Linear Analysis Lecture 14

Let X be a Hilbert space with $C \subset X$ closed and convex.
Then there is a unique $y^{0} \in C$ such that

$$
\begin{equation*}
\left\|x-y^{0}\right\| \leq\|x-y\| \quad \forall y \in C . \tag{P}
\end{equation*}
$$

Furthermore, y_{0} satisfies \mathcal{P} if and only if

$$
\operatorname{Re}\left(\left\langle x-y^{0}, y-y^{0}\right\rangle\right) \leq 0 \quad \forall y \subset C .
$$

Proof of The Projection Theorem for Convex Sets

Let $\left\{y^{i}\right\} \subset C$ be such that

$$
\left\|x-y^{i}\right\| \rightarrow \inf \{\|x-y\|: y \in C\}=: \delta .
$$

By the parallelogram law

$$
\left\|y^{m}-y^{n}\right\|^{2}=2\left\|x-y^{m}\right\|^{2}+2\left\|x-y^{n}\right\|^{2}-4\left\|x-\frac{y^{n}+y^{m}}{2}\right\|^{2} .
$$

By convexity, $2^{-1}\left(y^{n}+y^{m}\right) \in C$, so $\left\|x-2^{-1}\left(y^{m}+y^{n}\right)\right\| \geq \delta$. Therefore,

$$
\left\|y^{m}-y^{n}\right\|^{2} \leq 2\left\|y^{m}-x\right\|^{2}+2\left\|y^{n}-x\right\|^{2}-4 \delta^{2} \rightarrow 0 .
$$

Consequently, $\left\{y^{n}\right\}$ is Cauchy and so has a limit y^{0} with $\left\|x-y^{0}\right\|=\delta$.
To see that y^{0} is unique consider the sequence

$$
y^{2 n+1}=y^{a} \quad \text { and } \quad y^{2 n}=y^{b} \quad n=0,1, \ldots
$$

where $y^{a}, y^{b} \in C$ with $\left\|h^{a}-x\right\|=\left\|y^{b}-x\right\|=\delta$. If we apply the parallelogram law to this sequence, we find that it is Cauchy as above. Hence, $y^{a}=y^{b}$.

Proof of The Projection Theorem for Convex Sets

We now show that y^{0} is the unique vector satisfying

$$
\operatorname{Re}\left(\left\langle x-y^{0}, y-y^{0}\right\rangle\right) \leq 0 \text { for all } y \in C .
$$

Suppose to the contrary that there is a vector y^{1} such that

$$
\operatorname{Re}\left(\left\langle x-y^{0}, y^{1}-y^{0}\right\rangle\right)=\epsilon>0 .
$$

Consider the vectors

$$
y^{\alpha}=\alpha y^{1}+(1-\alpha) y^{0} \in C \quad \text { for } \quad \alpha \in[0,1] .
$$

Note that the function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{gathered}
\varphi(\alpha)=\left\|x-y^{\alpha}\right\|^{2}= \\
(1-\alpha)^{2}\left\|x-y^{0}\right\|^{2} \quad+2 \alpha(1-\alpha) \operatorname{Re}\left(\left\langle x-y^{0}, x-y^{1}\right\rangle\right)+\alpha^{2}\left\|x-y^{1}\right\|^{2}
\end{gathered}
$$

is differentiable with

$$
\begin{aligned}
\varphi^{\prime}(0) & =-2\left\|x-y^{0}\right\|^{2}+2 \operatorname{Re}\left(\left\langle x-y^{0}, x-y^{1}\right\rangle\right) \\
& =-2 \operatorname{Re}\left(\left\langle x-y^{0}, x-y^{0}\right\rangle+\left\langle x-y^{0}, y^{1}-x\right\rangle\right) \\
& =-2 \operatorname{Re}\left\langle x-y^{0}, y^{1}-y^{0}\right\rangle=-2 \epsilon<0 .
\end{aligned}
$$

Hence, $\left\|x-y^{\alpha}\right\|<\left\|x-y^{0}\right\|$ for all $\alpha>0$ sufficiently small. This contradiction implies that y^{1} does not exist.

