Linear Analysis Lecture 16

Recall the Gram-Schmidt orthogonalization process. Let V be an inner product space, and suppose $a_{1}, \ldots, a_{n} \in V$ are linearly independent. Define q_{1}, \ldots, q_{n} inductively, as follows: set

$$
\begin{gathered}
p_{1}=a_{1}, \quad q_{1}=p_{1} /\left\|p_{1}\right\| \\
p_{j}=a_{j}-\sum_{i=1}^{j-1}\left\langle a_{j}, q_{i}\right\rangle q_{i} \quad \text { for } \quad 2 \leq j \leq n, \quad \text { and } \\
q_{j}=p_{j} /\left\|p_{j}\right\|
\end{gathered}
$$

For $1 \leq j \leq n$,

$$
q_{j} \in \operatorname{Span}\left\{a_{1}, \ldots, a_{j}\right\}
$$

so each $p_{j} \neq 0$ by the lin. indep. of $\left\{a_{1}, \ldots, a_{n}\right\}$. Thus each q_{j} is well-defined.
We have $\left\{q_{1}, \ldots, q_{n}\right\}$ is an orthonormal basis for $\operatorname{Span}\left\{a_{1}, \ldots, a_{n}\right\}$. Also

$$
a_{k} \in \operatorname{Span}\left\{q_{1}, \ldots, q_{k}\right\} \quad 1 \leq k \leq n
$$

so $\left\{q_{1}, \ldots, q_{k}\right\}$ is an orthonormal basis of $\operatorname{Span}\left\{a_{1}, \ldots, a_{k}\right\}$.

Define

$$
r_{j j}=\left\|p_{j}\right\| \quad \text { and } \quad r_{i j}=\left\langle a_{j}, q_{i}\right\rangle \quad \text { for } \quad 1 \leq i<j \leq n,
$$

we have:

$$
\begin{aligned}
a_{1} & =r_{11} q_{1} \\
a_{2} & =r_{12} q_{1}+r_{22} q_{2}, \\
a_{3} & =r_{13} q_{1}+r_{23} q_{2}+r_{33} q_{3} \\
& \vdots \\
a_{n} & =\sum_{i=1}^{n} r_{i n} q_{i} .
\end{aligned}
$$

Set

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right], \quad R=\left[\begin{array}{lll}
r_{i j}
\end{array}\right], \quad \text { and } \quad Q=\left[\begin{array}{llll}
q_{1} & q_{2} & \ldots & q_{n}
\end{array}\right],
$$

where $r_{i j}=0, i>j$. Then $A=Q R$, where Q is unitary and R is upper triangular.
(1) If a_{1}, a_{2}, \cdots is a lin. indep. sequence, apply Gram-Schmidt to obtain an orthonormal sequence q_{1}, q_{2}, \ldots such that $\left\{q_{1}, \ldots, q_{k}\right\}$ is an orthonormal basis for $\operatorname{Span}\left\{a_{1}, \ldots, a_{k}\right\}, k \geq 1$.
(2) If the a_{j} 's are lin. dep., for some value(s) of k,

$$
a_{k} \in \operatorname{Span}\left\{a_{1}, \ldots, a_{k-1}\right\}, \quad \text { so } \quad p_{k}=0
$$

The process can be modified by setting $r_{k k}=0$, not defining a new q_{k} for this iteration and then proceeding as usual. We end up with orthogonal q_{j} 's. Then for $k \geq 1$, the vectors $\left\{q_{1}, \ldots, q_{k}\right\}$ form an orthonormal basis for $\operatorname{Span}\left\{a_{1}, \ldots, a_{\ell+k}\right\}$ where ℓ is the number of $r_{j j}=0$. Again we obtain $A=Q R$, but now Q may not be square.
(3) The classical Gram-Schmidt algorithm has poor computational performance due to the accumulation of round-off error. The computed q_{j} 's are not orthogonal: $\left\langle q_{j}, q_{k}\right\rangle$ is small for $j \neq k$ and $|k-j|$ small, but not for $|k-j|$ big.

