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The Projection Theorem and Linear Least Squares
Let A ∈ Cm×n, b ∈ Cm and ‖ · ‖ be the Euclidean norm. Then a solution
to the problem

minimize
x∈Cn

‖b −Ax‖2 (*)

exists. Moreover, x̄ ∈ Cn solves (*) if and only if x̄ is a solution to the
normal questions AHAx̄ = AH b.
Proof: Observe that

minimize
x∈Cn

‖b −Ax‖2 = minimize
y∈R(A)

‖b − y‖2 . (**)

By the Projection Theorem there exists a ȳ ∈ R(A) solving (**).
Therefore, there exists x̄ such that ȳ = Ax̄ and x̄ must solve (*).
Furthermore,

ȳ solves (**) ⇐⇒ b − ȳ ∈ R(A)⊥ = N (AT),
or equivalently,

x̄ solves (*) ⇐⇒ b −Ax̄ ∈ N (AT).
Finally,

b −Ax̄ ∈ N (AT) ⇔ AT(b −Ax̄) = 0
⇔ ATAx̄ = ATb . �
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The Projection Theorem and Linear Least Squares

Remarks.
(i) The minimizing element ȳ in (∗∗) is unique. Moreover, if x̄ ∈ Cn

solves ȳ = Ax̄, then x̄ solves (*). But x̄ may not be unique. Indeed, if
z ∈ N (A), then x̂ = x̄ + z must also solve (*) since
ȳ = A(x̄ + z) = Ax̂.

(ii) If rank (A) = n, then N (A) = {0} and so there is a unique x̄ ∈ Cn for
which Ax̄ = ȳ.
This x̄ is the unique minimizer of ‖b −Ax‖2 over x ∈ Cn as well as
the unique solution of the normal equations AHAx = AH b.

(iii) If rank (A) = r < n, then the minimizing vector x̄ is not unique; x̄ can
be modified by adding any element of N (A). For example, we might
choose the solution of least norm.
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Least Norm Solutions to Linear Least Squares Problems
Again consider the problem

min
x

1
2 ‖Ax − b‖2

2 . (LLS)

We have shown that the set to solutions to (LLS) is given by the set of
solutions to the normal equations, i.e.,{

x ∈ Cn : AH A = AH b
}

= x̄ +N (AH A) = x̄ +N (A),

where x̄ is any element of the set argminx
1
2 ‖Ax − b‖2

2. Hence, this set
is affine. By projecting the origin onto an affine set, we obtain the
least-norm element of that set. So x̂ ∈ x̄ +N (A) satisfies

‖x̂‖ ≤ ‖x‖ ∀ x ∈ x̄ +N (A)

iff x̂ ⊥ N (A). In summary, x̂ is the least norm solution to (LLS) iff

(Ax̂ − b) ⊥ R(A) and x̂ ⊥ N (A)
⇐⇒

AH Ax̂ = AH b and x̂ ∈ R(AH ) .
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The Moore-Penrose Pseudo-Inverse

The mapping A† : Cm → Cn taking b ∈ Cm into the unique minimizer x̂
of ‖b −Ax‖2 of minimum norm is called the Moore-Penrose
pseudo-inverse of A.

We show that A† is linear, so it is represented by an n ×m matrix which
we also denote by A†.

If m = n and A is invertible, then every b ∈ Cn is in R(A), so ȳ = b,
and the solution of Ax = b is unique, given by x = A−1b. In this case
A† = A−1. So the pseudo-inverse is a generalization of the inverse to
possibly non-square, non-invertible matrices.

The pseudo-inverse of A can be expressed easily using the SVD.
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The Moore-Penrose Pseudo-Inverse and the SVD
Let A = UΣV H be an SVD of A, let r = rank (A)

(so σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · ),
let Ur and Vr in Cm×r be the first r columns of U , V , respectively. Let
Ũ ∈ Cm×(m−r), Ṽ = Cn×(n−r) be the remaining columns of U , V ,
respectively, and let Σr = diag (σ1, . . . , σr). Then the reduced SVD for
A is

A = [Ur Ũ ]
[

Σr 0
0 0

] [
V H

r
Ṽ H

]
= UrΣrV H

r .

