Linear Analysis
Lecture 16




The QR Factorization

Recall the Gram-Schmidt orthogonalization process. Let V be an inner

product space, and suppose aq,...,a, € V are linearly independent.
Define ¢, ..., g, inductively, as follows: set
p1 = a1, o =pi/llpl
j—1
pj = aj — Z(aj, qi) Gi for 2<j<n, and
i=1
g = pi/llpil -

For1 <j<m,

g; € Span{ai, ..., a;},

so each p; # 0 by the lin. indep. of {a1,...,a,}. Thus each g; is
well-defined.
We have {q¢1,..., ¢,} is an orthonormal basis for Span{as, ..., a,}. Also

a, € Span{q, ..., qx} 1<k <n,

so {q1,...,qx} is an orthonormal basis of Span{ay,..., a;}.



The QR Factorization

Define
Tj = ||pj|| and Tij = (aj, qi) for 1<i< i<,
we have:
a = N1,
az = T12q1 + T22 g2,
az = T13q1 + 123 G2 + 733 @3,
' n
an = Z Tin di-
i=1
Set

A=la1 az ... ay), R=[ryg], and Q=[q1 @ ... ¢] ,

where 753 =0, 7> j. Then A = QR , where @ is unitary and R is upper
triangular.



The QR Factorization: Remarks

(1)

(2)

If ai,az,--- is a lin. indep. sequence, apply Gram-Schmidt to obtain
an orthonormal sequence ¢i, ¢o, ... such that {q¢,..., ¢}

is an orthonormal basis for Span{ay,...,ax}, k > 1.

If the a;'s are lin. dep., for some value(s) of £,

ai € Span{ay,...,ak—1}, so pi=0.

The process can be modified by setting rx; = 0, not defining a new ¢,
for this iteration and then proceeding as usual. We end up with
orthogonal ¢;'s. Then for k > 1, the vectors {qi, ..., gz} form an
orthonormal basis for Span{ay, ..., apyr} where £ is the number of
r;; = 0. Again we obtain A = @R, but now ¢ may not be square.



The QR Factorization: Remarks

(3) The classical Gram-Schmidt algorithm has poor computational
performance due to the accumulation of round-off error. The
computed g;'s are not orthogonal: (g;, gi) is small for j # k and |k — j|
small, but not for |k — j| big.

Classic Gram-Schmidt Modified Gram-Schmidt
For j=1,---,ndo For j=1,...,ndo
pi=a p = a;
Fori=1,...,j—1do Fori=1,...,5—14do
rig = (a5, ¢i) rij = (D, qi)
PI=p =Ty Pi=p =Ty
rig = |pll ri = |2l
g = p/7j; g := p/Tjj

The only difference is in the computation of r;, we orthogonalize the
accumulated partial sum for p; against each ¢; successively.



The QR Factorization

Proposition. Suppose A € C™*™ with m > n. Then
3 unitary Q€ C™*™ upper triangular R e C™*"

for which A = QR. If @ € C™*" denotes the first n columns of @ and
R € C™*™ denotes the first n rows of R, then

A:QR:[@*][JHZQR

Moreover
(a) We may choose an R to have nonnegative diagonal entries.
(b) If Ais of full rank, then we can choose I with positive diagonal
entries, in which case the condensed factorization A = QR is unique

(c) If Ais of full rank, the condensed factorization A = QR is essentially

unique: if A = Q1R1 QQRQ, then there is a unitary diagonal matrix
D € C™ ™ for which Qg Q1 D", rescaling the columns of @, and
R2 DRl, rescaling the rows of R;.
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The QR Factorization: Proof

If A has full rank, apply the Gram-Schmidt.
Define

Q=1Iq,...,q:) €C™™ and R=[r;] e C™"

as above, so

A= QR.
Extend {qi,..., ¢n} to an orthonormal basis {q¢i,..., ¢} of C™, and set
E mxn _
Q=la,--,gn] and R=| 1| €C™", sod=QR.

As 7;; > 0 in the G-S process, we have (b).

Uniqueness follows by induction passing through the G-S process again,
noting that at each step we have no choice.

(c) follows easily from (b).



The QR Factorization: Remarks

(1) If A e R™*™, everything can be done in real arithmetic, so, e.g.,
@ € R™*™ is orthogonal and R € R™*™ is real, upper triangular.

