Linear Analysis Lecture 18

Let V be a finite-dimensional vector space and $L \in \mathcal{L}(V)$. If $\zeta \notin \Sigma(L)$, then the operator $L-\zeta I$ is invertible.

Define

$$
R(\zeta)=(L-\zeta I)^{-1}
$$

(sometimes denoted $R(\zeta, L)$). The function $R: \mathbb{C} \backslash \Sigma(L) \rightarrow \mathcal{L}(V)$ is called the resolvent of L.
$R(\zeta)$ provides an analytic approach to questions about the spectral theory of L.

The set $\mathbb{C} \backslash \Sigma(L)$ is called the resolvent set of L.
Since the inverses of commuting invertible linear transformations also commute,

$$
R\left(\zeta_{1}\right) \quad \text { and } \quad R\left(\zeta_{2}\right) \quad \text { commute } \quad \forall \quad \zeta_{1}, \zeta_{2} \in \mathbb{C} \backslash \Sigma(L) .
$$

Since a linear transformation commutes with its inverse, it also follows that L commutes with $R(\zeta)$ for all values of ζ.

Basic Resolvent Equations

Let $\zeta_{1}, \zeta_{2} \in \mathbb{C} \backslash \Sigma(L)$.

$$
\begin{gathered}
R\left(\zeta_{1}\right)-R\left(\zeta_{2}\right)=R\left(\zeta_{1}\right)\left(L-\zeta_{2}\right) R\left(\zeta_{2}\right)-R\left(\zeta_{1}\right)\left(L-\zeta_{1}\right) R\left(\zeta_{2}\right) \\
=R\left(\zeta_{1}\right)\left[\left(L-\zeta_{2}\right)-\left(L-\zeta_{1}\right)\right] R\left(\zeta_{2}\right) \\
=\left(\zeta_{1}-\zeta_{2}\right) R\left(\zeta_{1}\right) R\left(\zeta_{2}\right) \\
R\left(\zeta_{1}\right) R\left(\zeta_{2}\right)=\left(\zeta_{1}-\zeta_{2}\right)^{-1}\left[R\left(\zeta_{1}\right)-R\left(\zeta_{2}\right)\right] \\
R\left(\zeta_{1}\right)=\left[I-\left(\zeta_{2}-\zeta_{1}\right) R\left(\zeta_{1}\right)\right] R\left(\zeta_{2}\right) \\
R\left(\zeta_{2}\right)=\left[I-\left(\zeta_{2}-\zeta_{1}\right) R\left(\zeta_{1}\right)\right]^{-1} R\left(\zeta_{1}\right)
\end{gathered}
$$

Let $\zeta, \zeta_{0} \in \mathbb{C} \backslash \Sigma(L)$. Apply results for Neumann series:

$$
\begin{aligned}
R(\zeta) & =\left[I-\left(\zeta-\zeta_{0}\right) R\left(\zeta_{0}\right)\right]^{-1} R\left(\zeta_{0}\right) \\
& =\sum_{n=0}^{\infty}\left(\zeta-\zeta_{0}\right)^{n} R\left(\zeta_{0}\right)^{n+1}
\end{aligned}
$$

with this series being absolutely convergent if $\left|\zeta-\zeta_{0}\right|<\left\|R\left(\zeta_{0}\right)\right\|^{-1}$. This is just the Taylor series expansion of R at $\zeta=\zeta_{0}$. Hence R is holomorphic on $\mathbb{C} \backslash \Sigma(L)$ with

$$
R^{(n)}(\zeta)=n!R(\zeta)^{n+1} \quad n=1,2, \ldots
$$

In addition, for $|\zeta|$ large, $|\zeta|^{-1}\|L\|<1$,

$$
R(\zeta)=-\zeta^{-1}\left(1-\zeta^{-1} L\right)^{-1}=-\sum_{n=0}^{\infty} \zeta^{-(n+1)} L^{n}
$$

which is absolutely convergent if $|\zeta|>\|L\|$.
Thus, $R(\zeta)$ is holomorphic at ∞, and $R(\zeta) \rightarrow 0$ as $\zeta \rightarrow \infty$.