Note that
R(Ur) = R(A), R(Ũ ) = R(A)⊥,

R(Ṽ ) = N (A), and R(Vr) = N (A)⊥ .
Therefore,

UrU H
r = the orthogonal projector onto R(A)

Ũ Ũ H = the orthogonal projector onto R(A)⊥

Ṽ Ṽ H = the orthogonal projector onto N (A)
VrV H

r = the orthogonal projector onto N (A)⊥
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Linear Least-Squares and the SVD

‖b −Ax‖2 = ‖b −UΣV H x‖2

= ‖U H b − ΣV H x‖2

=
∥∥∥∥[ U H

r
Ũ H

]
b −

[
Σr 0
0 0

] [
V H

r
Ṽ H

]
x
∥∥∥∥2

=
∥∥∥∥[ U H

r b − ΣrV H
r x

Ũ H b

]∥∥∥∥2

,

so
‖b −Ax‖2 = ‖U H

r b − ΣrV H
r x‖2 + ‖Ũ H b‖2.

Thus [
x̄ solves minimize

x∈Cn
‖b −Ax‖2

]
⇔ ΣrV H

r x̄ = U H
r b ⇔ V H

r x̄ = Σ−1
r U H

r b .
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Linear Least-Squares and the SVD
In addition, x = x̂ is the unique minimizer of ‖b −Ax‖2 of minimum
norm if and only if x ∈ N (A)⊥ = R(Vr), i.e., Ṽ H x = 0 .
So x = x̂ if and only if

V H x =
[

V H
r x

Ṽ H x

]
=
[

Σ−1
r U H

r b
0

]
⇐⇒

x = V
[

Σ−1
r U H

r b
0

]
⇐⇒

x = [Vr Ṽ ]
[

Σ−1
r U H

r b
0

]
= VrΣ−1

r U H
r b .

So x̂ = VrΣ−1
r U H

r b . Thus, x̂ is a linear function of b, so A† is linear,
with

A† = VrΣ−1
r U H

r = [Vr Ṽ ]
[

Σ−1
r 0
0 0

] [
U H

r
Ũ H

]
= V Σ†U H ,

where Σ† = diag (σ−1
1 , . . . , σ−1

r , 0, . . . , 0) ∈ Cn×m. It is appropriate to
call this matrix Σ† as it is the pseudo-inverse of Σ ∈ Cm×n.
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Non-Spectral Factorizations

The matrix factorizations we have studied so far are spectral
factorizations in the sense that eigenvalues and eigenvectors are required
for these factorizations.

We now discuss two non-spectral matrix factorizations. These
factorizations can be determined directly from the entries of the matrix,
and are computationally less expensive than spectral factorizations.

Each of these factorizations amounts to a reformulation of a procedure
you are already familiar with.

The LU factorization is a reformulation of Gaussian Elimination.

The QR factorization is a reformulation of Gram-Schmidt
orthogonalization.
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The LU Factorization and Gaussian Elimination

Recall the method of Gaussian Elimination for solving a system

Ax = b

of linear equations, where b ∈ Cm and either

b ∈ R(A)

or A ∈ Cm×n has full row rank,

rank(A) = m ≤ n.

If the coefficient of x1 in the first equation is nonzero, one eliminates all
occurrences of x1 from all the other equations by adding appropriate
multiples of the first equation.

This operation does not change the set of solutions to the equation.

Now if the coefficient of x2 in the new second equation is nonzero, it can
be used to eliminate x2 from the further equations, etc...
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The LU Factorization

In matrix terms, suppose
A =

[
a1 vT

1
u1 Ã1

]
∈ Cn×m,

with 0 6= a1 ∈ C, u1 ∈ Cm−1, v1 ∈ Cn−1, and Ã1 ∈ C(m−1)×(n−1).
Using the first row to zero out u1 amounts to left multiplication of the
matrix A by the matrix [

1 0
−u1

a1
I

]
to get [

1 0
−u1

a1
I

] [
a1 vT

1
u1 Ã1

]
∈ Cn×m =

[
a1 vT

1
0 A1

]
, (*)

where A1 = Ã1 − u1vT
1 /a1 . Define

L1 =
[

1 0
u1
a1

I

]
∈ Cm×m and U1 =

[
a1 vT

1
0 A1

]
∈ Cm×n .
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The LU Factorization

Observe that
L−1

1 =
[

1 0
−u1

a1
I

]
.

Hence (*) becomes

L−1
1 A = U1, or equivalently, A = L1U1 .