(2) In practice, there are more efficient and better computationally
behaved ways of calculating the @) and R factors. The idea is to create
zeros below the diagonal (successively in columns 1,2,...) as in
Gaussian Elimination, except we now use Householder transformations
(which are unitary) instead of the unit lower triangular matrices Lj.

(3) A QR factorization is also possible when m < n.
A= Q[R Ry,

where @) € C™*™ is unitary and Ry € C™*"™ is upper triangular.
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The QR Factorization

Every A € C™*™ has a (QR-factorization, even when m < n. Indeed, if
rank (4) = k,
there always exist
Q € C™**  with orthonormal columns,

R € C*™  full rank upper triangular,

and a permutation matrix P € R™*™ such that
(%) AP = QR.

Moreover, if A has rank n (so m > n), then R € C™*™ is nonsingular.
On the other hand, if m < n, then

[Ry Ry
=[5 %)

where R; € C*** is nonsingular.
Finally, if A € R™*™, then the same facts hold, but now both @ and R
can be chosen to be real matrices.



The QR-Factorization and Orthogonal Projections

Let A € C™*™ have condensed QR-factorization
A = QR.

Then by construction the columns of é form an orthonormal basis for
the range of A. Hence P = QQ" is the orthogonal projector onto the
range of A.

Similarly, if the condensed QR-factorization of A™ is

AT = élﬁla

then P; = @, Q¥ is the orthogonal projector onto ran(A") = ker(A)+,
and so

I- @@}
is the orthogonal projector onto ker(A).

The QR-factorization can be computed using either Givens rotations or
Householder reflections. Although, the approach via rotations is arguably
more stable numerically, it is more difficult to describe so we only
illustrate the approach using Householder reflections.
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()R using Householder Reflections

Recall that to any w € C™ we can associate the Householder reflection

ww™

U=1-2

w*w
which reflects C™ about the hyperplane Span{w}*. Given a pair of
non-zero vectors x and y with

lzllz = llyll2, and z#y,

there is a Householder reflection such that y = Uxz:

by
(r—y)*(z—y)
Proof:
Jall? = 72
Uz = z—-2(z—vy
S P R ey P
Jz]* - y*=
I R s A
2(||z]|? — y*x)
= Y

since [|zf| = [y]|-
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()R using Householder Reflections

We now describe the basic deflation step in the QR-factorization Suppose
T
Ay = [ao % } and set vy = ((ZO) . Let Hy be the Householder
0

by Ao )
transformation that maps
w?

4 »—>z/oe1 %ﬂr 122 = where w_Qb> (Oa _VO>.

ﬁﬁ T A pr8bl¥m occurs if vy =08 ( j = Prq

0 A bo

this case, permute the offending column to the right bringing in the
column of greatest magnitude. Now repeat with A;.
If this method is implemented by always permuting the column of
greatest magnitude into the current pivot column, then AP = QR gives
a QR-factorization with the diagonal entries of R nonnegative and listed
in the order of descending magnitude.




QR for Solving Least Squares Problems

Suppose A € C™*™ b € C™, and m > n with rank (A) = n. Consider
the least squares problem min ||b — Az|?> .Let A= QR bea QR
factorization of A, with condensed form Qlfi, so that R € C"*" is
nonsingular. Write Q = [Q1 Q»] where @, € C"™*(™=")_ Then
Ib—Az]|*> = |b— QRz|?
= Q"b— Rel?

- 1) (2]
- [ |

= Qs — Rel” + Q50

2

Here R € C™ ™ is an invertible upper triangle matrix, so
z solves m%cn |b—Az|?> <= Rz = Qb
zeCn

This system can be solved by back-substitution. Note that we only need

@1 and R to solve for z.
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QR for Solving Least Squares Problems

Next suppose A € C™*", b € C™, and m < n with rank (4) = m, so
that there are many solutions to Az = b.
Consider the least squares problem

min ||b — Az||?

In this case A is surjective, so there exists & € C™ such that Az = b.
Let A" = QR be a QR factorization of A", with condensed form

A= QR,
so that R € C™*" is nonsingular and @H@ = I,,xm. Now solve
Az = R"Q"z = b.

To do this first solve

R =0
by forward substitution (1~{H is nonsingular lower triangular), and set
= Qy . Then

Az = R"Q"z = R"Q"Qy = R"y = b.

Also, Z is the least norm solution to Az = b ! (Why?)
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