$$
(*) \quad x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

holds for $t \in I$. In particular, for $t_{0} \leq \tau \leq t<b$,

$$
|x(t)-x(\tau)|=\left|\int_{\tau}^{t} f(s, x(s)) d s\right| \leq \int_{\tau}^{t}|f(s, x(s))| d s \leq M|t-\tau| .
$$

Thus, for any sequence $t_{n} \uparrow b,\left\{x\left(t_{n}\right)\right\}$ is Cauchy. This implies $\lim _{t \rightarrow b^{-}} x(t)$ exists; call it $x\left(b^{-}\right)$. So $x(t)$ has a continuous extension from I to $I \cup\{b\}$.

- If in addition $\left(b, x\left(b^{-}\right)\right)$is in \mathcal{S}, then $(*)$ holds on $I \cup\{b\}$ as well, so $x(t)$ is a C^{1} solution of $x^{\prime}=f(t, x)$ on $I \cup\{b\}$.
- If $\left(b, x\left(b^{-}\right)\right)$is in the interior of \mathcal{S}, we are back in Case 1 and can extend the solution $x(t)$ beyond $t=b$.
- The assumption that $f(t, x(t))$ is bounded on $\left[t_{0}, b\right)$ can be restated with a slightly different emphasis: for some $t_{0} \in I$, $\left\{(t, x(t)): t_{0} \leq t<b\right\}$ stays within a subset of \mathcal{S} on which f is bounded. For example, if $\left\{(t, x(t)): t_{0} \leq t<b\right\}$ stays within a compact subset of \mathcal{S}, this condition is satisfied.
- The technique of Case 1 can be applied to I is closed at the left end.
- The technique of Case 2 can be applied to I is open at the left end.

Global Continuation

Assume $f(t, x)$ is continuous on an open set $\mathcal{D} \subset \mathbb{R} \times \mathbb{F}^{n}$ and is locally Lipschitz continuous with respect to x on \mathcal{D}. Write $f \in\left(C\right.$, Lip $\left._{\text {loc }}\right)$ on \mathcal{D}.
Let $\left(t_{0}, x_{0}\right) \in \mathcal{D}$ and consider the IVP

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0} .
$$

It has been shown that a unique solutions exist on both $\left[t_{0}, t_{0}+\alpha_{+}\right)$and $\left(-\alpha_{-}+t_{0}, t_{0}\right]$, and that this gives a unique solution on $\left(-\alpha_{-}+t_{0}, t_{0}+\alpha_{+}\right)$for some $\alpha_{+}, \alpha_{-}>0$. Set

$$
\begin{aligned}
& T_{+}=\sup \left\{t>t_{0}: \exists \text { a solution of IVP on }\left[t_{0}, t\right)\right\}, \quad \text { and } \\
& T_{-}=\inf \left\{t<t_{0}: \exists \text { a solution of IVP on }\left(t, t_{0}\right]\right\} .
\end{aligned}
$$

(T_{-}, T_{+}) is the maximal interval of existence of the solution of the IVP.
It is possible that $T_{+}=\infty$ and/or $T_{-}=-\infty$.
The maximal interval (T_{-}, T_{+}) must be open: if the solution could be extended to T_{+}(or T_{-}), this would contradict the local continuation results since \mathcal{D} is open. Ideally, $T_{+}=+\infty$ and $T_{-}=-\infty$.

Global Continuation

Another posibility is if $f(t, x)$ is not defined for $t \geq T_{+}$. For example, if $a(t)=\frac{1}{1-t}$, and $x^{\prime}(t)=a(t)$. Here we don't expect the solution to exist beyond $t=1$.

But less desirable behavior can occur.

