## Linear Analysis Lecture 20

## Ordinary Differential Equations (ODEs)

An ODE is an equation of the form

$$
g\left(t, x, x^{\prime}, \ldots, x^{(m)}\right)=0, \text { where } g: \Omega \subset \mathbb{R} \times\left(\mathbb{F}^{n}\right)^{m+1} \mapsto \mathbb{F}^{n}
$$

A solution on an interval $I \subset \mathbb{R}$ is a function $x: I \rightarrow \mathbb{F}^{n}$ for which

$$
x^{\prime}(t), x^{\prime \prime}(t), \ldots, x^{(m)}(t) \text { exists on } I \text { and } g\left(t, x(t), x^{\prime}(t), \ldots, x^{(m)}(t)\right)=0 \forall t \in I .
$$

We focus on the case where $x^{(m)}$ can be solved for explicitly:

$$
\begin{gathered}
x^{(m)}=f\left(t, x, x^{\prime}, \ldots, x^{(m-1)}\right), \text { where } \\
f: D \subset \mathbb{R} \times\left(\mathbb{F}^{n}\right)^{m} \mapsto \mathbb{F}^{n} \quad \text { is continuous. }
\end{gathered}
$$

This equation is called an $m^{\text {th }}$-order $n \times n$ system of ODE's.

Note that if $x$ is a solution defined on an interval $I \subset \mathbb{R}$, then the existence of $x^{(m)}$ on $I$ (including one-sided limits at the endpoints of $I$ ) implies that $x \in C^{m-1}(I)$. Hence $x^{(m)} \in C(I)$ since $f$ is continuous, so $x \in C^{m}(I)$.

## Reduction to First-Order Systems

Every $m^{\text {th }}$-order $n \times n$ system of ODE's is equivalent to a first-order $m n \times m n$ system of ODE's.
Define

$$
\begin{gathered}
y_{j}(t)=x^{(j-1)}(t) \in \mathbb{F}^{n} \quad 1 \leq j \leq m \text { and } \\
y(t)=\left[\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{m}(t)
\end{array}\right] \in \mathbb{F}^{m n},
\end{gathered}
$$

the system

$$
x^{(m)}=f\left(t, x, \ldots, x^{(m-1)}\right)
$$

is equivalent to the first-order $m n \times m n$ system

$$
y^{\prime}=\left[\begin{array}{l}
y_{2} \\
y_{3} \\
\vdots \\
y_{m} \\
f\left(t, y_{1}, \ldots, y_{m}\right)
\end{array}\right]
$$

By relabeling we can focus on first-order $n \times n$ systems of the form

$$
x^{\prime}=f(t, x),
$$

where $f: \mathbb{R} \times \mathbb{F}^{n} \mapsto \mathbb{F}^{n} \quad$ is continuous.

## Example of a first-order system

Consider $x^{\prime}(t)=f(t)$ where $f: I \rightarrow \mathbb{F}^{n}$ is continuous on $I \subset \mathbb{R}$. For a fixed $t_{0} \in I$, the general solution of the ODE is

$$
x(t)=c+\int_{t_{0}}^{t} f(s) d s
$$

where $c \in \mathbb{F}^{n}$ is an arbitrary.

## Initial-Value Problems (IVP's) for First-order Systems

Under certain conditions on $f$, the general solution of a first-order system $x^{\prime}=f(t, x)$ involves $n$ arbitrary constants in $\mathbb{F}$.

So $n$ scalar conditions must be given to specify a particular solution.
For the example above, clearly giving $x\left(t_{0}\right)=x_{0}$ determines $c$.
An IVP for the first-order system is the differential equation

$$
D E: \quad x^{\prime}=f(t, x),
$$

together with initial conditions

$$
I C: \quad x\left(t_{0}\right)=x_{0} .
$$

A solution of the IVP is a solution $x(t)$ of the $D E$, defined on an interval $I$ containing $t_{0}$, which also satisfies the $I C$.

