
Linear Analysis
Lecture 18



The Resolvent

Let V be a finite-dimensional vector space and L ∈ L(V ). If ζ 6∈ Σ(L),
then the operator L − ζI is invertible.

Define
R(ζ) = (L − ζI )−1

(sometimes denoted R(ζ,L)). The function R : C\Σ(L)→ L(V ) is
called the resolvent of L.

R(ζ) provides an analytic approach to questions about the spectral
theory of L.

The set C\Σ(L) is called the resolvent set of L.

Since the inverses of commuting invertible linear transformations also
commute,

R(ζ1) and R(ζ2) commute ∀ ζ1, ζ2 ∈ C\Σ(L).

Since a linear transformation commutes with its inverse, it also follows
that L commutes with R(ζ) for all values of ζ.
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Basic Resolvent Equations

Let ζ1, ζ2 ∈ C\Σ(L).

R(ζ1)− R(ζ2) = R(ζ1)(L − ζ2)R(ζ2)− R(ζ1)(L − ζ1)R(ζ2)

= R(ζ1)[(L − ζ2)− (L − ζ1)]R(ζ2)

= (ζ1 − ζ2)R(ζ1)R(ζ2)

R(ζ1)R(ζ2) = (ζ1 − ζ2)−1[R(ζ1)− R(ζ2)]

R(ζ1) = [I − (ζ2 − ζ1)R(ζ1)]R(ζ2)

R(ζ2) = [I − (ζ2 − ζ1)R(ζ1)]−1R(ζ1)
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R(ζ) is Holomorphic on C\Σ(L)

Let ζ, ζ0 ∈ C\Σ(L). Apply results for Neumann series:
R(ζ) = [I − (ζ − ζ0)R(ζ0)]−1R(ζ0)

=
∞∑

n=0
(ζ − ζ0)nR(ζ0)n+1

with this series being absolutely convergent if |ζ − ζ0| < ‖R(ζ0)‖−1.
This is just the Taylor series expansion of R at ζ = ζ0. Hence R is
holomorphic on C\Σ(L) with

R(n)(ζ) = n!R(ζ)n+1 n = 1, 2, . . . .
In addition, for |ζ| large, |ζ|−1‖L‖ < 1,

R(ζ) = −ζ−1(1− ζ−1L)−1 = −
∞∑

n=0
ζ−(n+1)Ln

which is absolutely convergent if |ζ| > ‖L‖.
Thus, R(ζ) is holomorphic at ∞, and R(ζ)→ 0 as ζ →∞.
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Cauchy Integral Formulas and Laurent Series
Cauchy Integral Formulas: If f is analytic inside and on a simple closed
curve C and z is any point inside C , then

f (z) = 1
2πi

∮
C

f (ζ)
ζ − z dζ.

Moreover, the nth derivative of f at z is given by

f (n)(z) = n!
2πi

∮
C

f (ζ)
(ζ − z)n dζ , n = 0, 1, 2, . . . .

Laurent Series Expansions: If f is analytic inside and on the boundary
of the annular shaped region R bounded by two concentric circles C1 and
C2 with center at z0 and respective radii r1 and r2 (r1 > r2), then for all
z in R,

f (z) =
∞∑
−∞

an(z − z0)n =
∞∑

n=1

a−n
(z − z0)n +

∞∑
n=0

an(z − z0)n = P + A

where
an = 1

2πi

∮
C1

f (ζ)
(ζ − z0)n+1 dζ, n = 0, 1, 2, . . .

a−n = 1
2πi

∮
C2

f (ζ)
(ζ − a)−n+1 dζ, n = 1, 2, . . .

P =principal part A =analytic part
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Singularities

Poles: If f (z) has Laurent expansion in which the principle part has only
finitely many terms given by

a−1

z − z0
+ a−2

(z − z0)2 + · · ·+ a−n
(z − z0)n

where a−n 6= 0, then z0 is a pole of order n for f . If n = 1, then it is a
simple pole.

Essential Singularities: If f (z) has Laurent expansion in which the
principle part has infintely many terms, then z0 is an essential singularity
for f .
A function is entire if it is analytic on all of C. If f is analytic on a
region Ω except for finitely many poles, then f is said to be
meromorphic on Ω.
The coefficient a−1 is called the residue of f .
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The Residue Theorem

Let f be single-valued and analytic inside and on a simple closed curve C
except at the

singularities z1, . . . , zn

inside C having
residues a1

−1, a2
−1, . . . , an

−1 .

Then ∮
C

f (z)dz = 2πi
n∑

k=1
ak
−1.
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The Laurent Series of the Resolvent

The resolvent is meromorphic with poles at each eigenvalue. For the sake
of simplicity we assume that 0 ∈ Σ(L) and we compute the Laurent
series at the origin:

R(ζ) =
∞∑

n=−∞
ζnAn,

where
An = 1

2πi

∮
Γ
ζ−(n+1)R(ζ)dζ ∀ n.

