Linear Analysis Lecture 17

The QR algorithm is used to compute a specific Schur unitary triangularization of a matrix $A \in \mathbb{C}^{n \times n}$.
The algorithm is iterative. That is, we generate a sequence

$$
A=A_{0}, A_{1}, A_{2}, \ldots
$$

of matrices that are unitarily similar to A. The goal is to get the subdiagonal elements to converge to zero, since then the eigenvalues will appear on the diagonal.
If A is Hermitian, then so are A_{1}, A_{2}, \ldots, so if the subdiagonal elements $\rightarrow 0$, also the superdiagonal elements converge to 0 , and (in the limit) we have diagonalized A.

Variations of the QR algorithm are the most commonly used methods for computing all the eigenvalues (and eigenvectors if wanted) of a matrix. It behaves well numerically since all the similarity transformations are unitary.

Upper-Hessenberg Form

When used in practice, a matrix is first reduced to upper-Hessenberg form

$$
\left[\begin{array}{cccc}
* & \cdots & * & * \\
* & \cdots & * & * \\
0 & \ddots & & \vdots \\
0 & \ldots & * & *
\end{array}\right]
$$

($h_{i j}=0$ for $i>j+1$) using unitary similarity transformations built from Householder reflections (or Givens rotations), quite analogous to computing a QR factorization. However, since similarity transformations are being performed, we require left and right multiplication by the Householder transformations leading to an inability to zero out the first subdiagonal $(i=j+1)$ in the process.
If A is Hermitian and upper-Hessenberg, A is tridiagonal.
This initial reduction decreases the computational cost of the QR algorithm. It is successful because the upper-Hessenberg form is preserved by the iterations: if A_{k} is upper Hessenberg, so is A_{k+1}. There are many variants of the QR algorithm. We consider the basic algorithm over \mathbb{C}.

Given $A \in \mathbb{C}^{n \times n}$, let $A_{0}=A$. For $k=0,1,2, \ldots$, starting with A_{k}, do a QR factorization of A_{k} :

$$
A_{k}=Q_{k} R_{k}
$$

The set

$$
A_{k+1}=R_{k} Q_{k}
$$

Remark

$$
R_{k}=Q_{k}^{H} A_{k} \quad \text { so } \quad A_{k+1}=Q_{k}^{H} A_{k} Q_{k}
$$

is unitarily similar to A_{k}. In general,

$$
A_{k+1}=Q_{k}^{H} Q_{k-1}^{H} \ldots Q_{0}^{H} A_{0} Q_{0} \ldots Q_{k-1} Q_{k}
$$

Thus

$$
\left\|A_{k}\right\|=\left\|A_{0}\right\| \quad \forall k=1,2, \ldots
$$

The algorithm uses the Q of the QR factorization of A_{k} to perform the next unitary similarity transformation.

Convergence of the QR Algorithm

We now show convergence. under the hypotheses that $A \in \mathbb{C}^{n \times n}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|>0$.

Lemma. Let $Q_{j} \in \mathbb{C}^{n \times n} \quad j=1,2, \ldots$ be unitary matrices, and let $R_{j} \in \mathbb{C}^{n \times n} \quad j=1,2, \ldots$ be upper triangular matrices with positive diagonal entries. Suppose

$$
Q_{j} R_{j} \rightarrow I \quad \text { as } \quad j \rightarrow \infty .
$$

Then $Q_{j} \rightarrow I$ and $R_{j} \rightarrow I$.
Proof Sketch. Let $Q_{j_{k}}$ be any subsequence of Q_{j}. Since the set of unitary matrices in $\mathbb{C}^{n \times n}$ is compact, there exists a sub-subsequence $Q_{j_{k_{l}}}$ and a unitary Q such that $Q_{j_{k_{l}}} \rightarrow Q$. So

$$
R_{j_{k_{l}}}=Q_{j_{k_{l}}}^{H} Q_{j_{k_{l}}} R_{j_{k_{l}}} \rightarrow Q^{H} \cdot I=Q^{H} .
$$

So Q^{H} is unitary, upper triangular, with nonnegative diagonal elements, which implies easily that $Q^{H}=I$. Thus every subsequence of Q_{j} has in turn a sub-subsequence converging to I. Consequently, $Q_{j} \rightarrow I$, and thus $R_{j}=Q_{j}^{H} Q_{j} R_{j} \rightarrow I \cdot I=I$.

