
Linear Analysis
Lecture 11



Unitary Equivalence

Recall that similar matrices represent the same linear transformation in
different bases. We now focus on a very important class of similarity
transformations.

Definition. We say that A,B ∈ Cn×n are unitarily equivalent (or
unitarily similar) if there is a unitary matrix U ∈ Cn×n,

U H = U−1, such that B = U H AU .

Unitary equivalence is important for several reasons. Consider the
following computational reasons.
(1) The inverse of a unitary matrix is easy to compute!
(2) Unitary matrices are perfectly conditioned in inner product spaces
under the inner product operator norm.

(∀ x ∈ Cn) ‖Ux‖ = ‖x‖ = ‖U H x‖ ⇒ ‖U‖ = ‖U H‖ = ‖U−1‖ = 1 .
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Unitary Equivalence

(3) Unitary similarity transformations preserve the condition number
(again in the inner product operator norm).

κ(U H AU ) = ‖U H AU‖ ‖U H A−1U‖ ≤ ‖A‖ ‖A−1‖ = κ(A) ;

similarly κ(A) ≤ κ(U H AU ) .

In general, a similarity transformation may degrade the condition of a
matrix.

κ(S−1AS) = ‖S−1AS‖ · ‖S−1A−1S‖
≤ ‖S−1‖2‖A‖ · ‖A−1‖ · ‖S‖2 = κ(S)2κ(A)

and, similarly,
κ(A) ≤ κ(S)2κ(S−1AS).
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Preservation of Norms: Isometry
Proposition: Let U ∈ Cn×n be unitary, and A ∈ Cm×n, B ∈ Cn×k .

(1) In the operator norms induced by the Euclidean norms,

‖AU‖ = ‖A‖ and ‖UB‖ = ‖B‖.

(2) In the Frobenius norms,

‖AU‖F = ‖A‖F and ‖UB‖F = ‖B‖F .

So multiplication by a unitary matrix preserves ‖ · ‖ and ‖ · ‖F .
Proof Sketch.
(1) (∀ x ∈ Ck) ‖UBx‖ = ‖Bx‖, so ‖UB‖ = ‖B‖.
Likewise, since U H is also unitary,

‖AU‖ = ‖(AU )H‖ = ‖U H AH‖ = ‖AH‖ = ‖A‖.

(2) Let b1, . . . , bk be the columns of B. Then

‖UB‖2
F =

k∑
j=1
‖Ubj‖2

2 =
k∑

j=1
‖bj‖2

2 = ‖B‖2
F .

Likewise, since U H is also unitary,
‖AU‖F = ‖U H AH‖F = ‖AH‖F = ‖A‖F . �
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Schur Unitary Triangularization Theorem
Every A ∈ Cn×n is unitarily equivalent to an upper triangular T .
If λ1, . . . , λn are the eigenvalues of A in any prescribed order, then one
can choose a unitary similarity transformation so that the diagonal entries
of T are λ1, . . . , λn in that order.
Proof Sketch: Induction on n: Obvious for n = 1. Assume true for
n − 1. Given A ∈ Cn×n and an ordering λ1, . . . , λn of its eigenvalues,
choose an eigenvector x for λ1 with Euclidean norm ‖x‖ = 1.
Extend {x} to a basis of Cn and apply the Gram-Schmidt procedure to
obtain an orthonormal basis {x, u2, . . . , un} of Cn. Then

U1 = [x, u2, · · · , un] ∈ Cn×n is unitary.
Since Ax = λ1x,

U H
1 AU1 =

[
λ1 yH

1
0 B

]
for some y1 ∈ Cn−1, B ∈ C(n−1)×(n−1).

Since similar matrices have the same characteristic polynomial,

pA(t) = det
(

tI −
[
λ1 yH

1
0 B

])
= (t−λ1)det (tI−B) = (t−λ1)pB(t),

so the eigenvalues of B are λ2, . . . , λn.
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Schur Unitary Triangularization Theorem

By the induction hypothesis, there is a unitary Ũ ∈ C(n−1)×(n−1) and
upper triangular T̃ ∈ C(n−1)×(n−1) such that Ũ H BŨ = T̃ and the
diagonal entries on T̃ are λ2, . . . , λn in that order.