## Examples

(1) Let $n=1$.

$$
I V P: \begin{cases}D E: & x^{\prime}=x^{2} \\ I C: & x(1)=1\end{cases}
$$

is

$$
x(t)=\frac{1}{2-t},
$$

which blows up as $t \rightarrow 2$. So even if $f$ is $C^{\infty}$ on all of $\mathbb{R} \times \mathbb{F}^{n}$, solutions of an IVP do not necessarily exist for all time $t$.
(2) Let $n=1$.

$$
I V P: \begin{cases}D E: & x^{\prime}=2 \sqrt{|x|} \\ I C: & x(0)=0\end{cases}
$$

For any $c \geq 0$, define

$$
x_{c}(t)= \begin{cases}0, & \text { for } \quad t \leq c \\ (t-c)^{2}, & \text { for } \quad t \geq c\end{cases}
$$

Then, for every $c \geq 0, x_{c}(t)$ is a solution of this IVP.
So, in general, for continuous $f(t, x)$, IVP's may have non-unique solutions.
The difficulty here is that $f(t, x)=2 \sqrt{|x|}$ does not satisfy a Lipschitz condition in $x$ near $x=0$.

## An Integral Equation Equivalent to an IVP

Suppose $x(t) \in C^{1}(I)$ is a solution of

$$
\begin{cases}D E: & x^{\prime}=f(t, x)  \tag{IVP}\\ I C: & x\left(t_{0}\right)=x_{0}\end{cases}
$$

on the interval $I \subset \mathbb{R}$ with $t_{0} \in I$, where $f$ is continuous. Then $\forall t \in I$,

$$
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} x^{\prime}(s) d s=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

so $x(t)$ is also a solution of the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \quad(t \in I) \tag{IE}
\end{equation*}
$$

Conversely, if $x(t) \in C(I)$ is a solution of $(\mathrm{IE})$, then $f(t, x(t)) \in C(I)$, so

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \in C^{1}(I)
$$

and $x^{\prime}(t)=f(t, x(t))$ by the Fundamental Theorem of Calculus. So $x$ is a $C^{1}$ solution of the DE on $I$, and $x\left(t_{0}\right)=x_{0}$, so $x$ is a solution of (IVP).

## An Integral Equation Equivalent to an IVP

Proposition. On an interval $I$ containing $t_{0}, x$ is a solution of the initial value problem (IVP) with $x \in C^{1}(I)$ iff $x$ is a solution of the integral equation (IE) on $I$ with $x \in C(I)$.

The integral equation (IE) transforms the initial value problem (IVP) to a problem on $C(I)$ without concern for differentiability. Moreover, the initial condition is built into the integral equation.

We solve (IE) using a fixed-point formulation.

Definition. Let $(X, d)$ be a metric space, and suppose $g: X \rightarrow X$. We say that $g$ is a contraction if

$$
\exists c<1 \quad \text { such that } \quad d(g(x), g(y)) \leq c d(x, y) \quad \forall x, y \in X .
$$

A point $x_{*} \in X$ for which $g\left(x_{*}\right)=x_{*}$ is called a fixed point of $g$.

A contraction is a Lipschitz continuous function with Lipschitz constant $<1$.

## The Contraction Mapping Fixed-Point Theorem

Let $(X, d)$ be a complete metric space and

$$
g: X \rightarrow X
$$

a contraction (with contraction constant $c<1$ ).
Then $g$ has a unique fixed point $x_{*} \in X$.
Moreover, for $x_{0} \in X$, if $\left\{x_{k}\right\}$ is generated by the fixed point iteration

$$
x_{k+1}=g\left(x_{k}\right) \quad \text { for } \quad k \geq 0,
$$

then $x_{k} \rightarrow x_{*}$.

Fix $x_{0} \in X$, and set $x_{k+1}=g\left(x_{k}\right)$ for $k \geq 0$, Then for $k \geq 1$,

$$
d\left(x_{k+1}, x_{k}\right)=d\left(g\left(x_{k}\right), g\left(x_{k-1}\right)\right) \leq c d\left(x_{k}, x_{k-1}\right) .
$$

By induction, $d\left(x_{k+1}, x_{k}\right) \leq c^{k} d\left(x_{1}, x_{0}\right)$. So for $n<m$,

