
Linear Analysis
Lecture 13



Singular Value Decomposition (SVD)

If A ∈ Cm×n, then there exists unitary matrices

U ∈ Cm×m and V ∈ Cn×n

such that
A = UΣV H ,

where Σ ∈ Cm×n is the diagonal matrix of singular values.
In particular, if

σ1 ≥ σ2 ≥ . . . σp (p = min(m,n))

are the singular values of A with

diag (Σ) = [σ1, σ2, σ3, . . . ]

and
U = [u1, u2, . . . , um] and V = [v1, v2, . . . , vn] ,

then
σjuj = Avj j = 1, 2, . . . , p .
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Singular Value Decomposition: Proof
As in the square case, ‖A‖2 = ‖AHA‖. But

‖AHA‖ = λ1 = σ2
1 , so ‖A‖ = σ1.

So ∃ x ∈ Cn with ‖x‖ = 1 and ‖Ax‖ = σ1, and write Ax = σ1y where
‖y‖ = 1. Complete x and y to unitary matrices

V1 = [x, ṽ2, · · · , ṽn] ∈ Cn×n and U1 = [y, ũ2, · · · , ũm] ∈ Cm×m.

Since U H
1 AV1 =: A1 is the matrix of A in these bases it follows that

A1 =
[
σ1 wH

0 B

]
for some w ∈ Cn−1 and B ∈ C(m−1)×(n−1). Observe that

σ2
1 + w∗w ≤

∥∥∥∥[ σ2
1 + w∗w

Bw

]∥∥∥∥ =
∥∥∥∥A1

[
σ1
w

]∥∥∥∥
≤ ‖A1‖ ·

∥∥∥∥[ σ1
w

]∥∥∥∥ = σ1(σ2
1 + w∗w) 1

2

since ‖A1‖ = ‖A‖ = σ1 by the invariance of ‖ · ‖ under unitary
multiplication. It follows that (σ2

1 + w∗w) 1
2 ≤ σ1, so w = 0, and thus

A1 =
[
σ1 0
0 B

]
.

3 / 18



Singular Value Decomposition: Proof

Thus far we have

U H
1 AV1 = A1 =

[
σ1 0
0 B

]
.

Apply the same argument to B and repeat to get the result. For this,
observe that [

σ2
1 0

0 BH B

]
= AH

1 A1 = V H
1 AHAV1

is unitarily similar to AHA, so the eigenvalues of BH B are

λ2 ≥ · · · ≥ λn ≥ 0.

Observe also that the same argument shows that if A ∈ Rm×n, then U
and V can be taken to be real orthogonal matrices. �
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Alternative Proof of SVD
Although short, this proof masks some of the key ideas. An alternative
proof revealing more of the structure of the SVD is given below.
Alternative Proof: Let {v1, . . . , vn} be an orthonormal basis of Cn

consisting of eigenvectors of AHA associated with
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, respectively, and let V = [v1 · · · vn] ∈ Cn×n.
Then V is unitary, and

V H AHAV = Λ = diag (λ1, . . . , λn) ∈ Rn×n.

For 1 ≤ i ≤ n, ‖Avi‖2 = eH
i V H AHAVei = λi = σ2

i .
Choose r so that σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0 (r = rank A).
Then, for 1 ≤ i ≤ r , Avi = σiui for a unique ui ∈ Cm with ‖ui‖ = 1.
Moreover, for 1 ≤ i, j ≤ r ,

uH
i uj = 1

σiσj
vH

i AHAvj = 1
σiσj

eH
i Λej = δij .

So we can append vectors ur+1, . . . , um ∈ Cm (if necessary) so that
U = [u1 · · · um] ∈ Cm×m is unitary. It follows easily that

AV = UΣ, so A = UΣV H .

�
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Insight from the Alternative Proof of SVD

The key insite in the alternative proof is the relation
AV = UΣ .

Interpreting this equation columnwise gives

(∗) Avi = σiui (1 ≤ i ≤ p),
and

Avi = 0 for i > m if n > m,
where {v1, . . . , vn} are the columns of V and {u1, . . . , um} are the
columns of U . So A maps the orthonormal vectors {v1, . . . , vp} into the
orthogonal directions {u1, . . . , up} with the singular values σ1 ≥ · · · ≥ σp
as scale factors.
Next, multiply the equations (∗) through by AH to get

σ2
i vi = AH Avi = σiAH ui (1 ≤ i ≤ p)

yielding
(∗∗) AH ui = σivi (1 ≤ i ≤ p).