Let
U2 =

[
1 0
0 Ũ

]
∈ Cn×n.

Then U2 is unitary, and

U H
2 U H

1 AU1U2 =
[
λ1 yH

1 Ũ
0 Ũ H BŨ

]
=
[
λ1 yH

1 Ũ
0 T̃

]
≡ T .

Since U ≡ U1U2 is unitary and U H AU = T , the statement is true for n
as well. �

Note: The basic iterative step that reduces the dimension by 1 is called a
deflation. Deflation is used to derive many of important matrix
factorizations.
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Spectral Theorem for Normal Operators

Unitary equivalence preserves the classes of Hermitian, skew-Hermitian,
and normal matrices.
Spectral Theorem: Let A ∈ Cn×n be normal. Then A is unitarily
diagonalizable. That is, A is unitarily similar to a diagonal matrix; so
there is an orthonormal basis of eigenvectors.
Proof Sketch: By Schur Triangularization Theorem, there is a unitary
U ∈ Cn×n such that U H AU = T is upper triangular. Since A is normal,
T is normal: TH T = U H AH AU = U H AAH U = TTH .
By equating diagonal entries of TH T and TTH , we show T is diagonal.
The (1, 1) entries of TH T and TTH are

|t11|2 and
n∑

j=1
|t1j |2, resp.ly.

Hence t1j = 0 for j ≥ 2 . Now the (2, 2) entries of TH T and TTH are

|t22|2 and
n∑

j=2
|t2j |2, resp.ly.

Hence, again,
t2j = 0 for j ≥ 3.

Continuing with the remaining rows yields the result. �
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The Spectral Radius and Normal Operators

A useful tool in the analysis of operators is the spectral radius.
Given L ∈ L(V ) with dim(V ) <∞, the spectral radius of L is

ρ(L) = max
λ∈σ(L)

|λ| .

The spectral radius and the operator norm in a Euclidean space have an
important relationship. This relationship is studied more deeply later, but
for now, we have the following.
Fact: For any A ∈ (Cn×n, ‖·‖) and any operator norm ‖| · |‖

ρ(A) ≤ ‖|A|‖ ,

with equality if A is normal and ‖| · |‖ = ‖| · |‖2.
Proof: Let λ ∈ Σ(A) be such that |λ| = ρ(A), and let v be an
associated eigenvector with ‖v‖ = 1. Then

‖|A|‖ = sup
‖x‖=1

‖Ax‖ ≥ ‖Av‖ = |λ| = ρ(A) .
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The Spectral Radius and Normal Operators

Next suppose A is normal with eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The
Spectral Theorem ⇒ ∃ unitary U ∈ Cn×n such that U H AU = D,
where D = diag(λ1, λ2, . . . , λn).
Given x ∈ Cn with ‖x‖2 = 1, set v = U H x so ‖v‖2 = ‖x‖2 = 1. Then

‖Ax‖2
2 = ‖U H AUU H x‖2

2 = ‖Dv‖2
2

=
n∑

k=1
|λkvi |2 =

n∑
k=1
|λk |2|vi |2

≤
(

max
k=1,...,n

|λk |2
) n∑

k=1
|vi |2

= ρ2(A) .

Therefore, ‖|A|‖2 = sup‖x‖2=1 ‖Ax‖2 ≤ ρ(A) , so ‖|A|‖2 = ρ(A). �
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The Cayley-Hamilton Theorem

Theorem: (Cayley-Hamilton) Every matrix A ∈ Cn×n satisfies its
characteristic polynomial, i.e. pA(A) = 0 .
Proof: By Schur, ∃ unitary U ∈ Cn×n and upper triangular T ∈ Cn×n

such that U H AU = T , where the diagonal entries of T are the
eigenvalues λ1, . . . , λn of A (in some order). Since

A = UTU H and Ak = UT kU H ,

we have pA(A) = UpA(T )U H .

Writing pA(t) = (t − λ1)(t − λ2) · · · (t − λn) gives

pA(T ) = (T − λ1I )(T − λ2I ) · · · (T − λnI ).

Since T − λjI is upper triangular with its jj entry being zero, it follows
that pA(T ) = 0. To see this, accumulate the product from the left, in
which case one shows by induction on k that the first k columns of

(T − λ1I ) · · · (T − λkI )

are zero. �
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