Let Γ̃ be a contour around the origin slightly larger than Γ, then

AnAm =
(

1
2πi

)2 ∮
Γ

∮
Γ̃
ζ−(n+1)ω−(m+1)R(ω)R(ζ)dωdζ

=
(

1
2πi

)2 ∮
Γ

∮
Γ̃
ζ−(n+1)ω−(m+1)(ω − ζ)−1[R(ω)− R(ζ)]dωdζ .

8 / 22



The Laurent Series of the Resolvent: Proof

For |ζ| < |ω|, or
∣∣∣ ζω ∣∣∣ < 1,

ζ−(n+1)(ω − ζ)−1 = ζ−(n+1)ω−1
(

1− ζ

ω

)−1
= ζ−(n+1)ω−1

∞∑
k=0

(
ζ

ω

)k

=
∞∑

k=0
ζk−(n+1)ω−(k+1) =

∞∑
j=−n

ζj−1ω−(j+n+1),

so for n ≥ 0 the residue in ζ occurs for j = 0 which gives the residue
a−1 = ω−(n+1). By the Residue Theorem and geometric series,

ηnω
−(n+1) = 1

2πi

∮
Γ
ζ−(n+1)(ω − ζ)−1dζ

= −(1− ηm)ζ−(m+1) 1
2πi

∮
Γ̃
ω−(m+1)(ω − ζ)−1dω ,

with
ηn =

{
1, for n ≥ 0
0, else.
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The Laurent Series of the Resolvent: Proof
Therefore,

AnAm =
(

1
2πi

)2 ∮
Γ

∮
Γ̃
ζ−(n+1)ω−(m+1)(ω − ζ)−1[R(ω)− R(ζ)]dωdζ

=
(

1
2πi

)2 ∮
Γ

∮
Γ̃
ζ−(n+1)ω−(m+1)(ω − ζ)−1R(ω)dωdζ

−
(

1
2πi

)2 ∮
Γ

∮
Γ̃
ζ−(n+1)ω−(m+1)(ω − ζ)−1R(ζ)dωdζ

=
(

1
2πi

)2 ∮
Γ
ω−(m+1)R(ω)

∮
Γ̃
ζ−(n+1)(ω − ζ)−1dζdω

−
(

1
2πi

)2 ∮
Γ̃
ζ−(n+1)R(ζ)

∮
Γ
ω−(m+1)(ω − ζ)−1dωdζ

= ηn
1

2πi

∮
Γ
ω−((m+n+1)+1)R(ω)dω

+(ηm − 1) 1
2πi

∮
Γ̃
ζ−((m+n+1)+1)R(ζ)dζ

= (ηm + ηn − 1)Am+n+1 .
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The Laurent Series of the Resolvent

n m n+m+1 AnAm = (ηn + ηm − 1)An+m+1

-1 -1 -1 A2
−1 = −A−1 −A−1 =: P

a projection

N := −A2

-2 -2 -3 A2
−2 = −A−3 −A−3 = N 2

-2 -3 -4 A−2A−3 = −A−4 −A−4 = N 3

-2 -4 -5 A−2A−4 = −A−5 −A−5 = N 4

... −A−k = N k−1
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The Laurent Series of the Resolvent

n m n+m+1 AnAm = (ηn + ηm − 1)An+m+1

S := A0

0 0 1 A2
0 = A1 A1 = S2

0 1 2 A0A1 = A2 A2 = S3

0 2 3 A0A2 = A3 A3 = S4

... An = Sn+1 n ≥ 0
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The Laurent Series of the Resolvent

Therefore, for λj ∈ Σ(T ) ∃Pj ,Nj ,Sj such that the Laurent series
expansion for R(ζ) near λj is

R(ζ) =
[
−(ζ − λj)−1Pj −

∞∑
n=1

(ζ − λj)−(n+1)N n
j

]

+
[ ∞∑

n=0
(ζ − λj)nS (n+1)

j

]

= Cj(ζ) + Sj(ζ) .
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The Laurent Series of the Resolvent

Moreover,

n m n+m+1 AnAm = (ξn + ξm − 1)An+m+1

-1 -2 -2 Nj = −A−2 = A−1A−2 = PjNj

-2 -1 -2 Nj = −A−2 = A−2A−1 = NjPj

-1 0 0 0 = 0 ·A0 = A−1A0 = −PjSj

0 -1 0 0 = 0 ·A0 = A0A−2 = −SjPj

Hence, for each λj ∈ Σ(A), the decomposition R(ζ) = Cj(ζ) + Sj(ζ) is a
direct sum decomposition of R compatible with V = Mj ⊕M ′j , where

Mj = PjV and M ′j = (I − Pj)V .
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The Laurent Series of the Resolvent
The principal part of the Laurent expansion for R(ζ) at λj ∈ Σ(L) acts
on the subspace Mj . In particular, R(ζ) has an isolated singularity at
ζ = λj but is otherwise convergent. Thus,

∞∑
h=1

(ζ − λj)−(n+1)N n
j

is absolutely convergent on C\{λj}. Setting ζ = λj + ξ for ξ 6= 0, we
obtain

∞∑
n=1

ξ−(n+1)N n
j <∞.

