Linear Analysis Lecture 15

Let $A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m}$ and $\|\cdot\|$ be the Euclidean norm. Then a solution to the problem

$$
\begin{equation*}
\underset{x \in \mathbb{C}^{n}}{\operatorname{minimize}}\|b-A x\|^{2} \tag{*}
\end{equation*}
$$

exists. Moreover, $\bar{x} \in \mathbb{C}^{n}$ solves $\left(^{*}\right)$ if and only if \bar{x} is a solution to the normal questions $A^{\mathrm{H}} A \bar{x}=A^{H} b$.
Proof: Observe that

$$
\begin{equation*}
\underset{x \in \mathbb{C}^{n}}{\operatorname{minimize}}\|b-A x\|^{2}=\underset{y \in \mathbb{R}(A)}{\operatorname{minimize}}\|b-y\|^{2} \tag{}
\end{equation*}
$$

By the Projection Theorem there exists a $\bar{y} \in \mathcal{R}(A)$ solving (${ }^{* *}$). Therefore, there exists \bar{x} such that $\bar{y}=A \bar{x}$ and \bar{x} must solve $\left(^{*}\right)$. Furthermore,

$$
\bar{y} \text { solves }\left({ }^{* *}\right) \Longleftrightarrow b-\bar{y} \in \mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)
$$

or equivalently,

$$
\bar{x} \text { solves }\left(^{*}\right) \Longleftrightarrow b-A \bar{x} \in \mathcal{N}\left(A^{T}\right)
$$

Finally,

$$
\begin{aligned}
b-A \bar{x} \in \mathcal{N}\left(A^{T}\right) & \Leftrightarrow A^{T}(b-A \bar{x})=0 \\
& \Leftrightarrow A^{T} A \bar{x}=A^{T} b
\end{aligned}
$$

Remarks.

(i) The minimizing element \bar{y} in ($* *$) is unique. Moreover, if $\bar{x} \in \mathbb{C}^{n}$ solves $\bar{y}=A \bar{x}$, then \bar{x} solves (*). But \bar{x} may not be unique. Indeed, if $z \in \mathcal{N}(A)$, then $\hat{x}=\bar{x}+z$ must also solve $\left(^{*}\right)$ since $\bar{y}=A(\bar{x}+z)=A \hat{x}$.
(ii) If $\operatorname{rank}(A)=n$, then $\mathcal{N}(A)=\{0\}$ and so there is a unique $\bar{x} \in \mathbb{C}^{n}$ for which $A \bar{x}=\bar{y}$.
This \bar{x} is the unique minimizer of $\|b-A x\|^{2}$ over $x \in \mathbb{C}^{n}$ as well as the unique solution of the normal equations $A^{\mathrm{H}} A x=A^{H} b$.
(iii) If $\operatorname{rank}(A)=r<n$, then the minimizing vector \bar{x} is not unique; \bar{x} can be modified by adding any element of $\mathcal{N}(A)$. For example, we might choose the solution of least norm.

Again consider the problem

$$
\begin{equation*}
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2} \tag{LL}
\end{equation*}
$$

We have shown that the set to solutions to $(\mathcal{L L S})$ is given by the set of solutions to the normal equations, i.e.,

$$
\left\{x \in \mathbb{C}^{n}: A^{H} A=A^{H} b\right\}=\bar{x}+\mathcal{N}\left(A^{H} A\right)=\bar{x}+\mathcal{N}(A),
$$

where \bar{x} is any element of the set $\operatorname{argmin}_{x} \frac{1}{2}\|A x-b\|_{2}^{2}$. Hence, this set is affine. By projecting the origin onto an affine set, we obtain the least-norm element of that set. So $\hat{x} \in \bar{x}+\mathcal{N}(A)$ satisfies

$$
\|\hat{x}\| \leq\|x\| \forall x \in \bar{x}+\mathcal{N}(A)
$$

iff $\hat{x} \perp \mathcal{N}(A)$. In summary, \hat{x} is the least norm solution to $(\mathcal{L L S})$ iff

$$
\begin{gathered}
(A \hat{x}-b) \perp \mathcal{R}(A) \text { and } \hat{x} \perp \mathcal{N}(A) \\
\Longleftrightarrow \\
A^{H} A \hat{x}=A^{H} b \text { and } \hat{x} \in \mathcal{R}\left(A^{H}\right) .
\end{gathered}
$$

The mapping $A^{\dagger}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ taking $b \in \mathbb{C}^{m}$ into the unique minimizer \hat{x} of $\|b-A x\|^{2}$ of minimum norm is called the Moore-Penrose pseudo-inverse of A.

