Linear Analysis
Lecture 19




Spectral Representation Theorem

Since X = My & - -- & M, we can write L as the sum of the operators
P;LP; j=1,...,s Note that foreach j=1,...,s

P;LP; = LP; = \;P; + N;.

Therefore, L = S + N where S =377 A\;Pj and N = 3%, N, with

I = zs:Pj
j=1

P.P; = P;P,=0yP;
NjPy = PpN; = 0yN;
NjPy = PN;=0 i#j.

This representation is unique in the sense that any other such
representation L= 5"+ N  has S = 5" and N = N'.



Proof of the Spectral Representation Theorem

The proof makes use of the expansigon of R({) at oo,

_ Z C—(n+1)L"

and its partial fractlons decomposmon

R(o:—Z( 1P+i< A)TOHON

T" a simple closed curve about the origin Wlth ¥(L) in its interior,

- mfz L %27{("‘“ :wﬁi“”c
— 27” ng (D prge = i%CR(C)dC

- g lzjr }{ C(C— ) P, + Z:j L f (¢ A~ deNy
- i/\jPﬁNj.
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Terminology

(L) ={\1,..., A} with algebraic multiplicities my, ms, ..., mg.
By, (L) = ker(L — )\;) the eigenspace for \;
E’\f([i) = ker(L — \;)™ the generalized eigenspace for \;
dim(E), (L)) = m; the algebraic multiplicity of A;.
P; = eigenprojection for the eigenvalue ;.
= the projection onto E’,\j(L) along ©,; By, (D).
N; = e-nilpotent for the eigenvalue ;.
u € E)\i(L)\{O} = generalized eigenvectors of \;

Given \; € X(L),

is said to be simple if m; =1 (N; = 0).

is said to be semi-simple if N; = 0.

is said to be degenerate if A; is not simple.

is said to be defective if m; > dimker(L — \;I).
is said to be non-derogatory if rank (N;) = m;.
is said to be derogatory if rank (N;) < m;.
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The Cauchy Integral Formula for Operators

Let ¢(¢) = ao+ ai¢ + aa¢? + a3¢® + ... be a power series with
radius of convergence r > 0. Then ¢ is holomorphic on the disc || < .
If L € B(V) has ||L|| < r, then as we have seen the operator

d)(L) = Qo + (1,1L + a2L2 + a3L3 +
is well defined with the series being absolutely convergent.

Theorem: The mapping ¢ : {T € B(V) : || T|| < r} — B(V) defined
above satisfies the Cauchy integral formula. That is

~3m7 $.90) 46 = 5 § 0O~ 1),

where T" is any simple closed curve contained within the disc of radius r
and R(¢, L) is the resolvent for L.



Proof of the Cauchy Integral Formula for Operators

Recall that p(L) < ||L]|, so for ||L|| < [¢],
R¢) = —¢ta-¢tp)tt

- _ Z C_(n+1)Ln
Hence, n=0

2
—¢(QOR(C) = (a0 + a1 + @ +...) (2+CL2+§3+>
:l(a0+a1L+a2L2+a3L3+...)+(a1+a2L+a3L2—|—...)

L
+ = (a+aL+al?+asl®+...) +( (a2 + asL + asL* +...)

=X

L2
+? (a0 + aL+ al®+azl® +...) + ¢ (a5 + el + a5 L* +...)
Hence, by the Residue Theorem (and uniform converg_ence),

2m%¢ = (a+al+al’+al’+...)
= (L) .
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Operator Algebras of Holomorphic Functions

Proposition. Suppose L € L( V) and ;1 and 5 are both holomorphic in
a neighborhood of X(L). Then

(a) (a1p1 + a2p2) (L) = a11(L) + azep(L), and

(b) (prp2)(L) = @1 (L) © pa(L).

Proof:
(a) follows from the linearity of contour integration.

To see (b) let © be the domain on which both ¢ and @2 are
holomorphic and which contains X(L).
Let A\1,..., A\; be the distinct eigenvalues of L, with algebraic
multiplicities my, ..., my, respectively.

Fors=1,2, j=1,2,...,k letT'y;, s=1,2, be two circles around };
with the radius of I'y; greater than that of I'y; and such that the discs
Agj, s=1,2, associated with I'y;, resp.ly, are contained in 2.

Set 'y = Uk Iy, s=1,2.