Cauchy Integral Formulas and Laurent Series

Cauchy Integral Formulas: If f is analytic inside and on a simple closed curve C and z is any point inside C, then

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Moreover, the $n^{\text {th }}$ derivative of f at z is given by

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(\zeta)}{(\zeta-z)^{n}} d \zeta, \quad n=0,1,2, \ldots
$$

Laurent Series Expansions: If f is analytic inside and on the boundary of the annular shaped region R bounded by two concentric circles C_{1} and C_{2} with center at z_{0} and respective radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$, then for all z in R,

$$
f(z)=\sum_{-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=1}^{\infty} \frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=P+A
$$

where

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta, \quad n=0,1,2, \ldots \\
a_{-n} & =\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{(\zeta-a)^{-n+1}} d \zeta, \quad n=1,2, \ldots \\
P & =\text { principal part } \quad A=\text { analytic part }
\end{aligned}
$$

Poles: If $f(z)$ has Laurent expansion in which the principle part has only finitely many terms given by

$$
\frac{a_{-1}}{z-z_{0}}+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\cdots+\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}
$$

where $a_{-n} \neq 0$, then z_{0} is a pole of order n for f. If $n=1$, then it is a simple pole.

Essential Singularities: If $f(z)$ has Laurent expansion in which the principle part has infintely many terms, then z_{0} is an essential singularity for f.
A function is entire if it is analytic on all of \mathbb{C}. If f is analytic on a region Ω except for finitely many poles, then f is said to be meromorphic on Ω.
The coefficient a_{-1} is called the residue of f.

Let f be single-valued and analytic inside and on a simple closed curve C except at the

$$
\text { singularities } \quad z_{1}, \ldots, z_{n}
$$

inside C having

$$
\text { residues } \quad a_{-1}^{1}, a_{-1}^{2}, \ldots, a_{-1}^{n} .
$$

Then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} a_{-1}^{k}
$$

The resolvent is meromorphic with poles at each eigenvalue. For the sake of simplicity we assume that $0 \in \Sigma(L)$ and we compute the Laurent series at the origin:

$$
R(\zeta)=\sum_{n=-\infty}^{\infty} \zeta^{n} A_{n}
$$

where

$$
A_{n}=\frac{1}{2 \pi i} \oint_{\Gamma} \zeta^{-(n+1)} R(\zeta) d \zeta \quad \forall n
$$

Let $\tilde{\Gamma}$ be a contour around the origin slightly larger than Γ, then

$$
\begin{aligned}
A_{n} A_{m} & =\left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\tilde{\Gamma}} \zeta^{-(n+1)} \omega^{-(m+1)} R(\omega) R(\zeta) d \omega d \zeta \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\tilde{\Gamma}} \zeta^{-(n+1)} \omega^{-(m+1)}(\omega-\zeta)^{-1}[R(\omega)-R(\zeta)] d \omega d \zeta
\end{aligned}
$$

The Laurent Series of the Resolvent: Proof

For $|\zeta|<|\omega|$, or $\left|\frac{\zeta}{\omega}\right|<1$,

$$
\begin{aligned}
\zeta^{-(n+1)}(\omega-\zeta)^{-1} & =\zeta^{-(n+1)} \omega^{-1}\left(1-\frac{\zeta}{\omega}\right)^{-1}=\zeta^{-(n+1)} \omega^{-1} \sum_{k=0}^{\infty}\left(\frac{\zeta}{\omega}\right)^{k} \\
& =\sum_{k=0}^{\infty} \zeta^{k-(n+1)} \omega^{-(k+1)}=\sum_{j=-n}^{\infty} \zeta^{j-1} \omega^{-(j+n+1)}
\end{aligned}
$$

so for $n \geq 0$ the residue in ζ occurs for $j=0$ which gives the residue $a_{-1}=\omega^{-(n+1)}$. By the Residue Theorem and geometric series,

$$
\begin{aligned}
\eta_{n} \omega^{-(n+1)} & =\frac{1}{2 \pi i} \oint_{\Gamma} \zeta^{-(n+1)}(\omega-\zeta)^{-1} d \zeta \\
& =-\left(1-\eta_{m}\right) \zeta^{-(m+1)} \frac{1}{2 \pi i} \oint_{\tilde{\Gamma}} \omega^{-(m+1)}(\omega-\zeta)^{-1} d \omega
\end{aligned}
$$

with

$$
\eta_{n}= \begin{cases}1, & \text { for } \quad n \geq 0 \\ 0, & \text { else }\end{cases}
$$