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq \sum_{j=n}^{m-1} d\left(x_{j+1}, x_{j}\right) \leq\left(\sum_{j=n}^{m-1} c^{j}\right) d\left(x_{1}, x_{0}\right) \\
& \leq\left(\sum_{j=n}^{\infty} c^{j}\right) d\left(x_{1}, x_{0}\right)=\frac{c^{n}}{1-c} d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Since $c^{n} \rightarrow 0$ as $n \rightarrow \infty,\left\{x_{k}\right\}$ is Cauchy. Since $X$ is complete, $x_{k} \rightarrow x_{*}$ for some $x_{k} \in X$. Since $g$ is continuous,

$$
g\left(x_{*}\right)=g\left(\lim x_{k}\right)=\lim g\left(x_{k}\right)=\lim x_{k+1}=x_{*},
$$

so $x_{*}$ is a fixed point.
If $x$ and $y$ are two fixed points of $g$ in $X$, then

$$
d(x, y)=d(g(x), g(y)) \leq c d(x, y),
$$

so $(1-c) d(x, y) \leq 0$. Thus and $x=y$. So $g$ has a unique fixed point.

## Uniformly Lipschitz Continuity

Applying the Contraction Mapping Fixed-Point Theorem (C.M.F.-P.T.) to a function usually requires two steps:
(i) showing there is a complete set $S$ for which $g(S) \subset S$, and
(ii) showing that $g$ is a contraction on $S$.

To apply the C.M.F.-P.T. to the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \tag{IE}
\end{equation*}
$$

we need a further condition on $f$.
Definition. Let $|\cdot|$ be the Euclidean norm on $\mathbb{F}^{n}$. Let $I \subset \mathbb{R}$ be an interval and $\Omega \subset \mathbb{F}^{n}$. The function $f: I \times \Omega \mapsto \mathbb{F}^{n}$ is uniformly Lipschitz continuous with respect to $x$ if

$$
|f(t, x)-f(t, y)| \leq L|x-y| \quad(\forall t \in I)(\forall x, y \in \Omega) .
$$

We say that $f$ is in ( $C$, Lip) on $I \times \Omega$ if $f$ is continuous on $I \times \Omega$ and $f$ is uniformly Lipschitz continuous with respect to $x$ on $I \times \Omega$.

For simplicity, we will consider intervals $I \subset \mathbb{R}$ for which $t_{0}$ is the left endpoint. Virtually identical arguments hold if $t_{0}$ is the right endpoint of $I$, or if $t_{0}$ is in the interior of $I$.

## Local Existence and Uniqueness for (IVP)

Theorem: Let $\beta>0, \hat{r}>0$, and define

$$
I=\left[t_{0}, t_{0}+\beta\right] \quad \text { and } \quad \Omega=\overline{B_{\hat{r}}\left(x_{0}\right)}=\left\{x \in \mathbb{F}^{n}:\left|x-x_{0}\right| \leq \hat{r}\right\},
$$

Suppose $f(t, x)$ is in ( $C$, Lip) on $I \times \Omega$. Then there exists $0<\alpha \leq \beta$ for which there is a unique solution to the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s, \tag{IE}
\end{equation*}
$$

in $C\left(I_{\alpha}\right)$ where $I_{\alpha}=\left[t_{0}, t_{0}+\alpha\right]$.
Moreover, we can choose $\alpha \in(0, \beta]$ to be any positive number satisfying

$$
\alpha \leq \frac{\hat{r}}{M} \quad \text { and } \quad \alpha<\frac{1}{L}, \quad \text { where } \quad M=\max _{(t, x) \in I \times \Omega}|f(t, x)|
$$

and $L$ is the Lipschitz constant for $f$ in $I \times \Omega$.

## Proof of Local Existence and Uniqueness for (IVP)

For any $\alpha \in(0, \beta]$, let $\|\cdot\|_{\infty}$ denote the max-norm on $C\left(I_{\alpha}\right)$ (i.e. the uniform convergence norm). Then $\left(C\left(I_{\alpha}\right),\|\cdot\|_{\infty}\right)$ is a Banach space.

Let $\widetilde{x}_{0}$ denote the constant function $\widetilde{x}_{0}(t) \equiv x_{0}$ in $C\left(I_{\alpha}\right)$. Define

$$
X_{\alpha, r}=\left\{x \in C\left(I_{\alpha}\right):\left\|x-\widetilde{x}_{0}\right\|_{\infty} \leq r\right\} .
$$

Then $X_{\alpha, r}$ is a complete metric space since it is a closed subset of the Banach space $\left(C\left(I_{\alpha}\right),\|\cdot\|_{\infty}\right)$. Define $g: X_{\alpha, r} \rightarrow C\left(I_{\alpha}\right)$ by

$$
(g(x))(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

The mapping $g$ is well-defined on $X_{\alpha, r}$ and $g(x) \in C\left(I_{\alpha}\right)$ for $x \in X_{\alpha, r}$ since $f$ is continuous on $I \times \overline{B_{r}\left(x_{0}\right)}$. Fixed points of $g$ are solutions of the integral equation (IE).