Therefore, ρ(N ) ≤ |ξ| for all ξ ∈ C.
Consequently, ρ(N ) = 0 and so Nj is nilpotent with

rank (Nj) < rank (Pj)
where

rank (Pj) = dim(Mj) = mj .

Hence, λj is a pole of R(ζ) of order less than or equal to rank (Pj) since
the principal part the Laurent series at λj is finite.
Therefore, R(ζ) is meromorphic!
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How are the Pj’s and Nj’s related?

Claim: If Σ(L) = {λ1, . . . , λs}, then

PjPk = δjkPj (1)
s∑

j=1
Pj = I (2)

PjL = LPj . (3)
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Proof of (1)

(1) Show PjPk = δjkPj .

PjPk =
(

1
2πi

)2 ∫
Γj

∫
Γk

R(ζ)R(w)dwdζ,

where the regions defined by Γj and Γk do not overlap.

PjPk =
(

1
2πi

)2 ∫
Γj

∫
Γk

(w − ζ)−1[R(w)− R(ζ)]dwdζ

=
(

1
2πi

)2
[∫

Γk

[∫
Γj

(w − ζ)−1R(w)dζ
]
dw

−
∫

Γj

[∫
Γk

(w − ζ)−1R(ζ)dw
]

dζ
]

= 0 j 6= k.
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Proof of (2)

(2) Show
∑s

j=1 Pj = I .

Let Γ be a simple closed curve containing all the singularities of R(ζ).
Then

1
2πi

∫
Γ

R(ζ)ds = sum of the residues = −
s∑

j=1
Pj .

Also, from the expansion of R(ζ) at ∞, we have

1
2πi

∫
Γ

R(ζ)ds = 1
2πi

∫
Γ
−
∞∑

n=0
ζ−(n+1)Lnds

= 1
2πi

∞∑
n=0
−Ln

(∫
Γ
ζ−(n+1)dζ

)
= −I .
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Proof of (3)

(3) Show PjL = LPj .

L commutes with R(ζ) so that L commutes with

Pj = 1
2πi

∫
Γj

R(ζ)dζ.
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Properties of the Resolvent
Let V be a finite-dimensional vector space and L ∈ L(V ). If ζ 6∈ σ(L),
then the operator L − ζI is invertible. We have defined the resolvent of
L as

R(ζ) = (L − ζI )−1 .

We have shown that for each λj ∈ Σ(L) ∃Pj ,Nj ,Sj such that

R(ζ) =
[
−(ζ − λj)−1Pj −

mj∑
n=1

(ζ − λj)−(n+1)N n
j

]

+
[ ∞∑

n=0
(ζ − λj)nS (n+1)

j

]

= Cj(ζ) + Sj(ζ) ,

where mj = rank (Pj).

NjPj = Nj = PjNj , PjSj = 0 = SjPj , PjPk = δjkPj

and
PjL = LPj .
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Partial Fractions Decomposition of R(ζ)
Let Cj(ζ) be the principal part of R(ζ) at each of its poles
Σ(L) = {λ1, λ2, . . . , λs}. Then the function

F(ζ) = R(ζ)−
s∑

j=1
Cj(ζ)

has an analytic extension to all of C since the poles λj are removable.
Moreover,

lim
ζ→∞

F(ζ) = 0

since

lim
ζ→∞

Cj(ζ) = 0 and lim
ζ→∞

R(ζ) = 0 we have R(ζ) = −
∞∑

n=0
ζ−(n+1)Ln .

Therefore, F(ζ) is a bounded entire function. By Liouville’s Theorem
F ≡ 0. Hence,

R(ζ) =
s∑

j=1
Cj(ζ) = −

s∑
j=1

[
(ζ − λj)−1Pj +

mj−1∑
n=1

(ζ − λj)−(n+1)N n
j

]
.
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Spectral Representation Theorem

Since X = M1 ⊕ · · · ⊕Ms, we can write L as the sum of the operators
PjLPj j = 1, . . . , s. Note that for each j = 1, . . . , s

PjLPj = LPj = λjPj + Nj .

Therefore, L = S + N where S =
∑s

j=1 λjPj and N =
∑s

j=1 Nj , with

I =
s∑

j=1
Pj

PkPj = PjPk = δjkPj

NjPk = PkNj = δkjNj

NjPk = PkNj = 0 i 6= j .

This representation is unique in the sense that any other such
representation L = S ′ + N ′ has S = S ′ and N = N ′.
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