$$
\begin{aligned}
& \text { Classic Gram-Schmidt } \\
& \text { For } j=1, \cdots, n \text { do } \\
& p:=a_{j} \\
& \text { For } i=1, \ldots, j-1 \text { do } \\
& r_{i j}=\left\langle a_{j}, q_{i}\right\rangle \\
& p:=p-r_{i j} q_{i} \\
& r_{j j}:=\|p\| \\
& q_{j}:=p / r_{j j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For Modified Gram-Schmidt } \\
& j=1, \ldots, n d o \\
& \qquad \begin{array}{l}
p:=a_{j} \\
\text { For } i=1, \ldots, j-1 d o \\
\\
\quad \begin{array}{l}
r_{i j}=\left\langle p, q_{i}\right\rangle \\
p:=p-r_{i j} q_{i}
\end{array} \\
r_{j j}=\|p\| \\
q_{j}:=p / r_{j j}
\end{array}
\end{aligned}
$$

The only difference is in the computation of $r_{i j}$, we orthogonalize the accumulated partial sum for p_{j} against each q_{i} successively.

Proposition. Suppose $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. Then

$$
\exists \text { unitary } \quad Q \in \mathbb{C}^{m \times m} \quad \text { upper triangular } \quad R \in \mathbb{C}^{m \times n}
$$

$\widetilde{\sim}_{\sim}$ for which $A=Q R$. If $\widetilde{Q} \in \mathbb{C}^{m \times n}$ denotes the first n columns of Q and $\widetilde{R} \in \mathbb{C}^{n \times n}$ denotes the first n rows of R, then

$$
A=Q R=[\widetilde{Q} *]\left[\begin{array}{c}
\widetilde{R} \\
0
\end{array}\right]=\widetilde{Q} \widetilde{R}
$$

Moreover
(a) We may choose an R to have nonnegative diagonal entries.
(b) If A is of full rank, then we can choose R with positive diagonal entries, in which case the condensed factorization $A=\widetilde{Q} \widetilde{R}$ is unique
(c) If A is of full rank, the condensed factorization $A=\widetilde{Q} \widetilde{R}$ is essentially unique: if $A=\widetilde{Q}_{1} \widetilde{R}_{1}=\widetilde{Q}_{2} \widetilde{R}_{2}$, then there is a unitary diagonal matrix $\underset{\sim}{D} \in \mathbb{C}^{n \times n} \widetilde{\sim}_{1}$ for which $\widetilde{Q}_{2}=\widetilde{Q}_{1} D^{\mathrm{H}}$, rescaling the columns of \widetilde{Q}_{1}, and $\widetilde{R}_{2}=D \widetilde{R}_{1}$, rescaling the rows of \widetilde{R}_{1}.

If A has full rank, apply the Gram-Schmidt.
Define

$$
\widetilde{Q}=\left[q_{1}, \ldots, q_{n}\right] \in \mathbb{C}^{m \times n} \quad \text { and } \quad \widetilde{R}=\left[r_{i j}\right] \in \mathbb{C}^{n \times n}
$$

as above, so

$$
A=\widetilde{Q} \widetilde{R}
$$

Extend $\left\{q_{1}, \ldots, q_{n}\right\}$ to an orthonormal basis $\left\{q_{1}, \ldots, q_{m}\right\}$ of \mathbb{C}^{m}, and set

$$
Q=\left[q_{1}, \ldots, q_{m}\right] \quad \text { and } \quad R=\left[\begin{array}{c}
\widetilde{R} \\
0
\end{array}\right] \in \mathbb{C}^{m \times n}, \text { so } A=Q R .
$$

As $r_{j j}>0$ in the G-S process, we have (b).
Uniqueness follows by induction passing through the G-S process again, noting that at each step we have no choice.
(c) follows easily from (b).
(1) If $A \in \mathbb{R}^{m \times n}$, everything can be done in real arithmetic, so, e.g., $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is real, upper triangular.
(2) In practice, there are more efficient and better computationally behaved ways of calculating the Q and R factors. The idea is to create zeros below the diagonal (successively in columns $1,2, \ldots$) as in Gaussian Elimination, except we now use Householder transformations (which are unitary) instead of the unit lower triangular matrices L_{j}.
(3) A $Q R$ factorization is also possible when $m<n$.

$$
A=Q\left[\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right]
$$

where $Q \in \mathbb{C}^{m \times m}$ is unitary and $R_{1} \in \mathbb{C}^{m \times m}$ is upper triangular.