We show that A^{\dagger} is linear, so it is represented by an $n \times m$ matrix which we also denote by A^{\dagger}.

If $m=n$ and A is invertible, then every $b \in \mathbb{C}^{n}$ is in $\mathcal{R}(A)$, so $\bar{y}=b$, and the solution of $A x=b$ is unique, given by $x=A^{-1} b$. In this case $A^{\dagger}=A^{-1}$. So the pseudo-inverse is a generalization of the inverse to possibly non-square, non-invertible matrices.

The pseudo-inverse of A can be expressed easily using the SVD.

The Moore-Penrose Pseudo-Inverse and the SVD

Let $A=U \Sigma V^{H}$ be an SVD of A, let $r=\operatorname{rank}(A)$

$$
\text { (so } \quad \sigma_{1} \geq \cdots \geq \sigma_{r}>0=\sigma_{r+1}=\cdots \text {), }
$$

let U_{r} and V_{r} in $\mathbb{C}^{m \times r}$ be the first r columns of U, V, respectively. Let $\widetilde{U} \in \mathbb{C}^{m \times(m-r)}, \widetilde{V}=\mathbb{C}^{n \times(n-r)}$ be the remaining columns of U, V, respectively, and let $\Sigma_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. Then the reduced SVD for A is

$$
A=\left[U_{r} \widetilde{U}\right]\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{r}^{H} \\
\widetilde{V}^{H}
\end{array}\right]=U_{r} \Sigma_{r} V_{r}^{H} .
$$

Note that

$$
\begin{gathered}
\mathcal{R}\left(U_{r}\right)=\mathcal{R}(A), \quad \mathcal{R}(\widetilde{U})=\mathcal{R}(A)^{\perp}, \\
\mathcal{R}(\widetilde{V})=\mathcal{N}(A), \quad \text { and } \quad \mathcal{R}\left(V_{r}\right)=\mathcal{N}(A)^{\perp} .
\end{gathered}
$$

Therefore,
$U_{r} U_{r}^{H}=$ the orthogonal projector onto $\mathcal{R}(A)$
$\widetilde{U} \widetilde{U}^{H}=$ the orthogonal projector onto $\mathcal{R}(A)^{\perp}$
$\widetilde{V} \widetilde{V}^{H}=$ the orthogonal projector onto $\mathcal{N}(A)$
$V_{r} V_{r}^{H}=$ the orthogonal projector onto $\mathcal{N}(A)^{\perp}$

$$
\begin{aligned}
\|b-A x\|^{2} & =\left\|b-U \Sigma V^{H} x\right\|^{2} \\
& =\left\|U^{H} b-\Sigma V^{H} x\right\|^{2} \\
& =\left\|\left[\begin{array}{c}
U_{r}^{H} \\
\widetilde{U}^{H}
\end{array}\right] b-\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{r}^{H} \\
\widetilde{V}^{H}
\end{array}\right] x\right\|^{2} \\
& =\left\|\left[\begin{array}{c}
U_{r}^{H} b-\Sigma_{r} V_{r}^{H} x \\
\widetilde{U}^{H} b
\end{array}\right]\right\|^{2}
\end{aligned}
$$

so

$$
\|b-A x\|^{2}=\left\|U_{r}^{H} b-\Sigma_{r} V_{r}^{H} x\right\|^{2}+\left\|\widetilde{U}^{H} b\right\|^{2}
$$

