Linear Analysis
Lecture 14




The Projection Theorem for Convex Sets

Let X be a Hilbert space with C' C X closed and convex.
Then there is a unique y° € C such that

le =y’ <lle—yll VyeC. (P)

Furthermore, yq satisfies P if and only if

Re((z— 3%,y —3°)) <0 VycCC.



Proof of The Projection Theorem for Convex Sets

Let {y’} C C be such that
lo = y'll = inf{llz —y] : y € C} =2 6.
By the parallelogram law

v+ ym ||

2
By convexity, 271 (y™ +y™) € C, so ||z — 271 (y™ + y™)|| > 4. Therefore,

ly™ = y™1* = 2llz = y™ > + 2l|z — y"||* — 4 ||

ly™ = y™1* < 2lly™ — 2|* +2||y" — z]|* — 46 — 0.
Consequently, {y™} is Cauchy and so has a limit y° with ||z — ¢°|| = 4.

To see that ° is unique consider the sequence

"=y and " =9y" n=0,1,...

where y%,y” € C with [|h* — z|| = ||y* — z|| = &. If we apply the
parallelogram law to this sequence, we find that it is Cauchy as above.
Hence, y® = y*.



Proof of The Projection Theorem for Convex Sets

We now show that g is the unique vector satisfying
Re((z — ¢,y —3°)) <0 forall y € C.
Suppose to the contrary that there is a vector y' such that
Re((z—y% y' —y°) =€e>0.
Consider the vectors
¥ =ay'+(1-0a)y® € C for aclo1].
Note that the function ¢ : R — R given by
p(a) = [z —y*|I* =
(1 —a)lz—¢°I*  +2a(1 - a)Re((z —y° 2z~ y")) + ®[lz — y'|
is differentiable with
¢'(0) = —2lz—y°* +2Re({z — 3",z — y"))
= —2Re((z 3"z —°) +{z -1 y" — 1))
= —2Re(z — 3%yt — %) = —2¢ < 0.

Hence, ||z — y*|| < ||z — ¢°|| for all & > 0 sufficiently small. This
contradiction implies that y* does not exist.



Proof of The Projection Theorem for Convex Sets

Conversely, suppose that y° € C is such that
Re({(z — 9%,y —4")) <0 VyeC.

Then for any y € C with y # 4%, we have

lz—yl> = -9+ —y)l?
= Jlz—°I” +2Re({z — ¢°, 4" — »)) + [|3° — ylI?
>z —3°*



Affine Sets

A subset W of a vector space V is said to affine if
1-XNut+IveW Vuve WAeF.
Fact: A subset W of V is affine iff there is a subspace S such that
W=w+S={w+z:2€S5 YweW.

Proof
(«<=) First consider sets of the form W = w+ S forw e V and S a
subspace. For any u,v € W and A € F,

Jr,ye Swithu=w+z, v=w—+y
and so
1=Nu+xv = (1=N(w+z)+\Nw+y)
= w+(1-XNz+Iyew+S5.

Therefore, W is affine.
Also, for any w € W with w = w + z, we have

w+S=w+z+S=w+S9,

since S is a subspace.
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Affine Sets

(=)Let we Wandset S={w—w : we W} . Weclaim S is a
subspace.

Clearly 0 € S. Also, given any a € F and z € S, there is a u € W such
that z = u — w and so

ar=cfu—w)=au+(l—-a)w—weW-w=2_9,
so ax € S for all a € F whenever x € S. Moreover, for any z,y € S,
Ju,ve Wwithze=u—wandy=v—w
so

1 1 1
§(x+y):§u+§v—@€ W—-w=3_,

but then z + y € S, so S is a subspace. Therefore, W = w + S and by
what we have already shown

S=W—-w Vwe W.



Prime Example of an Affine Set

Let A€ B(U,V)and b€ V, where U and V are vector spaces over F.

Then
W={zeV: Az =10}

is an affine subset of W, with
W =w+N(4),

where w is any particular solution to the equation Az = b.



Projections onto Affine Sets

Let W = @ + S be an affine subset of the Euclidean space V. Then

(i) For every v € V there exists a unique solution w to the problem

e . _ 2
() minimize ||lv — w][* .

(ii) w solves (&) iff v — w € S+

(iii) w = Pv+ (I — P) solves ({) where P is the orthogonal projection
onto S.

Proof: () is equivalent to the problem

minimize ||[v— w||*> = minimize |(v— @) — z|?* .
wEW+S z€S

By the Projection Theorem, there is a unique Z € S solving this problem,
in which case w = @ + & is the unique solution to ({>). Moreover, again
by the Projection Theorem, % is the unique element of S such that

v—w=(v—1W)—z€8".
To see (iii) note that & = P(v — @), so

W=0+i=w+Plv—w)=Pv+ (I —-P). O