For example, for the IVP:

$$
x^{\prime}=x^{2}, x(0)=x_{0}>0, t_{0}=0,
$$

and $\mathcal{D}=\mathbb{R} \times \mathbb{R}$. The solution $x(t)=\left(x_{0}^{-1}-t\right)^{-1}$ blows up at $T_{+}=1 / x_{0}$ (note that $T_{-}=-\infty$). Observe that $x(t) \rightarrow \infty$ as $t \rightarrow\left(T_{+}\right)^{-}$. So the solution does not just "stop" in the interior of \mathcal{D}.

This kind of blow-up behavior must occur if a solution cannot be continued to the whole real line.

Suppose $f \in\left(C\right.$, Lip $\left._{\text {loc }}\right)$ on an open set $\mathcal{D} \subset \mathbb{R} \times \mathbb{F}^{n}$. Let $\left(t_{0}, x_{0}\right) \in \mathcal{D}$, and let $\left(T_{-}, T_{+}\right)$be the maximal interval of existence of the solution of the IVP

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0} .
$$

If $T_{+}<+\infty\left(T_{-}>-\infty\right)$, then for any compact set $K \subset \mathcal{D}$, there exists
a $T<T_{+}\left(T_{-}<T\right)$ for which $(t, x(t)) \notin K$ for $t>T(t<T)$.

Proof of Theorem on Solution Blow-Up

If not, $\exists t_{j} \rightarrow T_{+}$with $\left.\left(t_{j}, x\left(t_{j}\right)\right)\right) \in K$ for all j. By taking a subsequence, we may assume that $x\left(t_{j}\right)$ also converges to $x_{+} \in \mathbb{F}^{n}$, and

$$
\left(t_{j}, x\left(t_{j}\right)\right) \rightarrow\left(T_{+}, x_{+}\right) \in K \subset \mathcal{D} .
$$

We can thus choose $r>0, \tau>0, N \in \mathbb{N}$ such that

$$
\mathcal{S}=\bigcup_{j=N}^{\infty}\left\{(t, x):\left|t-t_{j}\right| \leq \tau,\left|x-x\left(t_{j}\right)\right| \leq r\right\} \subset \mathcal{D}
$$

Since \mathcal{D} is compact, there is an M for which $|f(t, x)| \leq M$ on \mathcal{S}. By the local existence theorem, the solution of $x^{\prime}=f(t, x)$ starting at the initial point $\left(t_{j}, x\left(t_{j}\right)\right)$ exists for a time interval of length

$$
T^{\prime} \equiv \min \left\{\tau, \frac{r}{M}\right\},
$$

independent of i. Choose j for which $t_{j}>t_{+}-T^{\prime}$. Then $(t, x(t))$ exists in \mathcal{D} beyond time T_{+}, which is a contradiction.

Autonomous Systems

The ODE $x^{\prime}(t)=f(t, x)$ is called an autonomous system if $f(t, x)$ is independent of t, i.e., the ODE is of the form

$$
x^{\prime}=f(x)
$$

Remarks.

(1) Time translates of solutions of an autonomous system are again solutions:
$x(t)$ a solution $\Longrightarrow x(t-c)$ is a solution for any constant c.
(2) Any ODE $x^{\prime}=f(t, x)$ is equivalent to an autonomous system. Define " $x_{n+1}=t$ " and set

$$
\begin{gathered}
\widetilde{x}=\left(x_{n+1}, x\right) \in \mathbb{F}^{n+1} \\
\widetilde{x}^{\prime}=\widetilde{f}(\widetilde{x})=\widetilde{f}\left(x_{n+1}, x\right)=\left[\begin{array}{c}
1 \\
f\left(x_{n+1}, x\right)
\end{array}\right] \in \mathbb{F}^{n+1}
\end{gathered}
$$

and consider the autonomous IVP

$$
\widetilde{x}^{\prime}=\widetilde{f}(\widetilde{x}), \quad \widetilde{x}\left(t_{0}\right)=\left[\begin{array}{c}
t_{0} \\
x_{0}
\end{array}\right] .
$$

