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The Picard Iteration
We now study the fixed point iteration based on the function

(g(x))(t) = x0 +
∫ t

t0

f (s, x(s))ds .

used in the previous existence and uniqueness theorem for the integral
equation (IE). If we choose the initial iterate to be x0(t) ≡ x0, we obtain
the classical Picard Iteration:{

x0(t) ≡ x0

xk+1(t) = x0 +
∫ t

t0
f (x, xk(s))ds for k ≥ 0

The argument in the proof of the C.M.F.-P.T. gives only uniform
estimates of the iteration error (xk+1 − xk), e.g.,

‖xk+1 − xk‖∞ ≤ Lα‖xk − xk−1‖∞,

leading to the condition α < 1
L . For the Picard iteration, better results

using pointwise estimates of xk+1 − xk are possible. The condition
α < 1

L turns out to be unnecessary. For the moment, we will set aside
the uniqueness question and focus on existence.
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Global Existence

Theorem: (Picard Global Existence for (IE) for Lipschitz f )
Let I = [t0, t0 + β] for 0 < β. Suppose f (t, x) is in (C ,Lip) on I × Fn.
Then there is a solution x∗(t) to the integral equation (IE) in C (I ).

Theorem: (Picard Local Existence for (IE) for Lipschitz f )
Let I = [t0, t0 + β] for 0 < β and

Ω = Br(x0) = {x ∈ Fn : |x − x0| ≤ r},

and suppose f (t, x) is in (C ,Lip) on I × Ω. Then there exists a solution
x∗(t) to the integral equation (IE) in C (Iα) where

Iα = [t0, t + α], α = min
(
β,

r
M

)
,

and where M = max(t,x)∈I×Ω |f (t, x)|.

We prove these two Theorems together.
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Existence Proof
Let X = C (I ,Fn) and X = Xα,r ≡ {x ∈ C (Iα) : ‖x − x0‖∞ ≤ r},
for the global and local results, resp.ly. Then

(g(x))(t) = x0 +
∫ t

t0

f (s, x(s))ds

maps X into X in both cases, and X is complete. Let
x0(t) ≡ x0 and xk+1 = g(xk) for k ≥ 0.

Let
M0 = max

t∈I
|f (t, x0)| (global thm),

M0 = max
t∈Iα
|f (t, x0)| (local thm).

Then for t ∈ I (global) or t ∈ Iα (local),

|x1(t)− x0| ≤
∫ t

t0

|f (s, x0)|ds ≤ M0(t − t0)

|x2(t)− x1(t)| ≤
∫ t

t0

|f (s, x1(s))− f (s, x0(s))|ds

≤ L
∫ t

t0

|x1(s)− x0(s)|ds

≤ M0L
∫ t

t0

(s − t0)ds = M0L(t − t0)2

2! .
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Existence Proof

By induction, suppose
|xk(t)− xk−1(t)| ≤ M0Lk−1 (t − t0)k

k! .

Then
|xk+1(t)− xk(t)| ≤

∫ t

t0

|f (s, xk(s))− f (s, xk−1(s))|ds

≤ L
∫ t

t0

|xk(s)− xk−1(s)|ds

≤ M0Lk
∫ t

t0

(s − t0)k

k! ds = M0Lk (t − t0)k+1

(k + 1)! .

So ∞∑
k=0
|xk+1(t)− xk(t)| ≤ M0

L

∞∑
k=0

(L(t − t0)k+1

(k + 1)!

= M0

L (eL(t−t0) − 1) ≤ M0

L (eLγ − 1),

where γ = β (global) or γ = α (local).
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Existence Proof
Hence the series x0 +

∑∞
k=0(xk+1(t)− xk(t)), which has xN+1 as its N th

partial sum, converges absolutely and uniformly on I (global) or Iα
(local) by the Weierstrass M -test. Let

x∗(t) ∈ C (I ) (global) or x∗(t) ∈ C (Iα) (local)
be the limit function. Since

|f (t, xk(t))− f (t, x∗(t))| ≤ L|xk(t)− x∗(t)|,
f (t, xk(t)) −→ f (t, x∗(t))

on I (global) or Iα (local). Therefore,

g(x∗)(t) = x0 +
∫ t

t0

f (s, x∗(s))ds

= lim
k→∞

(x0 +
∫ t

t0

f (s, xk(x))ds)

= lim
k→∞

xk+1(t) = x∗(t),

for all t ∈ I (global) or Iα (local). Hence x∗(t) is a fixed point of g in X ,
and thus also a solution of the integral equation (IE) in C (I ) (global) or
C (Iα) (local.) �
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Existence Corollary

Corollary. The solution x∗(t) of the integral equation (IE) satisfies

|x∗(t)− x0| ≤
M0

L (eL(t−t0) − 1)

t ∈ I (global) or t ∈ Iα (local),

where
M0 = max

t∈I
|f (t, x0)| (global),

M0 = max
t=Iα
|f (t, x0)| (local).

