
Linear Analysis
Lecture 19



Spectral Representation Theorem

Since X = M1 ⊕ · · · ⊕Ms, we can write L as the sum of the operators
PjLPj j = 1, . . . , s. Note that for each j = 1, . . . , s

PjLPj = LPj = λjPj + Nj .

Therefore, L = S + N where S =
∑s

j=1 λjPj and N =
∑s

j=1 Nj , with

I =
s∑

j=1
Pj

PkPj = PjPk = δjkPj

NjPk = PkNj = δkjNj

NjPk = PkNj = 0 i 6= j .

This representation is unique in the sense that any other such
representation L = S ′ + N ′ has S = S ′ and N = N ′.
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Proof of the Spectral Representation Theorem
The proof makes use of the expansion of R(ζ) at ∞,

R(ζ) = −
∞∑

n=0
ζ−(n+1)Ln

and its partial fractions decomposition,

R(ζ) = −
s∑

j=1

[
(ζ − λj)−1Pj +

mj−1∑
n=1

(ζ − λj)−(n+1)N n
j

]
.

Γ a simple closed curve about the origin with Σ(L) in its interior,
L = 1

2πi

∮
Γ

1
ζ

dζ L = 1
2πi

∞∑
n=0

∮
Γ
ζ−ndζ Ln = 1

2πi

∮
Γ

∞∑
n=0

ζ−nLndζ

= 1
2πi

∮
Γ
ζ

∞∑
n=0

ζ−(n+1)Lndζ = − 1
2πi

∮
Γ
ζR(ζ)dζ

= 1
2πi

∮
Γ
ζ

s∑
j=1

[
(ζ − λj)−1Pj +

mj−1∑
n=1

(ζ − λj)−(n+1)N n
j

]
dζ

=
s∑

j=1

[
1

2πi

∮
Γ
ζ(ζ − λj)−1dζPj +

mj−1∑
n=1

1
2πi

∮
Γ
ζ(ζ − λj)−(n+1)dζN n

j

]

=
s∑

j=1

λjPj + Nj .
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Terminology
Σ(L) = {λ1, . . . , λk} with algebraic multiplicities m1,m2, . . . ,mk .

Eλj (L) = ker(L − λj) the eigenspace for λj
Êλj (L) = ker(L − λj)mj the generalized eigenspace for λj
dim(Êλj (L)) = mj the algebraic multiplicity of λj .
Pj = eigenprojection for the eigenvalue λi .

= the projection onto Êλj (L) along
⊕

i 6=j Êλi (L).
Nj = e-nilpotent for the eigenvalue λj .
u ∈ Êλj (L)\{0} = generalized eigenvectors of λj

Given λj ∈ Σ(L),
λj is said to be simple if mj = 1 (Nj = 0).
λj is said to be semi-simple if Nj = 0.
λj is said to be degenerate if λj is not simple.
λj is said to be defective if mj > dim ker(L − λjI ).
λj is said to be non-derogatory if rank (Nj) = mj .
λj is said to be derogatory if rank (Nj) < mj .
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The Cauchy Integral Formula for Operators

Let φ(ζ) = a0 + a1ζ + a2ζ
2 + a3ζ

3 + . . . be a power series with
radius of convergence r > 0. Then φ is holomorphic on the disc |ζ| < r .
If L ∈ B(V ) has ‖L‖ < r , then as we have seen the operator

φ(L) = a0 + a1L + a2L2 + a3L3 + . . .

is well defined with the series being absolutely convergent.

Theorem: The mapping φ : {T ∈ B(V ) : ‖T‖ < r} → B(V ) defined
above satisfies the Cauchy integral formula. That is

φ(L) = − 1
2πi

∮
Γ
φ(ζ)R(ζ,L)dζ = 1

2πi

∮
Γ
φ(ζ)(ζ − L)−1dζ,

where Γ is any simple closed curve contained within the disc of radius r
and R(ζ,L) is the resolvent for L.
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Proof of the Cauchy Integral Formula for Operators
Recall that ρ(L) ≤ ‖L‖, so for ‖L‖ < |ζ|,

R(ζ) = −ζ−1(1− ζ−1L)−1

= −
∞∑

n=0
ζ−(n+1)Ln .

Hence,

− φ(ζ)R(ζ) =
(
a0 + a1ζ + a2ζ

2 + . . .
)(1

ζ
+ L
ζ2 + L2

ζ3 + . . .

)
= 1
ζ

(
a0 + a1L + a2L2 + a3L3 + . . .

)
+
(
a1 + a2L + a3L2 + . . .

)
+ L
ζ2

(
a0 + a1L + a2L2 + a3L3 + . . .

)
+ ζ

(
a2 + a3L + a4L2 + . . .

