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The QR Factorization

Recall the Gram-Schmidt orthogonalization process. Let V be an inner
product space, and suppose a1, . . . , an ∈ V are linearly independent.
Define q1, . . . , qn inductively, as follows: set

p1 = a1, q1 = p1/‖p1‖,

pj = aj −
j−1∑
i=1
〈aj , qi〉qi for 2 ≤ j ≤ n, and

qj = pj/‖pj‖ .

For 1 ≤ j ≤ n,
qj ∈ Span{a1, . . . , aj},

so each pj 6= 0 by the lin. indep. of {a1, . . . , an}. Thus each qj is
well-defined.
We have {q1, . . . , qn} is an orthonormal basis for Span{a1, . . . , an}. Also

ak ∈ Span{q1, . . . , qk} 1 ≤ k ≤ n,

so {q1, . . . , qk} is an orthonormal basis of Span{a1, . . . , ak}.
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The QR Factorization

Define

rjj = ‖pj‖ and rij = 〈aj , qi〉 for 1 ≤ i < j ≤ n,

we have:

a1 = r11 q1,

a2 = r12 q1 + r22 q2,

a3 = r13 q1 + r23 q2 + r33 q3,

...

an =
n∑

i=1
rin qi .

Set

A = [a1 a2 . . . an] , R = [rij ], and Q = [q1 q2 . . . qn] ,

where rij = 0, i > j. Then A = QR , where Q is unitary and R is upper
triangular.
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The QR Factorization: Remarks

(1) If a1, a2, · · · is a lin. indep. sequence, apply Gram-Schmidt to obtain
an orthonormal sequence q1, q2, . . . such that {q1, . . . , qk}
is an orthonormal basis for Span{a1, . . . , ak}, k ≥ 1.

(2) If the aj ’s are lin. dep., for some value(s) of k,

ak ∈ Span{a1, . . . , ak−1}, so pk = 0.

The process can be modified by setting rkk = 0, not defining a new qk
for this iteration and then proceeding as usual. We end up with
orthogonal qj ’s. Then for k ≥ 1, the vectors {q1, . . . , qk} form an
orthonormal basis for Span{a1, . . . , a`+k} where ` is the number of
rjj = 0. Again we obtain A = QR, but now Q may not be square.
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The QR Factorization: Remarks

(3) The classical Gram-Schmidt algorithm has poor computational
performance due to the accumulation of round-off error. The
computed qj ’s are not orthogonal: 〈qj , qk〉 is small for j 6= k and |k − j|
small, but not for |k − j| big.

Classic Gram-Schmidt Modified Gram-Schmidt
For j = 1, · · · ,n do For j = 1, . . . ,n do∣∣∣ p := aj

∣∣∣ p := aj∣∣∣ For i = 1, . . . , j − 1 do
∣∣∣ For i = 1, . . . , j − 1 do∣∣∣ ∣∣∣ rij = 〈aj , qi〉
∣∣∣ ∣∣∣ rij = 〈p, qi〉∣∣∣ ⌊

p := p − rijqi

∣∣∣ ⌊
p := p − rijqi∣∣∣ rjj := ‖p‖

∣∣∣ rjj = ‖p‖⌊
qj := p/rjj

⌊
qj := p/rjj

The only difference is in the computation of rij , we orthogonalize the
accumulated partial sum for pj against each qi successively.
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The QR Factorization

Proposition. Suppose A ∈ Cm×n with m ≥ n. Then

∃ unitary Q ∈ Cm×m upper triangular R ∈ Cm×n

for which A = QR. If Q̃ ∈ Cm×n denotes the first n columns of Q and
R̃ ∈ Cn×n denotes the first n rows of R, then

A = QR = [Q̃ ∗]
[

R̃
0

]
= Q̃R̃.

Moreover
(a) We may choose an R to have nonnegative diagonal entries.
(b) If A is of full rank, then we can choose R with positive diagonal

entries, in which case the condensed factorization A = Q̃R̃ is unique
(c) If A is of full rank, the condensed factorization A = Q̃R̃ is essentially

unique: if A = Q̃1R̃1 = Q̃2R̃2, then there is a unitary diagonal matrix
D ∈ Cn×n for which Q̃2 = Q̃1DH, rescaling the columns of Q̃1, and
R̃2 = DR̃1, rescaling the rows of R̃1.
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The QR Factorization: Proof

If A has full rank, apply the Gram-Schmidt.
Define

Q̃ = [q1, . . . , qn] ∈ Cm×n and R̃ = [rij ] ∈ Cn×n

as above, so
A = Q̃R̃.

Extend {q1, . . . , qn} to an orthonormal basis {q1, . . . , qm} of Cm, and set

Q = [q1, . . . , qm] and R =
[

R̃
0

]
∈ Cm×n, so A = QR.

As rjj > 0 in the G-S process, we have (b).
Uniqueness follows by induction passing through the G-S process again,
noting that at each step we have no choice.
(c) follows easily from (b).
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The QR Factorization: Remarks

(1) If A ∈ Rm×n, everything can be done in real arithmetic, so, e.g.,
Q ∈ Rm×m is orthogonal and R ∈ Rm×n is real, upper triangular.

(2) In practice, there are more efficient and better computationally
behaved ways of calculating the Q and R factors. The idea is to create
zeros below the diagonal (successively in columns 1, 2, . . .) as in
Gaussian Elimination, except we now use Householder transformations
(which are unitary) instead of the unit lower triangular matrices Lj .