Remark. In each of the statements of the last three Theorems, we could
replace

“solution of the integral equation (IE)”
with

“C 1 solution of the IVP: DE : x ′ = f (t, x); IC : x(t0) = x0”
because of the equivalence of these two problems.
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Example 1

(1) Consider a linear system

x ′ = A(t)x + b(t),

where
A(t) ∈ Cn×n and b(t) ∈ Cn

are in C (I ) with I = [t0, t0 + β].

Then f is in (C ,Lip) on I × Fn

|f (t, x)− f (t, y)| ≤ |A(t)x −A(t)y|

≤
(

max
t∈I
‖A(t)‖

)
|x − y|.

Hence there is a solution of the IVP

x ′ = A(t)x + b(t), x(t0) = x0 in C 1(I ).
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Example 2

(2) (n = 1) Consider the IVP

x ′ = x2, x(0) = x0 > 0.

Then f (t, x) = x2 is not in (C ,Lip) on I × R.
It is, however, in (C ,Lip) on I × Ω where

Ω = Br(x0) = [x0 − r , x0 + r ]

for each fixed r . For a given r > 0, we have

M = (x0 + r)2, and α = r
M = r

(x0 + r)2

in the local theorem. This value of α is maximized for r = x0, where
α = 1

4x0
. So the local theorem guarantees a solution in

[
0, 1

4x0

]
.

The actual solution x∗(t) = (x−1
0 − t)−1 exists in

[
0, 1

x0

)
.
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Local Existence for Continuous f
It is also possible to prove a local existence theorem assuming only that f
is continuous, without assuming the Lipschitz condition. We need the
following form of Ascoli’s Theorem.
Definition: A sequence of functions {fk} between metric spaces X and
Y is said to be equicontinuous if

(∀ ε > 0)(∃ δ > 0) such that (∀ k ≥ 1)(∀ x1, x2 ∈ X)

dx(x1, x2) < δ =⇒ dY (fk(x1), fk(x2)) < ε .

Theorem: (Ascoli)
Let X and Y be metric spaces with X compact. Let {fk} be an
equicontinuous sequence of functions fk : X → Y , and suppose for each
x ∈ X ,

{fk(x) : k ≥ 1}
is a compact subset of Y . Then there is a subsequence {fkj}∞j=1 and a
continuous f : X → Y such that

fkj → f uniformly on X .
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Remarks on Ascoli’s Theorem

(1) If {fk} is an equicontinuous sequence of functions between metric
spaces, then each of the functions fk must be continuous.

(2) If Y = Fn, the condition

(∀ x ∈ X) {fk(x) : k ≥ 1}

is compact is equivalent to the sequence {fk} being pointwise bounded,
i.e.,

(∀ x ∈ X)(∃Mx) such that (∀ k ≥ 1)
|fk(x)| ≤ Mx .
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Remarks on Ascoli’s Theorem

(3) Suppose fk : [a, b]→ R is a sequence of C 1 functions, and suppose

∃M such that (∀ k ≥ 1)
‖fk‖∞ + ‖f ′k‖∞ ≤ M ,

where
‖f ‖∞ = max

a≤x≤b
|f (x)| .

Then for a ≤ x1 < x2 ≤ b,

|fk(x2)− fk(x1)| ≤
∫ x2

x1

|f ′k(x)|dx ≤ M |x2 − x1| ,

so {fk} is equicontinuous (take δ = ε
M ), with ‖fk‖∞ ≤ M implying that

{fk} is pointwise bounded.
Thus, by Ascoli’s Theorem, some subsequence of {fk} converges
uniformly to a continuous function f : [a, b]→ R.
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The Cauchy-Peano Existence Theorem
Let I = [t0, t0 + β] and

Ω = Br(x0) = {x ∈ Fn : |x − x0| ≤ r},

and suppose f (t, x) is continuous on I × Ω.
Then there exists a solution x∗(t) of the integral equation