That is, AH maps the orthonormal vectors {u1, . . . , up} into the
orthogonal directions {v1, . . . , vp} with the singular values σ1 ≥ · · · ≥ σp
as scale factors.
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Singular Vectors

The vectors v1, . . . , vn are called the right singular vectors of A, and
u1, . . . , um are called the left singular vectors of A.

Observe that

AHA = V ΣH ΣV H and ΣH Σ = diag (σ2
1 , . . . , σ

2
n) ∈ Rn×n

even if m < n. So

V H AHAV = Λ = diag (λ1, . . . λn),

and thus the columns of V form an orthonormal basis consisting of
eigenvectors of AHA ∈ Cn×n. Similarly AAH = UΣΣH U H , so

U H AAHU = ΣΣH = diag (σ2
1 , . . . , σ

2
p,

(m−n zeroes if m>n)︷ ︸︸ ︷
0, . . . , 0 ) ∈ Rm×m,

and thus the columns of U form an orthonormal basis of Cm consisting
of eigenvectors of AAH ∈ Cm×m.
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Reduced Singular Value Decomposition (Reduced SVD)

Let A ∈ Cm×n have SVD A = UΣV H , where

U = [u1, u2, . . . , um] ∈ Cm×m and V = [v1, v2, . . . , vm] ∈ Cn×n

are unitary and Σ ∈ Cm×n is diagonal with the first p = min{n,m}
diagonal entries being the singular values of A ordered largest to smallest.
Let 1 ≤ k ≤ p be such that σk > 0 and σk+1 = 0. The rank A = k and

A = Û Σ̂V̂ H ,

where Σ̂ = diag (σ1, σ2, . . . , σk) ∈ Rk×k ,

Û = [u1, u2, . . . , uk ] ∈ Cm×k and V̂ = [v1, v2, . . . , vk ] ∈ Cn×k .

Moreover, UU H is the orthogonal projector onto Ran(A) and VV H is
the orthogonal projector onto Nul(A)⊥.

8 / 18



The SVD and Normal Matrices

Proposition. Let A ∈ Cn×n be normal, and order the eigenvalues of A
as |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then the singular values of A are

σi = |λi |, 1 ≤ i ≤ n .

Proof: By the Spectral Theorem for normal operators,
A = V ΛV H ,

where V ∈ Cn×n is unitary. For 1 ≤ i ≤ n, choose di ∈ C for which
d̄iλi = |λi | and |di | = 1,

and let D = diag (d1, . . . , dn). Then D is unitary, and
A = (VD)(DH Λ)V H ≡ UΣV H ,

where U = VD is unitary and
Σ = DH Λ = diag (|λ1|, . . . , |λn|)

is diagonal with decreasing nonnegative diagonal entries. �
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The SVD and Matrix Norms

The Frobenius and Euclidean operator norms of A ∈ Cm×n are easily
expressed in terms of the singular values of A: set t := min{m,n},

‖A‖F =
( t∑

i=1
σ2

i

) 1
2

=

∥∥∥∥∥∥∥
σ1
...
σt

∥∥∥∥∥∥∥
2

and

‖A‖ = σ1 =
√

p(AHA) =

∥∥∥∥∥∥∥
σ1
...
σt

∥∥∥∥∥∥∥
∞

,

as follows from the unitary invariance of these norms.

There are no such simple expressions (in general) for these norms in
terms of the eigenvalues of A if A is square (but not normal).
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The Schatten-p Norms

Extending these expressions for the Frobenius and Euclidean operator
norms of A ∈ Cm×n, we obtain the Schatten-p Norms:

‖A‖(p) =

∥∥∥∥∥∥∥
σ1
...
σt

∥∥∥∥∥∥∥
p

,

for 1 ≤ p <∞.

The case p = 1 is also called the trace norm or the nuclear norm:

‖A‖(1) =
t∑

i=1
σi .
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The SVD and Rank

The SVD is useful computationally for questions involving rank.

The rank of A ∈ Cm×n is the number of nonzero singular values of A
since rank is invariant under pre- and post-multiplication by invertible
matrices.

There are stable numerical algorithms for computing SVD (try matlab).

In the presence of round-off error, row-reduction to echelon form usually
fails to find the rank of A when its rank is < min(m,n).

For such a matrix, the computed SVD has the zero singular values
computed to be on the order of machine ε, and these are often
identifiable as “numerical zeroes.”