The Laurent Series of the Resolvent: Proof

Therefore,

$$
\begin{aligned}
A_{n} A_{m}= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\tilde{\Gamma}} \zeta^{-(n+1)} \omega^{-(m+1)}(\omega-\zeta)^{-1}[R(\omega)-R(\zeta)] d \omega d \zeta \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\tilde{\Gamma}} \zeta^{-(n+1)} \omega^{-(m+1)}(\omega-\zeta)^{-1} R(\omega) d \omega d \zeta \\
& -\left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\tilde{\Gamma}} \zeta^{-(n+1)} \omega^{-(m+1)}(\omega-\zeta)^{-1} R(\zeta) d \omega d \zeta \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \omega^{-(m+1)} R(\omega) \oint_{\tilde{\Gamma}} \zeta^{-(n+1)}(\omega-\zeta)^{-1} d \zeta d \omega \\
& -\left(\frac{1}{2 \pi i}\right)^{2} \oint_{\tilde{\Gamma}} \zeta^{-(n+1)} R(\zeta) \oint_{\Gamma} \omega^{-(m+1)}(\omega-\zeta)^{-1} d \omega d \zeta \\
= & \eta_{n} \frac{1}{2 \pi i} \oint_{\Gamma} \omega^{-((m+n+1)+1)} R(\omega) d \omega \\
& +\left(\eta_{m}-1\right) \frac{1}{2 \pi i} \oint_{\tilde{\Gamma}} \zeta^{-((m+n+1)+1)} R(\zeta) d \zeta \\
= & \left(\eta_{m}+\eta_{n}-1\right) A_{m+n+1} .
\end{aligned}
$$

n	m	$\mathrm{n}+\mathrm{m}+1$	$A_{n} A_{m}=\left(\eta_{n}+\eta_{m}-1\right) A_{n+m+1}$	
-1	-1	-1	$A_{-1}^{2}=-A_{-1}$	$-A_{-1}=: P$ a projection
			$N:=-A_{2}$	
-2	-2	-3	$A_{-2}^{2}=-A_{-3}$	$-A_{-3}=N^{2}$
-2	-3	-4	$A_{-2} A_{-3}=-A_{-4}$	$-A_{-4}=N^{3}$
-2	-4	-5	$A_{-2} A_{-4}=-A_{-5}$	$-A_{-5}=N^{4}$
			\vdots	$-A_{-k}=N^{k-1}$

n	m	$\mathrm{n}+\mathrm{m}+1$	$A_{n} A_{m}=\left(\eta_{n}+\eta_{m}-1\right) A_{n+m+1}$	
			$S:=A_{0}$	
0	0	1	$A_{0}^{2}=A_{1}$	$A_{1}=S^{2}$
0	1	2	$A_{0} A_{1}=A_{2}$	$A_{2}=S^{3}$
0	2	3	$A_{0} A_{2}=A_{3}$	$A_{3}=S^{4}$
			\vdots	$A_{n}=S^{n+1} \quad n \geq 0$

Therefore, for $\lambda_{j} \in \Sigma(T) \quad \exists P_{j}, N_{j}, S_{j}$ such that the Laurent series expansion for $R(\zeta)$ near λ_{j} is

$$
\begin{aligned}
R(\zeta)= & {\left[-\left(\zeta-\lambda_{j}\right)^{-1} P_{j}-\sum_{n=1}^{\infty}\left(\zeta-\lambda_{j}\right)^{-(n+1)} N_{j}^{n}\right] } \\
& +\left[\sum_{n=0}^{\infty}\left(\zeta-\lambda_{j}\right)^{n} S_{j}^{(n+1)}\right] \\
= & C_{j}(\zeta)+S_{j}(\zeta) .
\end{aligned}
$$