Thus

$$
\begin{aligned}
& {\left[\bar{x} \text { solves } \underset{x \in \mathbb{C}^{n}}{\operatorname{minimize}}\|b-A x\|^{2}\right] } \\
\Leftrightarrow & \Sigma_{r} V_{r}^{H} \bar{x}=U_{r}^{H} b \Leftrightarrow V_{r}^{H} \bar{x}=\Sigma_{r}^{-1} U_{r}^{H} b .
\end{aligned}
$$

Linear Least-Squares and the SVD

In addition, $x=\hat{x}$ is the unique minimizer of $\|b-A x\|^{2}$ of minimum norm if and only if $x \in \mathcal{N}(A)^{\perp}=\mathcal{R}\left(V_{r}\right)$, i.e., $\quad \widetilde{V}^{H} x=0$. So $x=\hat{x}$ if and only if

$$
\begin{gathered}
V^{H} x=\left[\begin{array}{c}
V_{r}^{H} x \\
\widetilde{V}^{H} x
\end{array}\right]=\left[\begin{array}{c}
\Sigma_{r}^{-1} U_{r}^{H} b \\
0
\end{array}\right] \\
\Longleftrightarrow \\
x=V\left[\begin{array}{c}
\Sigma_{r}^{-1} U_{r}^{H} b \\
0
\end{array}\right] \\
\Longleftrightarrow \\
x=\left[\begin{array}{ll}
V_{r} & \widetilde{V}
\end{array}\right]\left[\begin{array}{c}
\Sigma_{r}^{-1} U_{r}^{H} b \\
0
\end{array}\right]=V_{r} \Sigma_{r}^{-1} U_{r}^{H} b
\end{gathered}
$$

So $\hat{x}=V_{r} \Sigma_{r}^{-1} U_{r}^{H} b$. Thus, \hat{x} is a linear function of b, so A^{\dagger} is linear, with

$$
A^{\dagger}=V_{r} \Sigma_{r}^{-1} U_{r}^{H}=\left[\begin{array}{ll}
V_{r} & \widetilde{V}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
U_{r}^{H} \\
\widetilde{U}^{H}
\end{array}\right]=V \Sigma^{\dagger} U^{H}
$$

where $\Sigma^{\dagger}=\operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right) \in \mathbb{C}^{n \times m}$. It is appropriate to call this matrix Σ^{\dagger} as it is the pseudo-inverse of $\Sigma \in \mathbb{C}^{m \times n}$.

The matrix factorizations we have studied so far are spectral factorizations in the sense that eigenvalues and eigenvectors are required for these factorizations.

We now discuss two non-spectral matrix factorizations. These factorizations can be determined directly from the entries of the matrix, and are computationally less expensive than spectral factorizations.

Each of these factorizations amounts to a reformulation of a procedure you are already familiar with.

The LU factorization is a reformulation of Gaussian Elimination.

The $Q R$ factorization is a reformulation of Gram-Schmidt orthogonalization.

Recall the method of Gaussian Elimination for solving a system

$$
A x=b
$$

of linear equations, where $b \in \mathbb{C}^{m}$ and either

$$
b \in \mathcal{R}(A)
$$

or $A \in \mathbb{C}^{m \times n}$ has full row rank,

$$
\operatorname{rank}(A)=m \leq n
$$

If the coefficient of x_{1} in the first equation is nonzero, one eliminates all occurrences of x_{1} from all the other equations by adding appropriate multiples of the first equation.

This operation does not change the set of solutions to the equation.
Now if the coefficient of x_{2} in the new second equation is nonzero, it can be used to eliminate x_{2} from the further equations, etc...