This IVP is equivalent to the IVP

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

Suppose $f(x)$ is defined and locally Lipschitz continuous on an open set $\mathcal{U} \subset \mathbb{F}^{n}$. Take $\mathcal{D}=\mathbb{R} \times \mathcal{U}$. Suppose $T_{+}<\infty$ and C is a compact subset of \mathcal{U}. Take $K=\left[t_{0}, T_{+}\right] \times C$ in the ODE Blow-Up Theorem. Then

$$
\exists T<T_{+} \text {such that } \quad x(t) \notin C \quad \text { for } \quad T<t<T_{+} .
$$

In this case we say that

$$
x(t) \rightarrow \partial \mathcal{U} \cup\{\infty\} \quad \text { as } \quad t \rightarrow\left(T_{+}\right)^{-},
$$

meaning that
$\left(\forall C^{\text {compact }} \subset \mathcal{U}\right)\left(\exists T<T_{+}\right) \quad$ such that for $\quad t \in\left(T, T_{+}\right), x(t) \notin C$.
Stated briefly, eventually $x(t)$ stays out of any given compact set.

Continuation of Linear Systems

Consider the linear IVP

$$
x^{\prime}(t)=A(t) x(t)+b(t), \quad x\left(t_{0}\right)=x_{0} \quad \text { on } \quad(a, b) \quad \text { with } \quad t_{0} \in(a, b),
$$

where $A(t) \in \mathbb{F}^{n \times n}$ and $b(t) \in \mathbb{F}^{n}$ are continuous on (a, b). Let $\mathcal{D}=(a, b) \times \mathbb{F}^{n}$. Then

$$
f(t, x)=A(t) x+b(t) \in\left(C, \operatorname{Lip}_{\text {loc }}\right) \quad \text { on } \mathcal{D} .
$$

Moreover, for c, d satisfying

$$
a<c \leq t_{0} \leq d<b
$$

f is uniformly Lipschitz continuous with respect to x on $[c, d] \times \mathbb{F}^{n}$,

$$
\text { take } \quad L=\max _{c \leq t \leq d}|A(t)|
$$

The Picard global existence theorem implies there is a solution of the IVP on $[c, d]$, which is unique by the uniqueness theorem for locally Lipschitz f. This implies that $T_{-}=a$ and $T_{+}=b$.

Definition.

We say that $x(t)$ is an ϵ-approximate solution of the DE

$$
x^{\prime}=f(t, x) \quad \text { on } \quad I \subset \mathbb{R}
$$

if

$$
\left|x^{\prime}(t)-f(t, x(t))\right| \leq \epsilon \quad(\forall t \in I) .
$$

Let $f(t, x)$ be continuous in t and x, and uniformly Lipschitz continuous in x with Lipschitz constant L. Consider the DE

$$
(*) \quad x^{\prime}=f(t, x)
$$

Let $\epsilon_{1}, \epsilon_{2}>0$, and suppose

$$
x_{i}(t) \text { is an } \epsilon_{i} \text {-approximate solution of }(*) \text { on } I, i=1,2 . .
$$

Given $t_{0} \in I$, suppose that

$$
\left|x_{1}\left(t_{0}\right)-x_{2}\left(t_{0}\right)\right| \leq \delta .
$$

Then, for $t \in I$,

$$
\left|x_{1}(t)-x_{2}(t)\right| \leq \delta e^{L\left|t-t_{0}\right|}+\frac{\epsilon_{1}+\epsilon_{2}}{L}\left(e^{L\left|t-t_{0}\right|}-1\right)
$$

$$
\left|x_{1}(t)-x_{2}(t)\right| \leq \delta e^{L\left|t-t_{0}\right|}+\frac{\epsilon_{1}+\epsilon_{2}}{L}\left(e^{L\left|t-t_{0}\right|}-1\right)
$$

Remarks.