The Laurent Series of the Resolvent

Moreover,

n	m	$\mathrm{n}+\mathrm{m}+1$	$A_{n} A_{m}=\left(\xi_{n}+\xi_{m}-1\right) A_{n+m+1}$
-1	-2	-2	$N_{j}=-A_{-2}=A_{-1} A_{-2}=P_{j} N_{j}$
-2	-1	-2	$N_{j}=-A_{-2}=A_{-2} A_{-1}=N_{j} P_{j}$
-1	0	0	$0=0 \cdot A_{0}=A_{-1} A_{0}=-P_{j} S_{j}$
0	-1	0	$0=0 \cdot A_{0}=A_{0} A_{-2}=-S_{j} P_{j}$

Hence, for each $\lambda_{j} \in \Sigma(A)$, the decomposition $R(\zeta)=C_{j}(\zeta)+S_{j}(\zeta)$ is a direct sum decomposition of R compatible with $V=M_{j} \oplus M_{j}^{\prime}$, where

$$
M_{j}=P_{j} V \quad \text { and } \quad M_{j}^{\prime}=\left(I-P_{j}\right) V .
$$

The Laurent Series of the Resolvent

The principal part of the Laurent expansion for $R(\zeta)$ at $\lambda_{j} \in \Sigma(L)$ acts on the subspace M_{j}. In particular, $R(\zeta)$ has an isolated singularity at $\zeta=\lambda_{j}$ but is otherwise convergent. Thus,

$$
\sum_{h=1}^{\infty}\left(\zeta-\lambda_{j}\right)^{-(n+1)} N_{j}^{n}
$$

is absolutely convergent on $\mathbb{C} \backslash\left\{\lambda_{j}\right\}$. Setting $\zeta=\lambda_{j}+\xi$ for $\xi \neq 0$, we obtain

$$
\sum_{n=1}^{\infty} \xi^{-(n+1)} N_{j}^{n}<\infty .
$$

Therefore, $\rho(N) \leq|\xi|$ for all $\xi \in \mathbb{C}$.
Consequently, $\rho(N)=0$ and so N_{j} is nilpotent with

$$
\operatorname{rank}\left(N_{j}\right)<\operatorname{rank}\left(P_{j}\right)
$$

where

$$
\operatorname{rank}\left(P_{j}\right)=\operatorname{dim}\left(M_{j}\right)=m_{j} .
$$

Hence, λ_{j} is a pole of $R(\zeta)$ of order less than or equal to $\operatorname{rank}\left(P_{j}\right)$ since the principal part the Laurent series at λ_{j} is finite.
Therefore, $R(\zeta)$ is meromorphic!

Claim: If $\Sigma(L)=\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$, then

$$
\begin{align*}
P_{j} P_{k} & =\delta_{j k} P_{j} \tag{1}\\
\sum_{j=1}^{s} P_{j} & =I \tag{2}\\
P_{j} L & =L P_{j} . \tag{3}
\end{align*}
$$

(1) Show $P_{j} P_{k}=\delta_{j k} P_{j}$.

$$
P_{j} P_{k}=\left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma_{j}} \int_{\Gamma_{k}} R(\zeta) R(w) d w d \zeta
$$

where the regions defined by Γ_{j} and Γ_{k} do not overlap.

$$
\begin{aligned}
P_{j} P_{k}= & \left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma_{j}} \int_{\Gamma_{k}}(w-\zeta)^{-1}[R(w)-R(\zeta)] d w d \zeta \\
= & \left(\frac{1}{2 \pi i}\right)^{2}\left[\int_{\Gamma_{k}}\left[\int_{\Gamma_{j}}(w-\zeta)^{-1} R(w) d \zeta\right] d w\right. \\
& \left.\quad-\int_{\Gamma_{j}}\left[\int_{\Gamma_{k}}(w-\zeta)^{-1} R(\zeta) d w\right] d \zeta\right] \\
= & 0 \quad j \neq k .
\end{aligned}
$$

(2) Show $\sum_{j=1}^{s} P_{j}=I$.

