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Jordan Form
Let T ∈ Cn×n be an upper triangular matrix in block diagonal form

T =

 T1 0
. . .

0 Tk

 ,

with Ti ∈ Cmi×mi satisfying Ti = λiI + Ni , where Ni ∈ Cmi×mi is
strictly upper triangular, and λ1, . . . , λk are distinct. Then for
1 ≤ i ≤ k, N mi

i = 0, so N is nilpotent. Recall that any nilpotent
operator is a direct sum of shift operators in an appropriate basis.
Therefore, the matrix Ni is similar to a direct sum of shift matrices

S` =

 0 1 0
. . . . . . 1

0 0

 ∈ C`×`

of varying sizes `. Thus each Ti is similar to a direct sum of Jordan
blocks

J`(λ) = λI` + S` =

 λ 1 0
. . . . . . 1

0 λ

 ∈ C`×`

of varying sizes ` (with λ = λi).
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Jordan Form

Definition. A matrix J is in Jordan normal form if it is the direct sum
of finitely many Jordan blocks (with, of course, possibly different values
of λ and `).

Theorem. Every matrix A ∈ Cn×n is similar to a matrix in Jordan
normal form.

The Jordan form of A is not quite unique since the blocks may be
arbitrarily reordered by a similarity transformation.

Proposition
(a) The Jordan form of A is unique up to reordering of the Jordan blocks.
(b) Two matrices in Jordan form are similar iff they can be obtained from
each other by reordering the blocks.
(c) Two matrices are similar iff they are similar to the same Jordan
normal form.
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Jordan Form

In general, knowing the algebraic and geometric multiplicities of each
eigenvalue of A is not sufficient to determine the Jordan form.

For example,

N1 =

 0 1
0 1

0 0

 and N2 =


0 1
0 0

0 1
0 0


are not similar as N 2

1 6= 0 = N 2
2 , but both have 0 as the only eigenvalue

with algebraic multiplicity 4 and geometric multiplicity 2.
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Spectral Decomposition
An invariant formulation of Jordan Normal Form (i.e., basis-free).
Let L ∈ L(V ) where dim V = n <∞ (and F = C). λ1, . . . , λk distinct
eigenvalues of L, with algebraic multiplicities m1, . . . ,mk . The
generalized eigenspaces are

Ẽi = N (L − λiI )mi .
The eigenspaces are

Eλi = N (L − λiI ).
Then

dim Ẽi = mi (1 ≤ i ≤ k) and V =
k⊕

i=1
Ẽi

using basis representing L as a block-diagonal upper triangular matrix. If
Pi (1 ≤ i ≤ k) be the associated projections, then

I =
k∑

i=1
Pi and PiPj = δijPi .

Define
D =

k∑
i=1

λiPi .

In the same basis, D is diagonal and the matrix for N ≡ L −D is strictly
upper triangular, so N is nilpotent, with PjN = NPj ∀ j, and so
N =

∑k
i=1 Ni where Ni = PiNPi .

5 / 22



Spectral Decomposition Theorem

Any L ∈ L(V ) can be written as L = D + N where D is diagonalizable,
N is nilpotent, and DN = ND.
If Pi is the projection onto the λi-generalized eigenspace and
Ni = PiNPi , then

D =
k∑

i=1
λiPi and N =

k∑
i=1

Ni .
Moreover,

LPi = PiL = PiLPi = λiPi + Ni (1 ≤ i ≤ k),

PiPj = δijPi , PiNj = NjPi = δijNj (1 ≤ i ≤ k)(1 ≤ j ≤ k), and

NiNj = NjNi = 0 (1 ≤ i < j ≤ k),

where δij = 0 if i 6= j and δij = 1 if i = j.

Note: D and N are uniquely determined by L.
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Spectral Decomposition Theorem for Normal Operators
If V has an inner product 〈·, ·〉, and L is normal, then we know that L is
diagonalizable, so N = 0. We also know that eigenvectors corresponding
to different eigenvalues are orthogonal, so the subspaces Ẽi (= Eλi here)
are mutually orthogonal. Hence, the associated projections Pi are
orthogonal projections.
Recall that P is called an orthogonal projection if R(P) ⊥ N (P).
Proposition. A projection P is orthogonal iff it is self-adjoint (i.e., P is
Hermitian: P∗ = P, where P∗ is the adjoint of P with respect to the
inner product 〈·, ·〉).
Proof: Let P ∈ L(V ) be a projection. If P∗ = P, then
〈Px, y〉 = 〈x,Py〉 ∀ x, y ∈ V , so

y ∈ N (P)⇔ (∀ x ∈ V ) 〈Px, y〉 = 〈x,Py〉 = 0⇔ y ∈ R(P)⊥,
so P is an orthogonal projection.
Conversely, suppose R(P) ⊥ N (P). We must show that

〈Px, y〉 = 〈x,Py〉 ∀ x, y ∈ V .