)
+ L2

ζ2

(
a0 + a1L + a2L2 + a3L3 + . . .

)
+ ζ2 (a3 + a4L + a5L2 + . . .

)
...Hence, by the Residue Theorem (and uniform convergence),

− 1
2πi

∮
Γ
φ(ζ)R(ζ,L)dζ =

(
a0 + a1L + a2L2 + a3L3 + . . .

)
= φ(L) .
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Operator Algebras of Holomorphic Functions

Proposition. Suppose L ∈ L(V ) and ϕ1 and ϕ2 are both holomorphic in
a neighborhood of Σ(L). Then
(a) (a1ϕ1 + a2ϕ2)(L) = a1ϕ1(L) + a2ϕ2(L), and
(b) (ϕ1ϕ2)(L) = ϕ1(L) ◦ ϕ2(L).

Proof:
(a) follows from the linearity of contour integration.

To see (b) let Ω be the domain on which both ϕ1 and ϕ2 are
holomorphic and which contains Σ(L).
Let λ1, . . . , λk be the distinct eigenvalues of L, with algebraic
multiplicities m1, . . . ,mk , respectively.

For s = 1, 2, j = 1, 2, . . . , k, let Γsj , s = 1, 2, be two circles around λj
with the radius of Γ2j greater than that of Γ1j and such that the discs
∆sj , s = 1, 2, associated with Γsj , resp.ly, are contained in Ω.

Set Γs =
⋃k

j=1 Γsj , s = 1, 2.
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Operator Algebras of Holomorphic Functions: Proof

By the first resolvent equation we get

ϕ1(L) ◦ ϕ2(L)

= 1
(2πi)2

∮
Γ1

ϕ1(ζ1)R(ζ1)dζ1 ◦
∮

Γ2

ϕ2(ζ2)R(ζ2)dζ2

= 1
(2πi)2

∮
Γ1

∮
Γ2

ϕ(ζ1)ϕ(ζ2)R(ζ1) ◦ R(ζ2)dζ2dζ1

= 1
(2πi)2

∮
Γ1

∮
Γ2

ϕ(ζ1)ϕ(ζ2)R(ζ1)− R(ζ2)
ζ1 − ζ2

dζ2dζ1

= 1
(2πi)2

[∮
Γ1

ϕ1(ζ1)R(ζ1)
∮

Γ2

ϕ2(ζ2)
ζ1 − ζ2

dζ2dζ1

−
∮

Γ2

ϕ2(ζ2)R(ζ2)
∮

Γ1

ϕ1(ζ1)
ζ1 − ζ2

dζ1dζ2
]
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Operator Algebras of Holomorphic Functions: Proof

Since ζ1 is inside Γ2 and ζ2 is outside Γ1, the CIF gives

0 = 1
2πi

∮
Γ1

ϕ1(ζ1)
ζ1 − ζ2

dζ1, and

ϕ2(ζ1) = 1
2πi

∮
Γ2

ϕ2(ζ2)
ζ2 − ζ1

dζ2 .

Therefore,

ϕ1(L) ◦ ϕ2(L) = − 1
2πi

∮
Γ1

ϕ1(ζ1)ϕ2(ζ1)R(ζ1)dζ1 = (ϕ1ϕ2)(L) .
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Remarks

(1) Since (ϕ1ϕ2)(ζ) = (ϕ2ϕ1)(ζ), (b) implies that ϕ1(L) and ϕ2(L)
always commute.

(2) Suppose L ∈ L(V ) is invertible and ϕ(ζ) = 1
ζ . Since Σ(L) ⊂ C \ {0}

and ϕ is holomorphic on C \ {0}, ϕ(L) is defined. Since
ζ · 1

ζ = 1
ζ · ζ = 1, Lϕ(L) = ϕ(L)L = I . Thus ϕ(L) = L−1, as

expected.
(3) Similarly, one can show that if

ϕ(ζ) = p(ζ)
q(ζ)

is a rational function, i.e.p, q are polynomials, and

Σ(L) ⊂ {ζ : q(ζ) 6= 0},

then
ϕ(L) = p(L)q(L)−1,

as expected.
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The Spectral Mapping Theorem

Suppose L ∈ L(V ) and ϕ is holomorphic in a neighborhood of Σ(L) (so
ϕ(L) is well-defined). Then

Σ(ϕ(L)) = ϕ(Σ(L))

including multiplicities, i.e., if µ1, . . . , µn are the eigenvalues of L
counting multiplicities, then ϕ(µ1), . . . , ϕ(µn) are the eigenvalues of
ϕ(L) counting multiplicities.
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Proof

Let Ω be the domain on which ϕ is holomorphic and let λ1, . . . , λk be
the distinct eigenvalues of L, with algebraic multiplicities m1, . . . ,mk ,
respectively. Let Γ be the union of k simple closed curves Γj , where each
Γj is a circle around λj and such that the disc ∆j associated with Γj is
contained in Ω. By the residue theorem,

ϕ(L) = − 1
2πi

∮
Γ
ϕ(ζ)R(ζ)dζ = −

k∑
i=1
Resζ=λ1 [ϕ(ζ)R(ζ)].