(3) A QR factorization is also possible when m < n.

A = Q[R1 R2] ,

where Q ∈ Cm×m is unitary and R1 ∈ Cm×m is upper triangular.
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The QR Factorization
Every A ∈ Cm×n has a QR-factorization, even when m < n. Indeed, if

rank (A) = k,

there always exist

Q ∈ Cm×k with orthonormal columns,

R ∈ Ck×n full rank upper triangular,
and a permutation matrix P ∈ Rn×n such that

(∗) AP = QR.

Moreover, if A has rank n (so m ≥ n), then R ∈ Cn×n is nonsingular.
On the other hand, if m < n, then

R =
[
R1 R2
0 0

]
,

where R1 ∈ Ck×k is nonsingular.
Finally, if A ∈ Rm×n, then the same facts hold, but now both Q and R
can be chosen to be real matrices.
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The QR-Factorization and Orthogonal Projections

Let A ∈ Cm×n have condensed QR-factorization

A = Q̃R̃ .

Then by construction the columns of Q̃ form an orthonormal basis for
the range of A. Hence P = Q̃Q̃H is the orthogonal projector onto the
range of A.
Similarly, if the condensed QR-factorization of AH is

AH = Q̃1R̃1 ,

then P1 = Q̃1Q̃H
1 is the orthogonal projector onto ran(AH) = ker(A)⊥,

and so
I − Q̃1Q̃H

1

is the orthogonal projector onto ker(A).
The QR-factorization can be computed using either Givens rotations or
Householder reflections. Although, the approach via rotations is arguably
more stable numerically, it is more difficult to describe so we only
illustrate the approach using Householder reflections.
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QR using Householder Reflections
Recall that to any w ∈ Cn we can associate the Householder reflection

U = I − 2 ww∗

w∗w
which reflects Cn about the hyperplane Span{w}⊥. Given a pair of
non-zero vectors x and y with

‖x‖2 = ‖y‖2, and x 6= y,

there is a Householder reflection such that y = Ux:

U = I − 2(x − y)(x − y)∗

(x − y)∗(x − y) .

Proof:

Ux = x − 2(x − y) ‖x‖2 − y∗x
‖x‖2 − 2y∗x + ‖y‖2

= x − 2(x − y) ‖x‖
2 − y∗x

2(‖x‖2 − y∗x)
= y

since ‖x‖ = ‖y‖.
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QR using Householder Reflections

We now describe the basic deflation step in the QR-factorization Suppose

A0 =
[
α0 aT

0
b0 A0

]
and set ν0 =

∥∥∥∥(α0
b0

)∥∥∥∥
2
. Let H0 be the Householder

transformation that maps(
α0
bT

0

)
7→ ν0 e1 : H0 = I−2 wwT

wTw where w =
(
α0
b0

)
−ν0e1 =

(
α0 − ν0

b0

)
.

Thus, H0A =
[
ν0 aT

1
0 A1

]
. A problem occurs if ν0 = 0 or

(
α0
b0

)
= 0 . In

this case, permute the offending column to the right bringing in the
column of greatest magnitude. Now repeat with A1.
If this method is implemented by always permuting the column of
greatest magnitude into the current pivot column, then AP = QR gives
a QR-factorization with the diagonal entries of R nonnegative and listed
in the order of descending magnitude.
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QR for Solving Least Squares Problems
Suppose A ∈ Cm×n, b ∈ Cm, and m ≥ n with rank (A) = n. Consider
the least squares problem min ‖b −Ax‖2 . Let A = QR be a QR
factorization of A, with condensed form Q1R̃, so that R̃ ∈ Cn×n is
nonsingular. Write Q = [Q1 Q2] where Q2 ∈ Cm×(m−n). Then

‖b −Ax‖2 = ‖b −QRx‖2

= ‖QHb − Rx‖2

=
∥∥∥∥[ QH

1
QH

2

]
b −

[
R̃
0

]
x
∥∥∥∥2

=
∥∥∥∥[ QH

1 b − R̃x
QH

2 b

]∥∥∥∥2

= ‖QH
1 b − R̃x‖2 + ‖QH

2 b‖2.

Here R̃ ∈ Cn×n is an invertible upper triangle matrix, so

x solves min
x∈Cn

‖b −Ax‖2 ⇐⇒ R̃x = QH
1 b.

This system can be solved by back-substitution. Note that we only need
Q1 and R̃ to solve for x.
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QR for Solving Least Squares Problems
Next suppose A ∈ Cm×n, b ∈ Cm, and m < n with rank (A) = m, so
that there are many solutions to Ax = b.
Consider the least squares problem

min ‖b −Ax‖2 .

In this case A is surjective, so there exists x̄ ∈ Cn such that Ax̄ = b.
Let AH = QR be a QR factorization of AH, with condensed form

A = Q̃R̃,

so that R̃ ∈ Cn×n is nonsingular and Q̃HQ̃ = Im×m. Now solve

Ax = R̃HQ̃Hx = b.

To do this first solve
R̃Hy = b

by forward substitution (R̃H is nonsingular lower triangular), and set
x̄ = Q̃y . Then

Ax̄ = R̃HQ̃Hx̄ = R̃HQ̃HQ̃y = R̃Hy = b .

Also, x̄ is the least norm solution to Ax = b ! (Why?)
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