Every $A \in \mathbb{C}^{m \times n}$ has a $Q R$-factorization, even when $m<n$. Indeed, if

$$
\operatorname{rank}(A)=k,
$$

there always exist

$$
\begin{array}{cl}
Q \in \mathbb{C}^{m \times k} & \text { with orthonormal columns, } \\
R \in \mathbb{C}^{k \times n} & \text { full rank upper triangular }
\end{array}
$$ and a permutation matrix $P \in \mathbb{R}^{n \times n}$ such that

$$
(*) \quad A P=Q R .
$$

Moreover, if A has rank n (so $m \geq n$), then $R \in \mathbb{C}^{n \times n}$ is nonsingular. On the other hand, if $m<n$, then

$$
R=\left[\begin{array}{cc}
R_{1} & R_{2} \\
0 & 0
\end{array}\right]
$$

where $R_{1} \in \mathbb{C}^{k \times k}$ is nonsingular.
Finally, if $A \in \mathbb{R}^{m \times n}$, then the same facts hold, but now both Q and R can be chosen to be real matrices.

Let $A \in \mathbb{C}^{m \times n}$ have condensed $Q R$-factorization

$$
A=\widetilde{Q} \widetilde{R}
$$

Then by construction the columns of \widetilde{Q} form an orthonormal basis for the range of A. Hence $P=\widetilde{Q} \widetilde{Q}^{\mathrm{H}}$ is the orthogonal projector onto the range of A.
Similarly, if the condensed QR-factorization of A^{H} is

$$
A^{\mathrm{H}}=\widetilde{Q}_{1} \widetilde{R}_{1},
$$

then $P_{1}=\widetilde{Q}_{1} \widetilde{Q}_{1}^{\mathrm{H}}$ is the orthogonal projector onto $\operatorname{ran}\left(A^{\mathrm{H}}\right)=\operatorname{ker}(A)^{\perp}$, and so

$$
I-\widetilde{Q}_{1} \widetilde{Q}_{1}^{\mathrm{H}}
$$

is the orthogonal projector onto $\operatorname{ker}(A)$.
The QR-factorization can be computed using either Givens rotations or Householder reflections. Although, the approach via rotations is arguably more stable numerically, it is more difficult to describe so we only illustrate the approach using Householder reflections.

$Q R$ using Householder Reflections

Recall that to any $w \in \mathbb{C}^{n}$ we can associate the Householder reflection

$$
U=I-2 \frac{w w^{*}}{w^{*} w}
$$

which reflects \mathbb{C}^{n} about the hyperplane $\operatorname{Span}\{w\}^{\perp}$. Given a pair of non-zero vectors x and y with

$$
\|x\|_{2}=\|y\|_{2}, \quad \text { and } \quad x \neq y
$$

there is a Householder reflection such that $y=U x$:

$$
U=I-2 \frac{(x-y)(x-y)^{*}}{(x-y)^{*}(x-y)}
$$

Proof:

$$
\begin{aligned}
U x & =x-2(x-y) \frac{\|x\|^{2}-y^{*} x}{\|x\|^{2}-2 y^{*} x+\|y\|^{2}} \\
& =x-2(x-y) \frac{\|x\|^{2}-y^{*} x}{2\left(\|x\|^{2}-y^{*} x\right)} \\
& =y
\end{aligned}
$$

since $\|x\|=\|y\|$.