By the partial fractions decomposition of the resolvent,

−R(ζ) =
k∑

i=1

(
Pi

ζ − λi
+

mi−1∑
`=1

(ζ − λi)−(`+1)N `
i

)
.

It follows that

−Resζ=λiϕ(ζ)R(ζ) = ϕ(λi)Pi +
mi−1∑
`=1
Resζ=λi [ϕ(ζ)(ζ − λi)−(`+1)]N `

i

= ϕ(λi)Pi +
mi−1∑
`=1

1
`!ϕ

(`)(λi)N `
i .
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Proof

Thus

ϕ(L) =
k∑

i=1
[ϕ(λi)Pi +

mi−1∑
`=1

1
`!ϕ

(`)(λi)N `
i ]

By the uniqueness of the spectral decomposition of an operator, this
must be the explicit formula for the spectral decomposition of ϕ(L)!
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Spectral Properties of Composition

Proposition. Let L ∈ L(V ).
Suppose ϕ1 is holomorphic in a neighborhood of Σ(L), and
ϕ2 is holomorphic in a neighborhood of

Σ(ϕ1(L)) = ϕ1(Σ(L)).

So ϕ2 ◦ ϕ1 is holomorphic in a neighborhood of Σ(L).
Then

(ϕ2 ◦ ϕ1)(L) = ϕ2(ϕ1(L)).
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proof

Let ∆2 a the union of discs containing Σ(ϕ1(L)) with ϕ2 holomorphic on
∆2, and let Γ2 = ∂∆2. Then

ϕ2(ϕ1(L)) = 1
2πi

∮
Γ2

ϕ2(ζ2)(ζ2 − ϕ1(L))−1dζ2.

For each fixed ζ2 ∈ Γ2, consider the function

f (ζ1) = (ζ2 − ϕ1(ζ1))−1 .

Let ∆1 be a union of discs containing Σ(L) and chosen so small that ϕ1
holomorphic on ∆1 and ϕ1(∆1) ⊂ int(∆2). Set Γ1 = ∂∆1. Then at each
point of Γ2, the function f is holomorphic on an open set containing ∆1.
Therefore, by the operator version of the Cauchy integral formula,

f (L) = (ζ2 − ϕ1(L))−1 = − 1
2πi

∮
Γ1

(ζ2 − ϕ1(ζ1))−1R(ζ1)dζ1 .
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proof
Plugging the expression

(ζ2 − ϕ1(L))−1 = − 1
2πi

∮
Γ1

(ζ2 − ϕ1(ζ1))−1R(ζ1)dζ1

into
ϕ2(ϕ1(L)) = 1

2πi

∮
Γ2

ϕ2(ζ2)(ζ2 − ϕ1(L))−1dζ2

gives

ϕ2(ϕ1(L)) = − 1
(2πi)2

∮
Γ2

ϕ2(ζ2)
∮

Γ1

(ζ2 − ϕ1(ζ1))−1R(ζ1)dζ1dζ2

= − 1
(2πi)2

∮
Γ1

R(ζ1)
∮

Γ2

ϕ2(ζ2)
ζ2 − ϕ1(ζ1)dζ2dζ1

= − 1
2πi

∮
Γ1

R(ζ1)ϕ2(ϕ1(ζ1))dζ1

= (ϕ2 ◦ ϕ1)(L).

�
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Logarithms of Invertible Matrices
As an application of the theory given above, we consider logarithms of
invertible matrices.
Let L ∈ L(V ) be invertible. We could define the logarithm using power
series. That is, one could define

log(I + L) =
∞∑
`=1

(−1)`+1 L`

`
.

But this series only converges absolutely in norm for a restricted class of
L, namely {A : ρ(A) < 1}.
Let us now take an operator approach. Choose a branch of log ζ
holomorphic in a neighborhood of σ(L). Next choose an appropriate
region Ω in which log ζ is defined. In this context, by region, we mean
that Ω is open and Γ = ∂Ω is a simple closed curve.
Form

log L = − 1
2πi

∫
Γ
(log ζ)R(ζ)dζ.

This definition depends on the particular branch chosen, but since
elog ζ = ζ for any such branch, it follows that for any such choice,
elog L = L. Hence, every invertible matrix is in the range of the
exponential!
This is much better than one can do with series.
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