Let Γ be a simple closed curve containing all the singularities of $R(\zeta)$. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma} R(\zeta) d s=\text { sum of the residues }=-\sum_{j=1}^{s} P_{j} .
$$

Also, from the expansion of $R(\zeta)$ at ∞, we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} R(\zeta) d s & =\frac{1}{2 \pi i} \int_{\Gamma}-\sum_{n=0}^{\infty} \zeta^{-(n+1)} L^{n} d s \\
& =\frac{1}{2 \pi i} \sum_{n=0}^{\infty}-L^{n}\left(\int_{\Gamma} \zeta^{-(n+1)} d \zeta\right) \\
& =-I
\end{aligned}
$$

(3) Show $P_{j} L=L P_{j}$.
L commutes with $R(\zeta)$ so that L commutes with

$$
P_{j}=\frac{1}{2 \pi i} \int_{\Gamma_{j}} R(\zeta) d \zeta
$$

Properties of the Resolvent

Let V be a finite-dimensional vector space and $L \in \mathcal{L}(V)$. If $\zeta \notin \sigma(L)$, then the operator $L-\zeta I$ is invertible. We have defined the resolvent of L as

$$
R(\zeta)=(L-\zeta I)^{-1}
$$

We have shown that for each $\lambda_{j} \in \Sigma(L) \quad \exists P_{j}, N_{j}, S_{j}$ such that

$$
\begin{aligned}
R(\zeta)= & {\left[-\left(\zeta-\lambda_{j}\right)^{-1} P_{j}-\sum_{n=1}^{m_{j}}\left(\zeta-\lambda_{j}\right)^{-(n+1)} N_{j}^{n}\right] } \\
& +\left[\sum_{n=0}^{\infty}\left(\zeta-\lambda_{j}\right)^{n} S_{j}^{(n+1)}\right] \\
= & C_{j}(\zeta)+S_{j}(\zeta),
\end{aligned}
$$

where $m_{j}=\operatorname{rank}\left(P_{j}\right)$.

$$
N_{j} P_{j}=N_{j}=P_{j} N_{j}, \quad P_{j} S_{j}=0=S_{j} P_{j}, \quad P_{j} P_{k}=\delta_{j k} P_{j}
$$

and

$$
P_{j} L=L P_{j} .
$$

Partial Fractions Decomposition of $R(\zeta)$

Let $C_{j}(\zeta)$ be the principal part of $R(\zeta)$ at each of its poles $\Sigma(L)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right\}$. Then the function

$$
F(\zeta)=R(\zeta)-\sum_{j=1}^{s} C_{j}(\zeta)
$$

has an analytic extension to all of \mathbb{C} since the poles λ_{j} are removable. Moreover,

$$
\lim _{\zeta \rightarrow \infty} F(\zeta)=0
$$

since
$\lim _{\zeta \rightarrow \infty} C_{j}(\zeta)=0 \quad$ and $\quad \lim _{\zeta \rightarrow \infty} R(\zeta)=0 \quad$ we have $\quad R(\zeta)=-\sum_{n=0}^{\infty} \zeta^{-(n+1)} L^{n}$.
Therefore, $F(\zeta)$ is a bounded entire function. By Liouville's Theorem $F \equiv 0$. Hence,
$R(\zeta)=\sum_{j=1}^{s} C_{j}(\zeta)=-\sum_{j=1}^{s}\left[\left(\zeta-\lambda_{j}\right)^{-1} P_{j}+\sum_{n=1}^{m_{j}-1}\left(\zeta-\lambda_{j}\right)^{-(n+1)} N_{j}^{n}\right]$.

Spectral Representation Theorem

Since $X=M_{1} \oplus \cdots \oplus M_{s}$, we can write L as the sum of the operators $P_{j} L P_{j} j=1, \ldots, s$. Note that for each $j=1, \ldots, s$

$$
P_{j} L P_{j}=L P_{j}=\lambda_{j} P_{j}+N_{j} .
$$

Therefore, $L=S+N$ where $S=\sum_{j=1}^{s} \lambda_{j} P_{j}$ and $N=\sum_{j=1}^{s} N_{j}$, with

$$
\begin{aligned}
I & =\sum_{j=1}^{s} P_{j} \\
P_{k} P_{j} & =P_{j} P_{k}=\delta_{j k} P_{j} \\
N_{j} P_{k} & =P_{k} N_{j}=\delta_{k j} N_{j} \\
N_{j} P_{k} & =P_{k} N_{j}=0 \quad i \neq j .
\end{aligned}
$$

This representation is unique in the sense that any other such representation $L=S^{\prime}+N^{\prime}$ has $S=S^{\prime}$ and $N=N^{\prime}$.