$Q R$ using Householder Reflections

We now describe the basic deflation step in the QR-factorization Suppose $A_{0}=\left[\begin{array}{cc}\alpha_{0} & a_{0}^{T} \\ b_{0} & A_{0}\end{array}\right]$ and set $\nu_{0}=\left\|\binom{\alpha_{0}}{b_{0}}\right\|_{2}$. Let H_{0} be the Householder transformation that maps
 this case, permute the offending column to the right bringing in the column of greatest magnitude. Now repeat with A_{1}.
If this method is implemented by always permuting the column of greatest magnitude into the current pivot column, then $A P=Q R$ gives a QR-factorization with the diagonal entries of R nonnegative and listed in the order of descending magnitude.

QR for Solving Least Squares Problems

Suppose $A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m}$, and $m \geq n$ with $\operatorname{rank}(A)=n$. Consider the least squares problem $\min \|b-A x\|^{2}$. Let $A=Q R$ be a $Q R$ factorization of A, with condensed form $Q_{1} \widetilde{R}$, so that $\widetilde{R} \in \mathbb{C}^{n \times n}$ is nonsingular. Write $Q=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]$ where $Q_{2} \in \mathbb{C}^{m \times(m-n)}$. Then

$$
\begin{aligned}
\|b-A x\|^{2} & =\|b-Q R x\|^{2} \\
& =\left\|Q^{\mathrm{H}} b-R x\right\|^{2} \\
& =\left\|\left[\begin{array}{c}
Q_{1}^{\mathrm{H}} \\
Q_{2}^{\mathrm{H}}
\end{array}\right] b-\left[\begin{array}{c}
\widetilde{R} \\
0
\end{array}\right] x\right\|^{2} \\
& =\left\|\left[\begin{array}{c}
Q_{1}^{\mathrm{H}} b-\widetilde{R} x \\
Q_{2}^{\mathrm{H}} b
\end{array}\right]\right\|^{2} \\
& =\left\|Q_{1}^{\mathrm{H}} b-\widetilde{R} x\right\|^{2}+\left\|Q_{2}^{\mathrm{H}} b\right\|^{2} .
\end{aligned}
$$

Here $\widetilde{R} \in \mathbb{C}^{n \times n}$ is an invertible upper triangle matrix, so

$$
x \text { solves } \min _{x \in \mathbb{C}^{n}}\|b-A x\|^{2} \quad \Longleftrightarrow \quad \widetilde{R} x=Q_{1}^{\mathrm{H}} b .
$$

This system can be solved by back-substitution. Note that we only need Q_{1} and \widetilde{R} to solve for x.

QR for Solving Least Squares Problems

Next suppose $A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m}$, and $m<n$ with $\operatorname{rank}(A)=m$, so that there are many solutions to $A x=b$.
Consider the least squares problem

$$
\min \|b-A x\|^{2}
$$

In this case A is surjective, so there exists $\bar{x} \in \mathbb{C}^{n}$ such that $A \bar{x}=b$. Let $A^{\mathrm{H}}=Q R$ be a $Q R$ factorization of A^{H}, with condensed form

$$
A=\widetilde{Q} \widetilde{R}
$$

so that $\widetilde{R} \in \mathbb{C}^{n \times n}$ is nonsingular and $\widetilde{Q}{ }^{\mathrm{H}} \widetilde{Q}=I_{m \times m}$. Now solve

$$
A x=\widetilde{R}^{\mathrm{H}} \widetilde{Q}^{\mathrm{H}} x=b
$$

To do this first solve

$$
\widetilde{R}^{\mathrm{H}} y=b
$$

by forward substitution ($\widetilde{R}^{\mathrm{H}}$ is nonsingular lower triangular), and set $\bar{x}=\widetilde{Q} y$. Then

$$
A \bar{x}=\widetilde{R}^{\mathrm{H}} \widetilde{Q}^{\mathrm{H}} \bar{x}=\widetilde{R}^{\mathrm{H}} \widetilde{Q}^{\mathrm{H}} \widetilde{Q} y=\widetilde{R}^{\mathrm{H}} y=b
$$

Also, \bar{x} is the least norm solution to $A x=b!($ Why?)