## Proof of Local Existence and Uniqueness for (IVP)

Claim Suppose $\alpha \in(0, \beta]$ and $\alpha \leq \min \left\{\frac{r}{M}, \frac{1}{L}\right\}$. Then $g$ maps $X_{\alpha, r}$ into itself and $g$ is a contraction on $X_{\alpha, r}$ with contraction coefficient $\alpha L$. Proof: If $x \in X_{\alpha, r}$, then for $t \in I_{\alpha}$,

$$
\left|(g(x))(t)-x_{0}\right| \leq \int_{t_{0}}^{t}|f(s, x(s))| d s \leq M \alpha \leq r
$$

so $g: X_{\alpha, r} \rightarrow X_{\alpha, r}$. If $x, y \in X_{\alpha, r}$, then for $t \in I_{\alpha}$,

$$
\begin{aligned}
|(g(x))(t)-(g(y))(t)| & \leq \int_{t_{0}}^{t}|f(s, x(s))-f(s, y(s))| d s \\
& \leq \int_{t_{0}}^{t} L|x(s)-y(s)| d s \\
& \leq L \alpha\|x-y\|_{\infty}
\end{aligned}
$$

so

$$
\|g(x)-g(y)\|_{\infty} \leq L \alpha\|x-y\|_{\infty}
$$

where $L \alpha<1$, that is $g$ is a contraction on $X_{\alpha, r}$.

By the C.M.F.-P.T., $g$ has a unique fixed point in $X_{\alpha, r}$. Thus the integral equation (IE) has a unique solution $x_{*}(t)$ in

$$
X_{\alpha, r}=\left\{x \in C\left(I_{\alpha}\right):\left\|x-\widetilde{x}_{0}\right\|_{\infty} \leq r\right\} .
$$

We now show uniqueness.
Fix $\alpha>0$. For $0<\gamma \leq \alpha,\left.x_{*}\right|_{I_{\gamma}}$ is the unique fixed point of $g$ on $X_{\gamma, r}$. Suppose $y \in C\left(I_{\alpha}\right)$ is a solution of (IE) on $I_{\alpha}$ with $y \not \equiv x_{\alpha}$ on $I_{\alpha}$. Let

$$
\gamma_{1}=\inf \left\{\gamma \in(0, \alpha]: y\left(t_{0}+\gamma\right) \neq x_{*}\left(t_{0}+\gamma\right)\right\} .
$$

By continuity, $\gamma_{1}<\alpha$. Since $y\left(t_{0}\right)=x_{0}$, continuity implies

$$
\exists \gamma_{0} \in(0, \alpha] \quad \text { such that }\left.\quad y\right|_{I_{\gamma_{0}}} \in X_{\gamma_{0}, r} .
$$

Thus $y(t) \equiv x_{*}(t)$ on $I_{\gamma_{0}}$.

So $0<\gamma_{1}<\alpha$. Since $y(t) \equiv x_{*}(t)$ on $I_{\gamma_{1}},\left.y\right|_{I_{\gamma_{1}}} \in X_{\gamma_{1}, r}$. Let $\rho=M \gamma_{1}$, then $\rho<M \alpha \leq r$. For $t \in I_{\gamma_{1}}$,

$$
\left|y(t)-x_{0}\right|=\left|(g(y))(t)-x_{0}\right| \leq \int_{t_{0}}^{t}|f(s, y(s))| d s \leq M \gamma_{1}=\rho,
$$

so $\left.y\right|_{I_{\gamma_{1}}} \in X_{\gamma_{1}, \rho}$. By continuity,

$$
\exists \gamma_{2} \in\left(\gamma_{1}, \alpha\right] \quad \text { such that }\left.\quad y\right|_{I_{\gamma_{2}}} \in X_{\gamma_{1}, r}
$$

But then $y(t) \equiv x_{*}(t)$ on $I_{\gamma_{2}}$, contradicting the definition of $\gamma_{1}$.

