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The QR for Algorithm for the Shur Factorization

The QR algorithm is used to compute a specific Schur unitary
triangularization of a matrix A ∈ Cn×n.
The algorithm is iterative. That is, we generate a sequence

A = A0, A1, A2, . . .

of matrices that are unitarily similar to A. The goal is to get the
subdiagonal elements to converge to zero, since then the eigenvalues will
appear on the diagonal.
If A is Hermitian, then so are A1, A2, . . . , so if the subdiagonal
elements → 0, also the superdiagonal elements converge to 0, and (in the
limit) we have diagonalized A.

Variations of the QR algorithm are the most commonly used methods for
computing all the eigenvalues (and eigenvectors if wanted) of a matrix. It
behaves well numerically since all the similarity transformations are
unitary.
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Upper-Hessenberg Form
When used in practice, a matrix is first reduced to upper-Hessenberg
form 

∗ · · · ∗ ∗
∗ . . . ∗ ∗

0
. . .

...
0 . . . ∗ ∗


(hij = 0 for i > j + 1) using unitary similarity transformations built from
Householder reflections (or Givens rotations), quite analogous to
computing a QR factorization.
However, since similarity transformations are being performed, we require
left and right multiplication by the Householder transformations —
leading to an inability to zero out the first subdiagonal (i = j + 1) in the
process.
If A is Hermitian and upper-Hessenberg, A is tridiagonal.
This initial reduction decreases the computational cost of the QR
algorithm. It is successful because the upper-Hessenberg form is
preserved by the iterations: if Ak is upper Hessenberg, so is Ak+1.
There are many variants of the QR algorithm. We consider the basic
algorithm over C.
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The Basic QR Algorithm

Given A ∈ Cn×n, let A0 = A. For k = 0, 1, 2, . . ., starting with Ak , do a
QR factorization of Ak :

Ak = QkRk .

The set
Ak+1 = RkQk .

Remark
Rk = QH

k Ak so Ak+1 = QH
k AkQk

is unitarily similar to Ak . In general,

Ak+1 = QH
k QH

k−1 . . .QH
0 A0Q0 . . .Qk−1Qk .

Thus
‖Ak‖ = ‖A0‖ ∀ k = 1, 2, . . . .

The algorithm uses the Q of the QR factorization of Ak to perform the
next unitary similarity transformation.
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Convergence of the QR Algorithm
We now show convergence. under the hypotheses that A ∈ Cn×n has
eigenvalues λ1, . . . , λn with |λ1| > |λ2| > · · · > |λn| > 0 .

Lemma. Let Qj ∈ Cn×n j = 1, 2, . . . be unitary matrices, and let
Rj ∈ Cn×n j = 1, 2, . . . be upper triangular matrices with positive
diagonal entries. Suppose

QjRj → I as j →∞ .

Then Qj → I and Rj → I .

Proof Sketch. Let Qjk be any subsequence of Qj . Since the set of
unitary matrices in Cn×n is compact, there exists a sub-subsequence Qjkl
and a unitary Q such that Qjkl

→ Q. So

Rjkl
= QH

jkl
Qjkl

Rjkl
→ QH · I = QH .

So QH is unitary, upper triangular, with nonnegative diagonal elements,
which implies easily that QH = I . Thus every subsequence of Qj has in
turn a sub-subsequence converging to I . Consequently, Qj → I , and thus
Rj = QH

j QjRj → I · I = I . �
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Convergence of the QR Algorithm

Theorem: Suppose A ∈ Cn×n has eigenvalues

λ1, . . . , λn with |λ1| > |λ2| > · · · > |λn| > 0 .

Choose X ∈ Cn×n such that

X−1AX = Λ ≡ diag (λ1, . . . , λn).

Suppose X−1 has an LU decomposition. Generate the sequence

A = A0, A1, A2, . . .

using the QR algorithm. Then

the subdiagonal entries of Ak → 0 as k →∞,
and

the jth diagonal entry → λj 1 ≤ j ≤ n.
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Proof

Define
Q̃k = Q0Q1 · · ·Qk and R̃k = Rk · · ·R0.

Then Ak+1 = Q̃H
k AQ̃k .

