Linear Analysis
Lecture 20




Ordinary Differential Equations (ODEs)

An ODE is an equation of the form
g(t,z,2',..., ™) =0, where g : Q CR x (F*)™F! s F™.

A solution on an interval I C R is a function z : I — F™ for which
2/ (), 2" (t),..., 2™ (t) exists on I and g(t, z(t), 2 (t),...,2™(t)) =0Vt e I.

We focus on the case where z(™ can be solved for explicitly:
2™ = f(t,z, .., 2, where

f:DCRx (F")™ —F" is continuous.

This equation is called an m'"-order n x n system of ODE's.

Note that if z is a solution defined on an interval I C R, then the
existence of z(") on I (including one-sided limits at the endpoints of I)
implies that € C™~1(I). Hence (™ € C(I) since f is continuous, so
z e C™(I).



Reduction to First-Order Systems

Every m'"-order n x n system of ODE's is equivalent to a first-order
mn X mn system of ODE's.

Define yi(t) = 20D (t) € F" 1<j<m and
()
yiy=1 | eF™
Ym (1)
the system

2™ = flt,z,..., x(mfl))
is equivalent to the first-order mn x mn system

Yo
Y3
/ .

y=1:
Ym
f(tayla"'7ym)

By relabeling we can focus on first-order n x n systems of the form

o' = f(t,z),

where f : R x F* — F™ is continuous.



Reduction to First-Order Systems

Example of a first-order system

Consider z'(t) = f(t) where f : I — F™ is continuous on I C R. For a
fixed ¢y € I, the general solution of the ODE is

2(t) = e+ /t:f(s)ds,

where ¢ € F” is an arbitrary.



Initial-Value Problems (IVP’s) for First-order Systems

Under certain conditions on f, the general solution of a first-order system
x' = f(t,z) involves n arbitrary constants in F.

So n scalar conditions must be given to specify a particular solution.
For the example above, clearly giving z(ty) = zp determines c.
An IVP for the first-order system is the differential equation
DE: 1 =f(t,x),
together with initial conditions
IC:  z(t) = 20.

A solution of the IVP is a solution z(t) of the DE, defined on an
interval I containing &y, which also satisfies the IC'.



(1) Let n=1.

is 1
t)y = ——
o) = 5—,

which blows up as ¢t — 2. So even if f is C°° on all of R x F", solutions
of an IVP do not necessarily exist for all time ¢.
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(2) Let n=1.

(t—c)?, for t>c.

<
2(t) = {0, for t<e,

Then, for every ¢ > 0, z.(¢) is a solution of this IVP.

So, in general, for continuous f(¢, ), IVP’'s may have non-unique
solutions.

The difficulty here is that f(,z) = 21/|z| does not satisfy a Lipschitz
condition in z near z = 0.



An Integral Equation Equivalent to an IVP

Suppose z(t) € C1(I) is a solution of

{DE: ¥ = f(t,x)

IC . z(ty) = x0 (IVP)

on the interval I C R with ¢, € I, where f is continuous. ThenV t € I,

2(t) = alty) + / #(5)ds = 3 + / £(s,a(s)) s,
so z(t) is also a solution of the integral equation
o0 =+ [ 15,005 (te 1. (IE)
Conversely, if #(t) € C(I) < 2 solution of (IE), then f(t, z(t)) € C(I), so
w0 =+ [ Jls.a()ds € €1

and z'(t) = f(t,z(t)) by the Fundamental Theorem of Calculus. So z is
a C* solution of the DE on I, and z(y) = o, so z is a solution of (IVP).



An Integral Equation Equivalent to an IVP

Proposition. On an interval I containing ty, x is a solution of the initial
value problem (IVP) with x € C1(I) iff z is a solution of the integral
equation (IE) on I with z € C(I).



The Contraction Mapping Fixed-Point Theorem

The integral equation (IE) transforms the initial value problem (IVP) to a
problem on C(I) without concern for differentiability. Moreover, the
initial condition is built into the integral equation.

We solve (IE) using a fixed-point formulation.
Definition. Let (X, d) be a metric space, and suppose ¢ : X — X. We
say that ¢ is a contraction if

Je <1 suchthat d(g(z),9(y)) < cd(z,y) Vz,yeX.

A point x, € X for which g(z,) = . is called a fixed point of g.

A contraction is a Lipschitz continuous function with Lipschitz constant < 1.
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The Contraction Mapping Fixed-Point Theorem

The Contraction Mapping Fixed-Point Theorem

Let (X, d) be a complete metric space and
g: X=X

a contraction (with contraction constant ¢ < 1).
Then g has a unique fixed point z, € X.

Moreover, for zp € X, if {z;} is generated by the fixed point iteration
Tpy1 = g(azx) for k>0,

then z, — x,.