Conversely, suppose that $y^{0} \in C$ is such that

$$
\operatorname{Re}\left(\left\langle x-y^{0}, y-y^{0}\right\rangle\right) \leq 0 \quad \forall y \in C .
$$

Then for any $y \in C$ with $y \neq y^{0}$, we have

$$
\begin{aligned}
\|x-y\|^{2} & =\left\|\left(x-y^{0}\right)+\left(y^{0}-y\right)\right\|^{2} \\
& =\left\|x-y^{0}\right\|^{2}+2 \operatorname{Re}\left(\left\langle x-y^{0}, y^{0}-y\right\rangle\right)+\left\|y^{0}-y\right\|^{2} \\
& >\left\|x-y^{0}\right\|^{2} .
\end{aligned}
$$

Affine Sets

A subset W of a vector space V is said to affine if

$$
(1-\lambda) u+\lambda v \in W \quad \forall u, v \in W \lambda \in \mathbb{F} .
$$

Fact: A subset W of V is affine iff there is a subspace S such that

$$
W=w+S=\{w+x: x \in S\} \quad \forall w \in W .
$$

Proof

(\Leftarrow) First consider sets of the form $W=w+S$ for $w \in V$ and S a subspace. For any $u, v \in W$ and $\lambda \in \mathbb{F}$,

$$
\exists x, y \in S \text { with } u=w+x, v=w+y
$$

and so

$$
\begin{aligned}
(1-\lambda) u+\lambda v & =(1-\lambda)(w+x)+\lambda(w+y) \\
& =w+(1-\lambda) x+\lambda y \in w+S
\end{aligned}
$$

Therefore, W is affine.
Also, for any $\bar{w} \in W$ with $\bar{w}=w+x$, we have

$$
\bar{w}+S=w+x+S=w+S
$$

since S is a subspace.

Affine Sets

(\Rightarrow) Let $\bar{w} \in W$ and set $S=\{w-\bar{w}: w \in W\}$. We claim S is a subspace.
Clearly $0 \in S$. Also, given any $\alpha \in \mathbb{F}$ and $x \in S$, there is a $u \in W$ such that $x=u-\bar{w}$ and so

$$
\alpha x=\alpha(u-\bar{w})=\alpha u+(1-\alpha) \bar{w}-\bar{w} \in W-\bar{w}=S
$$

so $\alpha x \in S$ for all $\alpha \in \mathbb{F}$ whenever $x \in S$. Moreover, for any $x, y \in S$,

$$
\exists u, v \in W \text { with } x=u-\bar{w} \text { and } y=v-\bar{w}
$$

SO

$$
\frac{1}{2}(x+y)=\frac{1}{2} u+\frac{1}{2} v-\bar{w} \in W-\bar{w}=S
$$

but then $x+y \in S$, so S is a subspace. Therefore, $W=\bar{w}+S$ and by what we have already shown

$$
S=W-w \quad \forall w \in W
$$

Let $A \in \mathcal{B}(U, V)$ and $b \in V$, where U and V are vector spaces over \mathbb{F}. Then

$$
W=\{x \in V: A x=b\}
$$

is an affine subset of W, with

$$
W=\bar{w}+\mathcal{N}(A),
$$

where \bar{w} is any particular solution to the equation $A x=b$.

Projections onto Affine Sets

Let $W=\hat{w}+S$ be an affine subset of the Euclidean space V. Then
(i) For every $v \in V$ there exists a unique solution \bar{w} to the problem
$(\diamond) \quad \underset{w \in W}{\operatorname{minimize}}\|v-w\|^{2}$.
(ii) \bar{w} solves (\diamond) iff $v-\bar{w} \in S^{\perp}$.
(iii) $\bar{w}=P v+(I-P) \hat{w}$ solves (\diamond) where P is the orthogonal projection onto S.
Proof: (\diamond) is equivalent to the problem

$$
\underset{w \in \hat{w}+S}{\operatorname{minimize}}\|v-w\|^{2}=\underset{x \in S}{\operatorname{minimize}}\|(v-\widehat{w})-x\|^{2} .
$$

By the Projection Theorem, there is a unique $\hat{x} \in S$ solving this problem, in which case $\bar{w}=\hat{w}+\hat{x}$ is the unique solution to (\diamond). Moreover, again by the Projection Theorem, \hat{x} is the unique element of S such that

$$
v-\bar{w}=(v-\hat{w})-\bar{x} \in S^{\perp} .
$$

To see (iii) note that $\hat{x}=P(v-\hat{w})$, so

$$
\bar{w}=\hat{w}+\hat{x}=\hat{w}+P(v-\hat{w})=P v+(I-P) \hat{w} .
$$