Claim: Q̃kR̃k = Ak+1

Proof: Proceed by induction. Clearly the Claim holds for k = 0.
Suppose Q̃k−1R̃k−1 = Ak . Then

Rk = Ak+1QH
k = Q̃H

k AQ̃kQH
k = Q̃H

k AQ̃k−1,

so
R̃k = RkR̃k−1 = Q̃H

k AQ̃k−1R̃k−1 = Q̃H
k Ak+1,

so Q̃kR̃k = Ak+1. �
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Proof

Recall
X−1AX = Λ ≡ diag (λ1, . . . , λn).

Set

X = QR, X−1 = LU ,
Q unitary, L unit lower triangular,
R nonsingular upper triangular, U nonsingular upper triangular.

Then

Ak+1 = XΛk+1X−1

= QRΛk+1LU
= QR(Λk+1LΛ−(k+1))Λk+1U .

Let
Ek+1 = Λk+1LΛ−(k+1) − I and Fk+1 = REk+1R−1.
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Proof
Claim: Ek+1 → 0 (and thus Fk+1 → 0) as k →∞.
Proof: Let `ij denote the elements of L. Ek+1 is strictly lower triangular,
and for i > j its ij element is(

λi
λj

)k+1
`ij → 0 since |λi | < |λj |. �

Now Ak+1 = QR(I + Ek+1)Λk+1U = Q(I + Fk+1)RΛk+1U .
Choose a QR factorization of I + Fk+1 (which is invertible)

I + Fk+1 = Q̂k+1R̂k+1 → I ,

where R̂k+1 has positive diagonal entries. By the Lemma,

Q̂k+1 → I and R̂k+1 → I .

Since
Ak+1 = Q(Q̂k+1R̂k+1)RΛk+1U = (QQ̂k+1)(R̂k+1RΛk+1U )

and Ak+1 = Q̃kR̃k , the essential uniqueness of QR factorizations of
invertible matrices implies there exists a unitary diagonal matrix Dk for
which

QQ̂k+1DH
k = Q̃k and DkR̂k+1Λk+1U = R̃k .
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Proof

So Q̃kDk = QQ̂k+1 → Q, and thus

DH
k Ak+1Dk = DH

k Q̃H
k AQ̃kDk → QH AQ.

But

QH AQ = QH (XΛX−1)Q
= QH (QRΛX−1)QRR−1

= RΛR−1

is upper triangular with diagonal entries λ1, . . . , λn in that order. Since
Dk is unitary and diagonal, the diagonal and lower triangular entries of
RΛR−1 and of DkRΛR−1DH

k are the same, namely diag [λ1, . . . , λn] and

‖Ak+1 −DkRΛR−1DH
k ‖ = ‖DH

k Ak+1Dk − RΛR−1‖ → 0.

The Theorem follows. �
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Comments on the Proof
Note that the proof shows that there is a sequence {Dk} of unitary
diagonal matrices for which DH

k Ak+1Dk → RΛR−1. So although the
superdiagonal (i < j) elements of Ak+1 may not converge, the
magnitude of each superdiagonal element converges.
As a partial explanation for why the QR algorithm works, we show how
the convergence of the first column of Ak to [λ1, 0, . . . , 0] follows from
the power method.
Suppose A ∈ Cn×n is diagonalizable and has a unique e-value λ1 > 0 of
maximum modulus with unit e-vec x1. Then if x ∈ Cn has 〈x, x1〉 6= 0,
then Akx/‖Akx‖ → x1/ ‖x1‖ .
If X−1 has an LU factorization, the (1, 1) entry of X−1 is nonzero. Thus
when e1 is expanded in terms of the eigenvectors
x1, . . . , xn (cols. of X), the x1-coefficient is nonzero. So

Ak+1e1/‖Ak+1e1‖ → αx1 for some α ∈ C with |α| = 1.

Let (q̃k)1 denote the first column of Q̃k and (r̃k)11 denote the
(1, 1)-entry of R̃k . Then

Ak+1e1 = Q̃kR̃ke1 = (r̃k)11Q̃ke1 = (r̃k)11(q̃k)1,

so (q̃k)1 → αx1. Since Ak+1 = Q̃H
k AQ̃k , the first column of Ak+1

converges to [λ1, 0, . . . , 0] .
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