11/18



Proof of the Contraction Mapping Fixed-Point Theorem

Fix zp € X, and set 231 = g(xx) for k>0, Then for k > 1,
d(py1, 1) = d(g(ar), 9(zp—1)) < cd(zp, Tp—1)-
By induction, d(xy1, ) < c*d(m1, 20). So for n < m,

d(zjp1, 7)) < (Z d) (21, 29

n

CJ> d(l'l,l’o) = 10_ Cd(xhxﬂ)'

—1

3

d(Tm, zn) <

| M

I
3

J

X

Since ¢ — 0 as n — oo, {ax} is Cauchy. Since X is complete, 2, — .
for some z;; € X. Since g is continuous,
g(x) = g(lim ay) = lim g(ay) = lim 211 = o,
so x, is a fixed point.
If z and y are two fixed points of g in X, then
d(z,y) = d(g(2), g(y)) < cd(z,y),

o (1—¢)d(z,y) <0. Thus and z = y. So ¢ has a unique fixed point.

™



Uniformly Lipschitz Continuity

Applying the Contraction Mapping Fixed-Point Theorem (C.M.F.-P.T.)
to a function usually requires two steps:

(i) showing there is a complete set S for which g(S) C S, and

(ii) showing that ¢ is a contraction on S.

To apply the C.M.F.-P.T. to the integral equation

z(t) =z —i—/t f(s,z(s))ds, (IE)

we need a further condition on f.

Definition. Let |- | be the Euclidean norm on F™. Let I C R be an
interval and €2 C F™. The function f : I x Q +— F" is uniformly
Lipschitz continuous with respect to z if

[f(t,z) = f(t,y)| < Lz —y| (Vie)(Vz,ye).
We say that f is in (C,Lip) on I x Q if f is continuous on I x Q and f is
uniformly Lipschitz continuous with respect to z on I x Q.

For simplicity, we will consider intervals I C R for which t; is the left
endpoint. Virtually identical arguments hold if #, is the right endpoint of
I, or if ty is in the interior of I.
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Local Existence and Uniqueness for (IVP)

Theorem: Let 5 > 0, 7 > 0, and define

I =1t to+p] and Q= B(m)={z €F": |z — 10| <7},

Suppose f(t,x) is in (C,Lip) on I x Q. Then there exists 0 < o < 3 for
which there is a unique solution to the integral equation

t

a(t) =20+ [ f(s,2(s))ds, (1E)
to
in C(I,) where I, = [to, tp + a].
Moreover, we can choose « € (0, 5] to be any positive number satisfying
<7 and a< where M (4, 2)]
a<— an —, where = ma
=M A (tyetxa 0T

and L is the Lipschitz constant for f in I x Q.
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Proof of Local Existence and Uniqueness for (IVP)

For any a € (0, 0], let || - ||co denote the max-norm on C(I,) (i.e. the
uniform convergence norm). Then (C(I,), ] - ||s) is @ Banach space.

Let Zp denote the constant function Zg(t) = 29 in C(l,). Define
Xor={z€ C(Ly): ||z —Tlleo < T}

Then X, , is a complete metric space since it is a closed subset of the
Banach space (C(1,),] - ||leo). Define g: Xy, — C(I,) by

(9(2))(t) = 20 + / F(s,2(s))ds .

The mapping g is well-defined on X, , and g(z) € C(1,) for z € X, »
since f is continuous on I X B,.(1p). Fixed points of g are solutions of
the integral equation (IE).
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Proof of Local Existence and Uniqueness for (IVP)

Claim Suppose a € (0,8] and « < min {7, +}. Then g maps X, ,
into itself and ¢ is a contraction on X, , with contraction coefficient aL.
Proof: If z € X, ., then for t € I,

(g(2)) (1) — 2] < / 1£(5, 2(5))|ds < Ma < r,

50 g: Xoyr = Xopr Ifz,y € X, -, then for t € I,

(6N ®) = @)D < [ s.2() = Fls. vl s
< / Lla(s) - y(s)lds
< La||$—y||o<>7

SO
19(2) = 9(¥)]loo < Laflz = yllo,

where La < 1, that is g is a contraction on X, . O
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Proof of Local Existence and Uniqueness for (IVP)

By the CM.F.-P.T., g has a unique fixed point in X, .. Thus the
integral equation (IE) has a unique solution z.(t) in

Xor={z€ C(L): ||z — Toloo < 7}

We now show uniqueness.
Fix o > 0. For 0 <y < «, z|r, is the unique fixed point of g on X, ;.
Suppose y € C(I,) is a solution of (IE) on I, with y # z, on I,. Let

71 = inf{y € (0,a]: y(to +7) # 2.(to +7)}-
By continuity, 71 < a. Since y(y) = zp, continuity implies
3790 € (0,a] suchthat y|r, € X,

Thus y(t) = z.(t) on I,.
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Proof of Local Existence and Uniqueness for (IVP)

So 0 < v < a. Since y(t) = z.(t) on L, ylz,, € Xy, . Let p= M,
then p < Ma <r. Forte L,

|y(1) = 20l = |(9(9)) (1) — 20| < /t [f(s,y(s))]ds < My = p,

so y|1,, € X, . By continuity,

I3 € (1,] such that y € Xy

I’Y2

But then y(t) = z.(t) on L,,, contradicting the definition of ;. O