Since V = R(P)⊕N (P), it suffices to check this separately in the four
cases x, y ∈ R(P), N (P). Each of these cases is straightforward since
Pv = v for v ∈ R(P) and Pv = 0 for v ∈ N (P). �
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Jordan Form over R

In general, a real matrix is not similar to a real upper-triangular matrix
via a real similarity transformation.

If it were, then its eigenvalues would be the real diagonal entries, but a
real matrix need not have only real eigenvalues.

However, non-real eigenvalues are the only obstruction to carrying out
our previous arguments.

Every real eigenvalue of a real matrix can be identified using only real
eigenvectors (Why?).

If A ∈ Rn×n has real eigenvalues, then A is orthogonally similar to a real
upper triangular matrix, and A can be put into block diagonal an Jordan
form using real similarity transformations, by following the same
arguments as before.

If A does have some non-real eigenvalues, then there are substitute
normal forms which can be obtained via real similarity transformations.
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Jordan Form over R

Let pA(t) be the characteristic polynomial of A ∈ Rn×n. Then pA(t) has
real coefficients. If λ = a + ib ∈ σ(A), then

0 = pA(λ) = pA(λ̄),
so λ̄ = a − ib ∈ σ(A). That is, the non-real eigenvalues of A come in
complex conjugate pairs.
If u + iv (with u, v ∈ Rn) is an eigenvector of A for λ, then

A(u − iv) = A(u + iv) = A(u + iv) = λ(u + iv) = λ̄(u − iv),
so u − iv is an eigenvector of A for λ̄. It follows that u + iv and u − iv
are linearly independent over C. Thus

u = 1
2(u + iv) + 1

2(u − iv) and v = 1
2i (u + iv)− 1

2i (u − iv)
are linearly independent over C, and consequently also over R. Since

A(u + iv) = (a + ib)(u + iv) = (au − bv) + i(bu + av),
Au = au − bv and Av = bu + av.

Thus, Span{u, v} is a 2-dimensional real invariant subspace of Rn for A,
and the matrix of A restricted to the subspaces Span{u, v} with respect
to the basis {u, v} is [

a b
−b a

]
.

This 2× 2 matrix has eigenvalues λ, λ̄.
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Jordan Form over R

Over R, the best one can do is to have such 2× 2 diagonal blocks
instead of upper triangular matrices with λ, λ̄ on the diagonal. The real
Jordan blocks for λ, λ̄ are

J`(λ, λ̄) =



[
a b
−b a

] [
1 0
0 1

]
0

. . . . . .
[

1 0
0 1

]
0

[
a b
−b a

]


∈ R2`×2`.

The real Jordan form of A ∈ Rn×n is a direct sum of such blocks, with
the usual Jordan blocks for the real eigenvalues.
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Eigenvalues of Products

Proposition. Let A ∈ Cm×n and B ∈ Cn×m with m ≤ n.

Then the eigenvalues of BA (counting multiplicity) are the eigenvalues of
AB, together with n −m zeroes.

Corollary. Let A ∈ Cm×n with m ≤ n. The the eigenvalues of AHA and
AAH differ by |n −m| zeroes.
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Singular Values of Non-Square Matrices

Definition. Let p = min(m,n) and let
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

be the joint eigenvalues of AHA and AAH. The singular values of A are
the numbers

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,
where σi =

√
λi .

It is a fundamental result that one can choose orthonormal bases for Cn

and Cm so that A maps one into the other, scaled by the singular values.

In what follows let A ∈ Cm×m, with ‖A‖ denoting the operator norm
induced by the Euclidean norm, and ‖A‖F denotes the Frobenius norm of
A. As usual, the inner product on Cm×m is

〈Ax, y〉Cm = yH Ax = 〈x,AH y〉Cn for x ∈ Cn, y ∈ Cm.
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Singular Value Decomposition (SVD)

If A ∈ Cm×n, then there exists unitary matrices

U ∈ Cm×m and V ∈ Cn×n

such that
A = UΣV H ,

where Σ ∈ Cm×n is the diagonal matrix of singular values.
In particular, if

σ1 ≥ σ2 ≥ . . . σp (p = min(m,n))

are the singular values of A with

diag (Σ) = [σ1, σ2, σ3, . . . ]

and
U = [u1, u2, . . . , um] and V = [v1, v2, . . . , vn] ,

then
σjuj = Avj j = 1, 2, . . . , p .
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