Theorem: Suppose $A \in \mathbb{C}^{n \times n}$ has eigenvalues

$$
\lambda_{1}, \ldots, \lambda_{n} \quad \text { with } \quad\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|>0 .
$$

Choose $X \in \mathbb{C}^{n \times n}$ such that

$$
X^{-1} A X=\Lambda \equiv \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Suppose X^{-1} has an LU decomposition. Generate the sequence

$$
A=A_{0}, A_{1}, A_{2}, \ldots
$$

using the QR algorithm. Then
the subdiagonal entries of $A_{k} \rightarrow 0$ as $k \rightarrow \infty$, and the $j^{\text {th }}$ diagonal entry $\rightarrow \lambda_{j} \quad 1 \leq j \leq n$.

Define

$$
\widetilde{Q}_{k}=Q_{0} Q_{1} \cdots Q_{k} \quad \text { and } \quad \widetilde{R}_{k}=R_{k} \cdots R_{0}
$$

Then $A_{k+1}=\widetilde{Q}_{k}^{H} A \widetilde{Q}_{k}$.

Claim: $\widetilde{Q}_{k} \widetilde{R}_{k}=A^{k+1}$
Proof: Proceed by induction. Clearly the Claim holds for $k=0$. Suppose $\widetilde{Q}_{k-1} \widetilde{R}_{k-1}=A^{k}$. Then

$$
R_{k}=A_{k+1} Q_{k}^{H}=\widetilde{Q}_{k}^{H} A \widetilde{Q}_{k} Q_{k}^{H}=\widetilde{Q}_{k}^{H} A \widetilde{Q}_{k-1},
$$

SO

$$
\widetilde{R}_{k}=R_{k} \widetilde{R}_{k-1}=\widetilde{Q}_{k}^{H} A \widetilde{Q}_{k-1} \widetilde{R}_{k-1}=\widetilde{Q}_{k}^{H} A^{k+1}
$$

so $\widetilde{Q}_{k} \widetilde{R}_{k}=A^{k+1}$.

Recall

$$
X^{-1} A X=\Lambda \equiv \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Set

$$
\begin{array}{lr}
X=Q R, & X^{-1}=L U, \\
Q & \text { unitary, } \\
R & \text { nonsingular upper triangular, }
\end{array} \quad U \text { unit lower triangular, }, \text { nonsingular upper triangular. }
$$

Then

$$
\begin{aligned}
A^{k+1} & =X \Lambda^{k+1} X^{-1} \\
& =Q R \Lambda^{k+1} L U \\
& =Q R\left(\Lambda^{k+1} L \Lambda^{-(k+1)}\right) \Lambda^{k+1} U
\end{aligned}
$$

Let

$$
E_{k+1}=\Lambda^{k+1} L \Lambda^{-(k+1)}-I \quad \text { and } \quad F_{k+1}=R E_{k+1} R^{-1}
$$

Proof

Claim: $E_{k+1} \rightarrow 0$ (and thus $F_{k+1} \rightarrow 0$) as $k \rightarrow \infty$.
Proof: Let $\ell_{i j}$ denote the elements of $L . E_{k+1}$ is strictly lower triangular, and for $i>j$ its $i j$ element is

$$
\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{k+1} \ell_{i j} \rightarrow 0 \quad \text { since }\left|\lambda_{i}\right|<\left|\lambda_{j}\right| . \square
$$

Now

$$
A^{k+1}=Q R\left(I+E_{k+1}\right) \Lambda^{k+1} U=Q\left(I+F_{k+1}\right) R \Lambda^{k+1} U
$$

Choose a QR factorization of $I+F_{k+1}$ (which is invertible)

$$
I+F_{k+1}=\widehat{Q}_{k+1} \widehat{R}_{k+1} \rightarrow I,
$$

where \widehat{R}_{k+1} has positive diagonal entries. By the Lemma,

$$
\widehat{Q}_{k+1} \rightarrow I \quad \text { and } \quad \widehat{R}_{k+1} \rightarrow I .
$$