(IE) x(t) = x0 +
∫ t

t0

f (s, x(s))ds

in C (Iα) where Iα = [t0, t0 + α],

α = min
(
β,

r
M

)
,

and
M = max

(t,x)∈I×Ω
|f (t, x)|,

and so x∗(t) is a C 1 solution of the initial value problem

IVP : x ′ = f (t, x), x(t0) = x0

in Iα.
13 / 19



Proof of the Cauchy-Peano Existence Theorem

The idea is to construct approximate solutions based on piecewise linear
interpolants of grid functions generated by Euler’s method, and then use
Ascoli’s Theorem to take the uniform limit of some subsequence. For
each integer k ≥ 1, define

xk(t) ∈ C (Iα)

as follows:
(a) partition [t0, t0 + α] into k equal subintervals, for

0 ≤ ` ≤ k, let t` = t0 + `
α

k ,

(b) set xk(t0) = x0, and
(c) for ` = 1, 2, . . . , k define xk(t) in (t`−1, t`] inductively by

xk(t) = xk(t`−1) + f (t`−1, xk(t`−1))(t − t`−1).
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Proof of the Cauchy-Peano Existence Theorem
Since f is only defined on I × Ω, we must check that

|xk(t`−1)− x0| ≤ r for 2 ≤ ` ≤ k

for this to be well-defined. We show this by induction.
It is obvious for ` = 1; inductively, we have

|xk(t`−1)− x0| ≤
`−1∑
i=1
|xk(ti)− xk(ti−1)|

=
`−1∑
i=1
|f (ti−1, xk(ti−1))| · |ti − ti−1|

≤ M
`−1∑
i=1

(ti − ti−1)

= M (t`−1 − t0)

≤ Mα ≤ r

by the choice of α. So xk(t) ∈ C (Iα) is well defined.
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Proof of the Cauchy-Peano Existence Theorem

A similar estimate shows that for t, τ ∈ [t0, t0 + α],

|xk(t)− xk(τ)| ≤ M |t − τ | .

This implies that {xk} is equicontinuous; it also implies that

(∀ k ≥ 1)(∀ t ∈ Iα) |xk(t)− x0| ≤ Mα ≤ r ,

so {xk} is pointwise bounded (in fact, uniformly bounded).
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Proof of the Cauchy-Peano Existence Theorem
Now, by Ascoli’s Theorem, some subsequence

{xkj}∞j=1

converges uniformly to some

x∗(t) ∈ C (Iα).

It remains to show that x∗(t) is a solution of (IE) on Iα.
Since each xk(t) is continuous and piecewise linear on Iα,

xk(t) = x0 +
∫ t

t0

x ′k(s)ds,

where x ′k(t) is piecewise constant on Iα and is defined for all t except

t` (1 ≤ ` ≤ k − 1).

At each t` (1 ≤ ` ≤ k − 1), set

x ′k(t) = lim
t↓t`

x ′k(t) = f (t`, xk(t`))

∆k(t) = x ′k(t)− f (t, xk(t)) on Iα
and note that ∆k(t`) = 0 for 0 ≤ ` ≤ k − 1 by definition.
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Proof of the Cauchy-Peano Existence Theorem
Claim: ∆k(t)→ 0 uniformly on Iα as k →∞.
Proof of Claim: Given k, for

1 ≤ ` ≤ k and t ∈ [t`−1, t`),
including tk if ` = k,

∆k(t) = |x ′k(t)− f (t, xk(t))| = |f (t`−1, xk(t`−1))− f (t, xk(t))|.

Noting that
|t − t`−1| ≤

α

k
and

|xk(t)− xk(t`−1)| ≤ M |t − t`−1| ≤ M α

k ,

the uniform continuity of f on the compact set I × Ω implies

max
t∈Iα
|∆k(t)| → 0 as k →∞ .

So, in particular,

∆kj (t)→ 0 uniformly on Iα.

�
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Proof of the Cauchy-Peano Existence Theorem

Now

(∗) xkj (t) = x0 +
∫ t

t0

x ′kj (s)ds

= x0 +
∫ t

t0

f (s, xkj (s))ds +
∫ t

t0

∆kj (s)ds.

Since xkj → x∗ uniformly on Iα, the uniform continuity of f on I × Ω
implies that

f (t, xkj (t))→ f (t, x∗(t)) uniformly on Iα.

Taking the limit as j →∞ on both sides of (∗) for each t ∈ Iα, we
obtain that x∗ satisfies (IE) on Iα �
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