(1) The first term on the RHS bounds the difference between the solutions of the IVPs with initial values $x_{1}\left(t_{0}\right)$ and $x_{2}\left(t_{0}\right)$ at t_{0}.
(2) The second term on the RHS accounts for the fact that $x_{1}(t)$ and $x_{2}(t)$ are only approx. solutions: note that this term is 0 at $t=t_{0}$.
(3) If $\epsilon_{1}=\epsilon_{2}=\delta=0$, we can again recover the uniqueness theorem for Lipschitz f.

We may assume $\epsilon_{1}, \epsilon_{2}, \delta>0$ (otherwise, take limits as $\epsilon_{1} \rightarrow 0^{+}$, $\epsilon_{2} \rightarrow 0^{+}, \delta \rightarrow 0^{+}$). Also for simplicity, we may assume $t_{0}=0$ and we are considering $t \geq 0$ (do time reversal for $t \leq 0$). Let

$$
u(t)=\left|x_{1}(t)-x_{2}(t)\right|^{2}=\left\langle x_{1}-x_{2}, x_{2}-x_{2}\right\rangle
$$

Then

$$
\begin{aligned}
u^{\prime} & =2 \mathcal{R} e\left\langle x_{1}-x_{2}, x_{1}^{\prime}-x_{2}^{\prime}\right\rangle \leq 2\left|x_{1}-x_{2}\right| \cdot\left|x_{1}^{\prime}-x_{2}^{\prime}\right| \\
& =2\left|x_{1}-x_{2}\right|\left|x_{1}^{\prime}-f\left(t, x_{1}\right)-\left(x_{2}^{\prime}-f\left(t, x_{2}\right)\right)+f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right| \\
& \leq 2\left|x_{1}-x_{2}\right|\left(\epsilon_{1}+\epsilon_{2}+L\left|x_{1}-x_{2}\right|\right) \\
& =2 L u+2 \epsilon \sqrt{u}
\end{aligned}
$$

where $\epsilon=\epsilon_{1}+\epsilon_{2}$.

We want to use the Comparison Theorem to compare u to the solution v of

$$
v^{\prime}=2 L v+2 \epsilon \sqrt{v}, v(0)=\delta^{2}>0 .
$$

But $\widetilde{f}(v) \equiv 2 L v+2 \epsilon \sqrt{v}$ is not Lipschitz on $v \in[0, \infty)$; it is, however, for a fixed $\delta>0$, uniformly Lipschitz on $v \in\left[\delta^{2}, \infty\right)$ since $\frac{d \tilde{f}}{d v}=2 L+\frac{\epsilon}{\sqrt{v}}$ is bounded for $v \in\left[\delta^{2}, \infty\right)$, and C^{1} functions with bounded derivatives are uniformly Lipschitz

$$
\left(\left|\widetilde{f}\left(v_{1}\right)-\widetilde{f}\left(v_{2}\right)\right|=\left|\int_{v_{2}}^{v_{1}} \frac{d \widetilde{f}}{d v} d v\right| \leq(\sup |\widetilde{f}(v)|)\left|v_{1}-v_{2}\right|\right)
$$

Although $u(t)$ may leave $\left[\delta^{2}, \infty\right)$, in the proof of the Comparison Theorem we only need \widetilde{f} to be Lipschitz to conclude that $u>v$ cannot occur.

Note that since $v^{\prime} \geq 0, v(t)$ stays in $\left[\delta^{2}, \infty\right)$ for $t \geq 0$. So the Comparison Theorem does apply, and we conclude that $u \leq v$ for $t \geq 0$.

To solve for v, let $v=w^{2}$. Then

$$
2 w w^{\prime}=\left(w^{2}\right)^{\prime}=v^{\prime}=2 L w^{2}+2 \epsilon w .
$$

Since $w>0$, we get $w^{\prime}=L w+\epsilon, w(0)=\delta$, whose solution is

$$
w=\delta e^{L t}+\frac{\epsilon}{L}\left(e^{L t}-1\right)
$$

Since $\left|x_{1}=x_{2}\right|=\sqrt{u} \leq \sqrt{v}=w$, the estimate follows.

