Linear Analysis

Lecture 2
Dual Vector Spaces




Dual Vector Spaces

Let V be a vector space.
A linear functional on V is a function f : V — F for which

f(OqU1 + OZQ'UQ) = Ozlf(’Ul) + O[Qf('UQ) Yo, €V, aj,as € F.

m If V is a finite-dimensional vector space, the dual space of V is the
vector space V* of all linear functionals on V.

m When V is infinite dimensional, the set of all linear functions is often
called the algebraic dual space of V, as it depends only on the
algebraic structure of V. We will be more interested in linear
functionals related to a topological structure on V.
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Dual Vector Spaces: F"

Vv = F"
f — alinear functional on V'
fi = fle)for1<i<n
Forz € F", z = (m1,...,3,)T = .1, z;¢; € F", and
flz) = inf(ei)
i=1

D fiwio= (fifs - fa)
i=1

So the row vector (fi - - f,,) is the matrix of f using the standard basis
{e1,...,e,} on F" (and the basis {1} on F).
Hence, (F™)* is isomorphic to F™.
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Dual Vector Spaces: /'(F)

Let V = (1(F). If

fet=(F),
then for x € (1(F),
D il < (sup £i]) Y lail < oo,
i=1 i=1

so the sum

f(z) = Zle’z
i=1

converges absolutely, defining a linear functional on ¢*(F).
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Dual Vector Spaces: (*°(F)

Similarly, if
V = £>°(F)

and f € (1(F),
flz) = fm
i=1

defines a linear functional on ¢°°(F).



Dual Vector Spaces: C'(X)

Let X CR", € X, ue CHX).
m The function
f(u) = u(zo)
defines a linear functional on C*(X).
m The function
f(w) = '(20)
defines a linear functional on C!(X).
mIf —co < a<b<ooand X = [a,b], the function

flu) = /ab u(z)dz

defines a linear functional on C(]a, b]).
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Dual Basis in Finite Dimensions

V is a finite dimensional vector space and B = {uv1,...,v,} is a basis for
V. For 1 < i < n, define linear functionals f; € V* by

filv;) =65 (=1fori=j, =0 fori#j).

Let v € V, and let = (21,...,7,) T be the vector of coordinates of v
w.rt Bie, v=>" zv;.
Then

n

fi(v) = fi(z zvy) =Y mifi(v) = @,

j=1

i.e., f; maps v into its coordinate z; of v;.
Now if f € V*, let a; = f(v;) (1 <4< n); then

flv) = f(Z?:l 1) = ZL zif (vg) = Z?:l a;T; = Z?:l aifi(v),
so f = Z?:1 aifi -
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Dual Basis in Finite Dimensions

Since this representation is unique, {fi,...,f,} is a basis for V*, called
the dual basis to {vy,...,v,}.

We get dim V* = dim V.

Formally it is useful to think of the elements f € V* as “row” vectors.

With this formal interpretation, write the dual basis as a column of “row’
vectors

h

L

Also write the coordinates of f w.r.t. the dual basis as a row vector
(ar1---an), where f=3"" a;f;i. Then

bl
f:E?:1aifi:(al"'an)
In
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Dual Basis in Finite Dimensions

The defining equation of the dual basis becomes

fi 1 O
o (vvn) = =1 (*)
In O 1
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Change of Basis and Dual Bases

Let By = {wy,...,w,} and By ={vy,...,v,} be bases of V with
change-of-basis matrix A4, i.e., (wy - wp) = (v1 -+ vpy)A.
Left and right multiply (x) by A=* and A reps.ly

h N
a2 | wesaa=a [ e =
fn f“
Therefore,
[} fi N
: = A1 : satisfies : (wi-- wy) =1
In In In

so {g1,-..,gn} is the dual basis to {wy, ..., w,}.
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Change of Basis and Dual Bases

Let f € V* have

{fi,...,fa} coordinates (a3---a,) and
{g1,...,9n} coordinates (by---by,)

(bl"'bn):(al"'an)A7

is the coordinate transformation law for these bases.
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Linear Transformations from F”" to F™

T :F™ — F™ a linear transformation.

I
T = : €F", and {e;} the standard basis
In
Define
ty
T(ej) Ty Yo ties : eFm™ 1<j<n
ting
Then
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T, tml e tmn T

So every linear transformation from F™ to F™ can be represented as
multiplication by a matrix in F™*".
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Some Special Elementary Matrices: Diagonal Matrices

d, ifi=j

D:diag(dth,...,dn) where Dij: {O |
5 else.

The identity matrix is diagonal with I = diag (1,1,...,1).
The scalar multiple of I is called a scalar matrix.

Left multiplication of A € F™*™ by the diagonal matrix D rescales the
rows of the matrix,

Right multiplication of B € F™*™ rescales the columns,
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Shift Matrices

Forward Shift: § € Fxn 8ij = 0i(j+1)

T2
010 0 Ll 23
0 0 1 0 2 ,
§=5n= 00 0 1 5 B :
00 0 0 Tn
In 0

Backward Shift: B € C"*" bij S (5(7;+1)j
00 0 0 0 24 0
100 00 T2 Ll
B=101 0 0 0 Bl - :
00 0 10 z, _—
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Circulant Matrices (Forward)

al a2 ... e an
[17% a a2 -+ Ap—1
ap—1 Gn ai o Op—2
as as (/7% al
Basic circulant permutation matrices:
Forward:
x T2
01 0 0 xl 73
0 0 1 0 2
“=10 0 o0 1 Cr -
1 0 0 0 Tn
Ty, 2
Backward:
0 0 0 0 1 Gl In
1 0 0 0 0 T2 Gl
G=101 0 00 G -
0 0 O 1 0
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Jordan Block: J ¢ C**"

A1 0 0 -+ 0
oOox1 0 -0
J=XM+S,=|: : ; where S = 0.
Do 1
0 0 A
Vandermonde Matrices: z;,...,z, € F
1 m 2} 2 - CE{lil
v 1 2 22 3 !
i Tn, fo acg e xr’j_l

n

Vandermonde determinant det V = [[;,_, (z; — ;)

i>]
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Elementary Matrices

E,., € F™ " have a 1 is the (7, s)-entry and 0 elsewhere, e.g. in F4*5

00000
00010
Ba=119 00 0 0
00000

Note Cf =FE,1+ S,

The elementary matrices form the standard basis for F*".
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Multiplication by Elementary Matrices

Left multiplication of T € F™*™ by E,, € F™*™ moves the sth row of
T to the rth row and zeros out all other elements.

That is, the elements of the matrix E,;T are all zero except for those in
the rth row which is just the sth row of T.

Right multiplication of 7' € F™*" by E,, € F™"*™ moves the rth
column of T to the sth column and zeros out all other elements.

That is, the elements of the matrix TE,, are all zero except for those in
the sth column which is just the rth column of T.
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