Note that L1 is unit lower triangular (ones on the mail diagonal) and U1
is block upper-triangular with one 1× 1 block and one (m − 1)× (n − 1)
block on the block diagonal. The elements of u/a ∈ Cm−1 are called
multipliers, they are the multiples of the first row subtracted from
subsequent rows. The multipliers are usually denoted

u/a = [µ21, µ31, . . . , µm1]T .
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The LU Factorization

By (*), we have L−1
1 A = U1 =

[
a1 vT

1
0 A1

]
. If the (1, 1) entry of A1 is

not 0, we can apply the same procedure to A1: if

A1 =
[

a2 vT
2

u2 Ã2

]
∈ C(m−1)×(n−1)

with a2 6= 0, letting
L̃2 =

[
I 0
u2
a2

I

]
∈ C(m−1)×(m−1),

and forming

L̃−1
2 A1 =

[
1 0
−u1

a2
I

] [
a2 vT

2
u2 Ã1

]
=
[

a2 vT
2

0 A2

]
≡ Ũ2 ∈ C(m−1)×(n−1),

where A2 ∈ C(m−2)×(n−2), amounts to using the second row to zero out
elements of the second column below the diagonal.
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The LU Factorization

Setting
L2 =

[
1 0
0 L̃2

]
and U2 =

[
a vT

0 Ũ2

]
,

we have
L−1

2 L−1
1 A =

[
1 0
0 L̃−1

2

] [
a vT

0 A1

]
= U2,

or equivalently, A = L2L1U2. Here U2 is block upper triangular with two
1× 1 blocks and one (m − 2)× (n − 2) block on the diagonal, and again
L2 is unit lower triangular. Notice that the multipliers appear in L2 in the
second column, below the diagonal.
We can continue in this fashion at most m̃ − 1 times, where
m̃ = min{m,n}.
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The LU Factorization

If we can proceed m̃ − 1 times, then

L−1
m̃−1 · · ·L

−1
2 L−1

1 A = Um̃−1 = U

is upper triangular provided that along the way that the (1, 1) entries of

A, A1, A2, . . . , Am̃−2

are nonzero so the process can continue.

Define
L = (L−1

m̃−1 · · ·L
−1
1 )−1 = L1L2 · · ·Lm̃−1.

The matrix L is square unit lower triangular, and so is invertible.
Moreover, A = LU , where the matrix U is the so called row echelon
form of A. In general, a matrix T ∈ Cm×n is said to be in row echelon
form if for each i = 1, . . . ,m − 1 the first non-zero entry in the (i + 1)st

row lies to the right of the first non-zero row in the ith row.
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The LU Factorization

Let us now suppose that m = n and A ∈ Cn×n is invertible. Writing
A = LU as a product of a unit lower triangular matrix L ∈ Cn×n

(necessarily invertible) and an upper triangular matrix U ∈ Cn×n (also
nessecarily invertible in this case) is called the LU factorization of A.

Remarks:
(1) If A ∈ Cn×n is invertible and has an LU factorization, it is unique.
(2) One can show that A ∈ Cn×n has an LU factorization iff for

1 ≤ j ≤ n, the upper left j × j principal submatrix a11 · · · aij
...

aj1 · · · ajj


is invertible.
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The LU Factorization

(3) Not every invertible A ∈ Cn×n has an LU-factorization.

Example:
[

0 1
1 0

]
Typically, one must permute the rows of A to move nonzero entries to
the appropriate spot for the elimination to proceed.
Recall that a permutation matrix P ∈ Cn×n is the identity I with its
rows (or columns) permuted: so

P ∈ Rn×n is orthogonal, and P−1 = PT .

Permuting the rows of A amounts to left multiplication by a
permutation matrix PT ; then PTA has an LU factorization, so
A = PLU (called the PLU factorization of A).

(4) Fact: Every invertible A ∈ Cn×n has a (not necessarily unique) PLU
factorization.
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The LU Factorization

(5) It turns out that

L = L1 · · ·Ln−1 =


1

. . .

µ21
. . .

...
µn−1 · · · 1


has the multipliers mij below the diagonal.

(6) The LU factorization can be used to solve linear systems Ax = b
(where A = LU ∈ Cn×n is invertible).

The system Ly = b can be solved by forward substitution
(1st equation gives x1, etc.),

and Ux = y can be solved by back-substitution
(nth equation gives xn, etc.),
giving the solution to Ax = LUx = b.
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