In matrix terms, suppose

$$
A=\left[\begin{array}{cc}
a_{1} & v_{1}^{T} \\
u_{1} & \widetilde{A}_{1}
\end{array}\right] \in \mathbb{C}^{n \times m}
$$

with $0 \neq a_{1} \in \mathbb{C}, u_{1} \in \mathbb{C}^{m-1}, v_{1} \in \mathbb{C}^{n-1}$, and $\widetilde{A}_{1} \in \mathbb{C}^{(m-1) \times(n-1)}$. Using the first row to zero out u_{1} amounts to left multiplication of the matrix A by the matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
-\frac{u_{1}}{a_{1}} & I
\end{array}\right]
$$

to get

$$
\left[\begin{array}{cc}
1 & 0 \tag{}\\
-\frac{u_{1}}{a_{1}} & I
\end{array}\right]\left[\begin{array}{cc}
a_{1} & v_{1}^{T} \\
u_{1} & \widetilde{A}_{1}
\end{array}\right] \in \mathbb{C}^{n \times m}=\left[\begin{array}{cc}
a_{1} & v_{1}^{T} \\
0 & A_{1}
\end{array}\right]
$$

where $A_{1}=\widetilde{A}_{1}-u_{1} v_{1}^{T} / a_{1}$. Define

$$
L_{1}=\left[\begin{array}{cc}
1 & 0 \\
\frac{u_{1}}{a_{1}} & I
\end{array}\right] \in \mathbb{C}^{m \times m} \quad \text { and } \quad U_{1}=\left[\begin{array}{cc}
a_{1} & v_{1}^{T} \\
0 & A_{1}
\end{array}\right] \in \mathbb{C}^{m \times n}
$$

Observe that

$$
L_{1}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{u_{1}}{a_{1}} & I
\end{array}\right] .
$$

Hence (*) becomes

$$
L_{1}^{-1} A=U_{1} \text {, or equivalently, } \quad A=L_{1} U_{1} .
$$

Note that L_{1} is unit lower triangular (ones on the mail diagonal) and U_{1} is block upper-triangular with one 1×1 block and one $(m-1) \times(n-1)$ block on the block diagonal. The elements of $u / a \in \mathbb{C}^{m-1}$ are called multipliers, they are the multiples of the first row subtracted from subsequent rows. The multipliers are usually denoted

$$
u / a=\left[\mu_{21}, \mu_{31}, \ldots, \mu_{m 1}\right]^{T} .
$$

By $\left({ }^{*}\right)$, we have $L_{1}^{-1} A=U_{1}=\left[\begin{array}{cc}a_{1} & v_{1}^{T} \\ 0 & A_{1}\end{array}\right]$. If the $(1,1)$ entry of A_{1} is not 0 , we can apply the same procedure to A_{1} : if

$$
A_{1}=\left[\begin{array}{ll}
a_{2} & v_{2}^{T} \\
u_{2} & \widetilde{A}_{2}
\end{array}\right] \in \mathbb{C}^{(m-1) \times(n-1)}
$$

with $a_{2} \neq 0$, letting
and forming

$$
\widetilde{L}_{2}=\left[\begin{array}{cc}
I & 0 \\
\frac{u_{2}}{a_{2}} & I
\end{array}\right] \in \mathbb{C}^{(m-1) \times(m-1)}
$$

$\widetilde{L}_{2}^{-1} A_{1}=\left[\begin{array}{cc}1 & 0 \\ -\frac{u_{1}}{a_{2}} & I\end{array}\right]\left[\begin{array}{cc}a_{2} & v_{2}^{T} \\ u_{2} & \widetilde{A}_{1}\end{array}\right]=\left[\begin{array}{cc}a_{2} & v_{2}^{T} \\ 0 & A_{2}\end{array}\right] \equiv \widetilde{U}_{2} \in \mathbb{C}^{(m-1) \times(n-1)}$, where $A_{2} \in \mathbb{C}^{(m-2) \times(n-2)}$, amounts to using the second row to zero out elements of the second column below the diagonal.