=1



Operator Algebras of Holomorphic Functions: Proof

By the first resolvent equation we get

- (2;2)275 ©1(C1)R(C1)dG Oé ©2(C2)R(¢2)dCa
= (2732-)2]5 7§ (C)p(R)R(C) o R(C2)d¢2dC
= (Qii)gjg ]g e(C)e(G )Wd@d(
_ 1 P2(C2)

= @mi? M %(Q)R(Cl)fi T

?i p2(C) R (C2)f}l 21(C1<) /6] dC2}



Operator Algebras of Holomorphic Functions: Proof

Since (7 is inside I'y and (5 is outside I'1, the CIF gives

1 ¢1(G1)
0 = o -G dcy, and
_ 1 $2(C2)
p2(C1) = ol f}z e dcy .

Therefore,

eI o eall) =~ § @GR = (1) (D)



(1) Slince (p192)(C) = (p261)(C), (b) implies that ¢1(L) and (L)
always commute.

(2) Suppose L € L(V) is invertible and ¢(¢) = ¢. Since X(L) C C\ {0}
and ¢ is holomorphic on C\ {0}, ¢(L) is defined. Since
(-t=¢C=1Lo(L)=p(L)L=1. Thus p(L) =L"", as
expected.

(3) Similarly, one can show that if

_ 29

is a rational function, i.e.p, g are polynomials, and

(L) c{¢: q(C) # 0},

then

as expected.
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The Spectral Mapping Theorem

Suppose L € L(V) and ¢ is holomorphic in a neighborhood of (L) (so
(L) is well-defined). Then

including multiplicities, i.e., if u1,..., 1, are the eigenvalues of L
counting multiplicities, then ©(p1), ..., ©(1,) are the eigenvalues of
(L) counting multiplicities.
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Let Q2 be the domain on which ¢ is holomorphic and let A1,..., Ay be
the distinct eigenvalues of L, with algebraic multiplicities my, ..., my,
respectively. Let I' be the union of & simple closed curves I';, where each
I'; is a circle around A; and such that the disc A; associated with T'; is

contained in €. By the residue theorem, x

= =57 P AOROE = = I Rescon [l RO
=1
By the partial fractions decomposition of the resolvent,

k P1 m;—1
~R(¢) = Z; (c 5t ;} (¢ A»“*”Nf) :
i= =1

It follows that

m;—1

—Resc—x@(QORC) = @M)Pi+ Y Resc—a[o(O)(¢ — X))~ “TVINS
=1
m,—l

P+Z a



Thus

By the uniqueness of the spectral decomposition of an operator, this
must be the explicit formula for the spectral decomposition of ¢(L)!
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Spectral Properties of Composition

Proposition. Let L € L(V).
Suppose ¢ is holomorphic in a neighborhood of ¥(L), and
(2 is holomorphic in a neighborhood of

S(p1(L)) = ¢1(B(L)).

So 9 0 1 is holomorphic in a neighborhood of 3(L).
Then
(p2 0 p1)(L) = p2(p1(L)).
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Let Ay a the union of discs containing 3 (1 (L)) with 2 holomorphic on
As, and let 'y = 0A5. Then

o1 (D) = 5§ @2(G)G - (D)

For each fixed (5 € I'5, consider the function

f(G) = (G =)

Let Ay be a union of discs containing X(L) and chosen so small that ¢
holomorphic on Ay and ¢1 (A1) C int(As). Set 'y = 9A;. Then at each
point of I'y, the function f is holomorphic on an open set containing Aj.
Therefore, by the operator version of the Cauchy integral formula,

FI) = (G —or(L) =~ (G- ei(Q) R G

21 Iy
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Plugging the expression
1

(Co—pi(L) ™t = “omi b (Ca — p1(¢)) T R(C) G
into 1
prer(D) = 3 (@G - (D) G
gives
paler(L) = —ﬁ j{ (@) ﬁ (G = (G R
1 ©2(¢2)
o (27i)2 7{1 R(G) /{2 G2 — ¢1(C1) dC2dG1
= 5 b REen(@)dG
I

= (p2op1)(L).



Logarithms of Invertible Matrices

As an application of the theory given above, we consider logarithms of
invertible matrices.
Let L € L(V) be invertible. We could define the logarithm using power

series. That is, one could define
o0

log(I + L) = Z(q)“l%

But this series only converges absoluzte}y in norm for a restricted class of
L, namely {4 : p(4) < 1}.

Let us now take an operator approach. Choose a branch of log ¢
holomorphic in a neighborhood of o(L). Next choose an appropriate
region € in which log C is defined. In this context, by region, we mean
that Q is open and I' = 02 is a simple closed curve.

Form

1
log L=~ 5 /F (log Q) R(C)dC.

This definition depends on the particular branch chosen, but since
el°e¢ = ¢ for any such branch, it follows that for any such choice,
el°el = [, Hence, every invertible matrix is in the range of the
exponential!

This is much better than one can do with series.
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