Since

$$
A^{k+1}=Q\left(\widehat{Q}_{k+1} \widehat{R}_{k+1}\right) R \Lambda^{k+1} U=\left(Q \widehat{Q}_{k+1}\right)\left(\widehat{R}_{k+1} R \Lambda^{k+1} U\right)
$$

and $\quad A^{k+1}=\widetilde{Q}_{k} \widetilde{R}_{k}$, the essential uniqueness of QR factorizations of invertible matrices implies there exists a unitary diagonal matrix D_{k} for which

$$
Q \widehat{Q}_{k+1} D_{k}^{H}=\widetilde{Q}_{k} \quad \text { and } \quad D_{k} \widehat{R}_{k+1} \Lambda^{k+1} U=\widetilde{R}_{k} .
$$

So $\widetilde{Q}_{k} D_{k}=Q \widehat{Q}_{k+1} \rightarrow Q$, and thus

$$
D_{k}^{H} A_{k+1} D_{k}=D_{k}^{H} \widetilde{Q}_{k}^{H} A \widetilde{Q}_{k} D_{k} \rightarrow Q^{H} A Q
$$

But

$$
\begin{aligned}
Q^{H} A Q & =Q^{H}\left(X \Lambda X^{-1}\right) Q \\
& =Q^{H}\left(Q R \Lambda X^{-1}\right) Q R R^{-1} \\
& =R \Lambda R^{-1}
\end{aligned}
$$

is upper triangular with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ in that order. Since D_{k} is unitary and diagonal, the diagonal and lower triangular entries of $R \Lambda R^{-1}$ and of $D_{k} R \Lambda R^{-1} D_{k}^{H}$ are the same, namely diag $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ and

$$
\left\|A_{k+1}-D_{k} R \Lambda R^{-1} D_{k}^{H}\right\|=\left\|D_{k}^{H} A_{k+1} D_{k}-R \Lambda R^{-1}\right\| \rightarrow 0 .
$$

The Theorem follows.

Comments on the Proof

Note that the proof shows that there is a sequence $\left\{D_{k}\right\}$ of unitary diagonal matrices for which $D_{k}^{H} A_{k+1} D_{k} \rightarrow R \Lambda R^{-1}$. So although the superdiagonal $(i<j)$ elements of A_{k+1} may not converge, the magnitude of each superdiagonal element converges.
As a partial explanation for why the QR algorithm works, we show how the convergence of the first column of A_{k} to $\left[\lambda_{1}, 0, \ldots, 0\right]$ follows from the power method.
Suppose $A \in \mathbb{C}^{n \times n}$ is diagonalizable and has a unique e-value $\lambda_{1}>0$ of maximum modulus with unit e-vec x_{1}. Then if $x \in \mathbb{C}^{n}$ has $\left\langle x, x_{1}\right\rangle \neq 0$, then $A^{k} x /\left\|A^{k} x\right\| \rightarrow x_{1} /\left\|x_{1}\right\|$.
If X^{-1} has an LU factorization, the $(1,1)$ entry of X^{-1} is nonzero. Thus when e_{1} is expanded in terms of the eigenvectors x_{1}, \ldots, x_{n} (cols. of X), the x_{1}-coefficient is nonzero. So

$$
A^{k+1} e_{1} /\left\|A^{k+1} e_{1}\right\| \rightarrow \alpha x_{1} \quad \text { for some } \alpha \in \mathbb{C} \quad \text { with }|\alpha|=1 .
$$

Let $\left(\widetilde{q}_{k}\right)_{1}$ denote the first column of \widetilde{Q}_{k} and $\left(\widetilde{r}_{k}\right)_{11}$ denote the $(1,1)$-entry of \widetilde{R}_{k}. Then

$$
\left.A^{k+1} e_{1}=\widetilde{Q}_{k} \widetilde{R}_{k} e_{1} \underset{\sim}{=}\left(\widetilde{r}_{k}\right)_{\sim}\right)_{11} \widetilde{Q}_{k} e_{1}=\left(\widetilde{r}_{k}\right)_{11}\left(\widetilde{q}_{k}\right)_{1},
$$

so $\left(\widetilde{q}_{k}\right)_{1} \rightarrow \alpha x_{1}$. Since $A_{k+1}=\widetilde{Q}_{k}^{H} A \widetilde{Q}_{k}$, the first column of A_{k+1} converges to $\left[\lambda_{1}, 0, \ldots, 0\right]$.