Setting

$$
L_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & \widetilde{L}_{2}
\end{array}\right] \quad \text { and } \quad U_{2}=\left[\begin{array}{cc}
a & v^{T} \\
0 & \widetilde{U}_{2}
\end{array}\right]
$$

we have

$$
L_{2}^{-1} L_{1}^{-1} A=\left[\begin{array}{cc}
1 & 0 \\
0 & \widetilde{L}_{2}^{-1}
\end{array}\right]\left[\begin{array}{cc}
a & v^{T} \\
0 & A_{1}
\end{array}\right]=U_{2}
$$

or equivalently, $A=L_{2} L_{1} U_{2}$. Here U_{2} is block upper triangular with two 1×1 blocks and one $(m-2) \times(n-2)$ block on the diagonal, and again L_{2} is unit lower triangular. Notice that the multipliers appear in L_{2} in the second column, below the diagonal.
We can continue in this fashion at most $\tilde{m}-1$ times, where $\tilde{m}=\min \{m, n\}$.

If we can proceed $\tilde{m}-1$ times, then

$$
L_{\tilde{m}-1}^{-1} \cdots L_{2}^{-1} L_{1}^{-1} A=U_{\tilde{m}-1}=U
$$

is upper triangular provided that along the way that the $(1,1)$ entries of

$$
A, A_{1}, A_{2}, \ldots, A_{\tilde{m}-2}
$$

are nonzero so the process can continue.
Define

$$
L=\left(L_{\tilde{m}-1}^{-1} \cdots L_{1}^{-1}\right)^{-1}=L_{1} L_{2} \cdots L_{\tilde{m}-1} .
$$

The matrix L is square unit lower triangular, and so is invertible. Moreover, $A=L U$, where the matrix U is the so called row echelon form of A. In general, a matrix $T \in \mathbb{C}^{m \times n}$ is said to be in row echelon form if for each $i=1, \ldots, m-1$ the first non-zero entry in the $(i+1)^{\mathrm{st}}$ row lies to the right of the first non-zero row in the $i^{\text {th }}$ row.

Let us now suppose that $m=n$ and $A \in \mathbb{C}^{n \times n}$ is invertible. Writing $A=L U$ as a product of a unit lower triangular matrix $L \in \mathbb{C}^{n \times n}$ (necessarily invertible) and an upper triangular matrix $U \in \mathbb{C}^{n \times n}$ (also nessecarily invertible in this case) is called the $\mathbf{L U}$ factorization of A.

Remarks:

(1) If $A \in \mathbb{C}^{n \times n}$ is invertible and has an LU factorization, it is unique.
(2) One can show that $A \in \mathbb{C}^{n \times n}$ has an LU factorization iff for $1 \leq j \leq n$, the upper left $j \times j$ principal submatrix

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{i j} \\
\vdots & & \\
a_{j 1} & \cdots & a_{j j}
\end{array}\right]
$$

is invertible.
(3) Not every invertible $A \in \mathbb{C}^{n \times n}$ has an LU-factorization.

Example: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Typically, one must permute the rows of A to move nonzero entries to the appropriate spot for the elimination to proceed.
Recall that a permutation matrix $P \in \mathbb{C}^{n \times n}$ is the identity I with its rows (or columns) permuted: so

$$
P \in \mathbb{R}^{n \times n} \text { is orthogonal, and } P^{-1}=P^{T} \text {. }
$$

Permuting the rows of A amounts to left multiplication by a permutation matrix P^{T}; then $P^{T} A$ has an LU factorization, so $A=P L U$ (called the PLU factorization of A).
(4) Fact: Every invertible $A \in \mathbb{C}^{n \times n}$ has a (not necessarily unique) PLU factorization.
(5) It turns out that

$$
L=L_{1} \cdots L_{n-1}=\left[\begin{array}{ccc}
1 & \ddots & \\
\mu_{21} & \ddots & \\
\vdots & & \\
\mu_{n-1} & \cdots & 1
\end{array}\right]
$$

has the multipliers $m_{i j}$ below the diagonal.
(6) The LU factorization can be used to solve linear systems $A x=b$ (where $A=L U \in \mathbb{C}^{n \times n}$ is invertible).

The system $L y=b$ can be solved by forward substitution ($1^{\text {st }}$ equation gives x_{1}, etc.),
and $U x=y$ can be solved by back-substitution ($n^{\text {th }}$ equation gives x_{n}, etc.),
giving the solution to $A x=L U x=b$.