For example, if the computed singular values of A are

102, 10, 1, 10−1, 10−2, 10−3, 10−4, 10−15, 10−15, 10−16

with machine ε ≈ 10−16, one can safely expect rank (A) = 7.
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The SVD and Polar Form

We now consider the matrix analogue of the polar form z = reiθ.

Proposition: Every A ∈ Cn×n may be written as A = PU , where P is
positive semi-definite Hermitian and U is unitary.

Proof: Let
A = UΣV H

be a SVD for A, and write

A = (UΣU H )(UV H ).

Then
UΣU H

is positive semi-definite Hermitian and

UV H

is unitary. �
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Linear Least Squares Problems
If A ∈ Cm×n and b ∈ Cm, and consider the system Ax = b. This system
may not be solvable, especially if m > n.
Instead solve

inf
x∈Cn

1
2‖Ax − b‖22 . (*)

This is called a least-squares problem since the square of the Euclidean
norm is a sum of squares.
Set ϕ(x) = 1

2‖Ax − b‖2, then at the solution to (*) ∇ϕ(x) = 0, or

equivalently ϕ′(x; v) = 0 ∀ v ∈ Cn, where ϕ′(x; v) = d
dtϕ(x + tv)

∣∣∣∣∣
t=0

is

the directional derivative. If y(t) is a differentiable curve in Cm, then
d
dt (1

2‖y(t)‖2) = 1
2(〈y′(t), y(t)〉+ 〈y(t), y′(t)〉) = Re〈y(t), y′(t)〉.

Taking y(t) = A(x + tv)− b, we obtain that
∇ϕ(x) = 0⇔ (∀ v ∈ Cn) Re〈Ax − b,Av〉 = 0⇔ AH (Ax − b) = 0,

i.e.,
AHAx = AH b .

These are called the normal equations (they say (Ax − b) ⊥ R(A)).
14 / 18



The Projection Theorem

Let S ⊂ V be a subspace of the Euclidean space V .
1 V = S ⊕ S⊥, i.e., given v ∈ V , ∃ unique ȳ ∈ S and z̄ ∈ S⊥ for which

v = ȳ + z̄ (so ȳ = Pv and z̄ = (I − P)v, where P is the orth. proj.
onto S and (I − P) is the orth. proj. onto S⊥).

2 Given v ∈ V , ȳ is the unique element of S which satisfies
〈v − ȳ, y〉 = 0 ∀ y ∈ S .

3 ŷ = ȳ if and only if ŷ is the unique element of S solving the
minimization problem min

{
‖v − y‖2 : y ∈ S

}
.
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Proof of The Projection Theorem

(1) V = S ⊕ S⊥, i.e., given v ∈ V , ∃ unique ȳ ∈ S and z̄ ∈ S⊥ for
which v = ȳ + z̄ so ȳ = Pv and z̄ = (I − P)v,
where P is the orthogonal projection of V onto S .

Proof: Let {ψ1, . . . , ψr} be an orthonormal basis of S . Given v ∈ V , let

ȳ =
r∑

j=1
〈v, ψj〉ψj and z̄ = v − ȳ.

Then v = ȳ + z̄ and ȳ ∈ S . For 1 ≤ k ≤ r ,

〈z̄, ψk〉 = 〈v, ψk〉 − 〈ȳ, ψk〉 = 〈v, ψk〉 − 〈v, ψk〉 = 0,

so z̄ ∈ S⊥.
Uniqueness follows from the fact that S ∩ S⊥ = {0}. �
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Proof of The Projection Theorem

(2) Given v ∈ V , the ȳ in (1) is the unique element of S which satisfies

(∀ y ∈ S) 〈v − ȳ, y〉 = 0.

Proof
Since z̄ = v − ȳ, this is just a restatement of z̄ ∈ S⊥. �
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Proof of The Projection Theorem

(3) Given v ∈ V let ȳ = PV y. Then ŷ = ȳ if and only if ŷ is the unique
element of S solving the minimization problem

minimize
y∈S

‖v − y‖2 .

Proof: For any y ∈ S ,

v − y = ȳ − y︸ ︷︷ ︸
∈S

+ z̄︸︷︷︸
∈S⊥

,

so by the Pythagorean Theorem

(p ⊥ q ⇔ ‖p ± q‖2 = ‖p‖2 + ‖q‖2), and so ‖v − y‖2 = ‖ȳ − y‖2 + ‖z̄‖2.

Therefore, ‖v − y‖2 is minimized iff y = ȳ, and ‖v − ȳ‖2 = ‖z̄‖2. �
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