
Linear Analysis
Lecture 14



The Projection Theorem for Convex Sets

Let X be a Hilbert space with C ⊂ X closed and convex.
Then there is a unique y0 ∈ C such that

‖x − y0‖ ≤ ‖x − y‖ ∀ y ∈ C . (P)

Furthermore, y0 satisfies P if and only if

Re(〈x − y0, y − y0〉) ≤ 0 ∀ y ⊂ C .
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Proof of The Projection Theorem for Convex Sets

Let {yi} ⊂ C be such that
‖x − yi‖ → inf{‖x − y‖ : y ∈ C} =: δ.

By the parallelogram law

‖ym − yn‖2 = 2‖x − ym‖2 + 2‖x − yn‖2 − 4
∥∥∥∥x − yn + ym

2

∥∥∥∥2
.

By convexity, 2−1(yn + ym) ∈ C , so ‖x − 2−1(ym + yn)‖ ≥ δ. Therefore,

‖ym − yn‖2 ≤ 2‖ym − x‖2 + 2‖yn − x‖2 − 4δ2 → 0.

Consequently, {yn} is Cauchy and so has a limit y0 with ‖x − y0‖ = δ.

To see that y0 is unique consider the sequence
y2n+1 = ya and y2n = yb n = 0, 1, . . .

where ya, yb ∈ C with ‖ha − x‖ = ‖yb − x‖ = δ. If we apply the
parallelogram law to this sequence, we find that it is Cauchy as above.
Hence, ya = yb.
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Proof of The Projection Theorem for Convex Sets
We now show that y0 is the unique vector satisfying

Re(〈x − y0, y − y0〉) ≤ 0 for all y ∈ C .
Suppose to the contrary that there is a vector y1 such that

Re(〈x − y0, y1 − y0〉) = ε > 0.
Consider the vectors

yα = αy1 + (1− α)y0 ∈ C for α ∈ [0, 1].
Note that the function ϕ : R→ R given by

ϕ(α) = ‖x − yα‖2 =
(1− α)2‖x − y0‖2 + 2α(1− α)Re(〈x − y0, x − y1〉) + α2‖x − y1‖2

is differentiable with
ϕ′(0) = −2‖x − y0‖2 + 2Re(〈x − y0, x − y1〉)

= −2Re(〈x − y0, x − y0〉+ 〈x − y0, y1 − x〉)
= −2Re〈x − y0, y1 − y0〉 = −2ε < 0.

Hence, ‖x − yα‖ < ‖x − y0‖ for all α > 0 sufficiently small. This
contradiction implies that y1 does not exist.
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Proof of The Projection Theorem for Convex Sets

Conversely, suppose that y0 ∈ C is such that

Re(〈x − y0, y − y0〉) ≤ 0 ∀ y ∈ C .

Then for any y ∈ C with y 6= y0, we have

‖x − y‖2 = ‖(x − y0) + (y0 − y)‖2

= ‖x − y0‖2 + 2Re(〈x − y0, y0 − y〉) + ‖y0 − y‖2

> ‖x − y0‖2.

�
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Affine Sets
A subset W of a vector space V is said to affine if

(1− λ)u + λv ∈W ∀ u, v ∈W λ ∈ F .

Fact: A subset W of V is affine iff there is a subspace S such that

W = w + S = {w + x : x ∈ S} ∀ w ∈W .

Proof
(⇐) First consider sets of the form W = w + S for w ∈ V and S a
subspace. For any u, v ∈W and λ ∈ F,

∃ x, y ∈ S with u = w + x, v = w + y

and so

(1− λ)u + λv = (1− λ)(w + x) + λ(w + y)
= w + (1− λ)x + λy ∈ w + S .

Therefore, W is affine.
Also, for any w̄ ∈W with w̄ = w + x, we have

w̄ + S = w + x + S = w + S ,

since S is a subspace.
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Affine Sets

(⇒) Let w̄ ∈W and set S = {w − w̄ : w ∈W } . We claim S is a
subspace.
Clearly 0 ∈ S . Also, given any α ∈ F and x ∈ S , there is a u ∈W such
that x = u − w̄ and so

αx = α(u − w̄) = αu + (1− α)w̄ − w̄ ∈W − w̄ = S ,

so αx ∈ S for all α ∈ F whenever x ∈ S . Moreover, for any x, y ∈ S ,

∃ u, v ∈W with x = u − w̄ and y = v − w̄

so
1
2(x + y) = 1

2u + 1
2v − w̄ ∈W − w̄ = S ,

but then x + y ∈ S , so S is a subspace. Therefore, W = w̄ + S and by
what we have already shown

S = W − w ∀ w ∈W .

�
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Prime Example of an Affine Set

Let A ∈ B(U ,V ) and b ∈ V , where U and V are vector spaces over F.
Then

W = {x ∈ V : Ax = b}

is an affine subset of W , with

W = w̄ +N (A),

where w̄ is any particular solution to the equation Ax = b.
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Projections onto Affine Sets
Let W = ŵ + S be an affine subset of the Euclidean space V . Then
(i) For every v ∈ V there exists a unique solution w̄ to the problem

(♦) minimize
w∈W

‖v − w‖2 .

(ii) w̄ solves (♦) iff v − w̄ ∈ S⊥.
(iii) w̄ = Pv + (I − P)ŵ solves (♦) where P is the orthogonal projection
onto S .
Proof: (♦) is equivalent to the problem

minimize
w∈ŵ+S

‖v − w‖2 = minimize
x∈S

‖(v − ŵ)− x‖2 .

By the Projection Theorem, there is a unique x̂ ∈ S solving this problem,
in which case w̄ = ŵ + x̂ is the unique solution to (♦). Moreover, again
by the Projection Theorem, x̂ is the unique element of S such that

v − w̄ = (v − ŵ)− x̄ ∈ S⊥ .

To see (iii) note that x̂ = P(v − ŵ), so

w̄ = ŵ + x̂ = ŵ + P(v − ŵ) = Pv + (I − P)ŵ . �
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