Linear Analysis
 Lecture 11

Recall that similar matrices represent the same linear transformation in different bases. We now focus on a very important class of similarity transformations.

Definition. We say that $A, B \in \mathbb{C}^{n \times n}$ are unitarily equivalent (or unitarily similar) if there is a unitary matrix $U \in \mathbb{C}^{n \times n}$,

$$
U^{H}=U^{-1}, \quad \text { such that } B=U^{H} A U .
$$

Unitary equivalence is important for several reasons. Consider the following computational reasons.
(1) The inverse of a unitary matrix is easy to compute!
(2) Unitary matrices are perfectly conditioned in inner product spaces under the inner product operator norm.

$$
\left(\forall x \in \mathbb{C}^{n}\right)\|U x\|=\|x\|=\left\|U^{H} x\right\| \Rightarrow\|U\|=\left\|U^{H}\right\|=\left\|U^{-1}\right\|=1
$$

(3) Unitary similarity transformations preserve the condition number (again in the inner product operator norm).

$$
\kappa\left(U^{H} A U\right)=\left\|U^{H} A U\right\|\left\|U^{H} A^{-1} U\right\| \leq\|A\|\left\|A^{-1}\right\|=\kappa(A) ;
$$

similarly $\kappa(A) \leq \kappa\left(U^{H} A U\right)$.

In general, a similarity transformation may degrade the condition of a matrix.

$$
\begin{aligned}
\kappa\left(S^{-1} A S\right) & =\left\|S^{-1} A S\right\| \cdot\left\|S^{-1} A^{-1} S\right\| \\
& \leq\left\|S^{-1}\right\|^{2}\|A\| \cdot\left\|A^{-1}\right\| \cdot\|S\|^{2}=\kappa(S)^{2} \kappa(A)
\end{aligned}
$$

and, similarly,

$$
\kappa(A) \leq \kappa(S)^{2} \kappa\left(S^{-1} A S\right)
$$

Preservation of Norms: Isometry

Proposition: Let $U \in \mathbb{C}^{n \times n}$ be unitary, and $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times k}$.
(1) In the operator norms induced by the Euclidean norms,

$$
\|A U\|=\|A\| \quad \text { and } \quad\|U B\|=\|B\| .
$$

(2) In the Frobenius norms,

$$
\|A U\|_{F}=\|A\|_{F} \quad \text { and } \quad\|U B\|_{F}=\|B\|_{F} .
$$

So multiplication by a unitary matrix preserves $\|\cdot\|$ and $\|\cdot\|_{F}$. Proof Sketch.
(1)

$$
\left(\forall x \in \mathbb{C}^{k}\right)\|U B x\|=\|B x\|, \quad \text { so } \quad\|U B\|=\|B\| .
$$

Likewise, since U^{H} is also unitary,

$$
\|A U\|=\left\|(A U)^{H}\right\|=\left\|U^{H} A^{H}\right\|=\left\|A^{H}\right\|=\|A\| .
$$

(2) Let b_{1}, \ldots, b_{k} be the columns of B. Then

$$
\|U B\|_{F}^{2}=\sum_{j=1}^{k}\left\|U b_{j}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|b_{j}\right\|_{2}^{2}=\|B\|_{F}^{2}
$$

Likewise, since U^{H} is also unitary,

$$
\|A U\|_{F}=\left\|U^{H} A^{H}\right\|_{F}=\left\|A^{H}\right\|_{F}=\|A\|_{F} .
$$

Schur Unitary Triangularization Theorem

Every $A \in \mathbb{C}^{n \times n}$ is unitarily equivalent to an upper triangular T. If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A in any prescribed order, then one can choose a unitary similarity transformation so that the diagonal entries of T are $\lambda_{1}, \ldots, \lambda_{n}$ in that order.
Proof Sketch: Induction on n : Obvious for $n=1$. Assume true for $n-1$. Given $A \in \mathbb{C}^{n \times n}$ and an ordering $\lambda_{1}, \ldots, \lambda_{n}$ of its eigenvalues, choose an eigenvector x for λ_{1} with Euclidean norm $\|x\|=1$. Extend $\{x\}$ to a basis of \mathbb{C}^{n} and apply the Gram-Schmidt procedure to obtain an orthonormal basis $\left\{x, u_{2}, \ldots, u_{n}\right\}$ of \mathbb{C}^{n}. Then

$$
U_{1}=\left[x, u_{2}, \cdots, u_{n}\right] \in \mathbb{C}^{n \times n} \quad \text { is unitary. }
$$

Since $A x=\lambda_{1} x$,

$$
U_{1}^{H} A U_{1}=\left[\begin{array}{cc}
\lambda_{1} & y_{1}^{H} \\
0 & B
\end{array}\right] \quad \text { for some } y_{1} \in \mathbb{C}^{n-1}, \quad B \in \mathbb{C}^{(n-1) \times(n-1)} .
$$

Since similar matrices have the same characteristic polynomial,

$$
p_{A}(t)=\operatorname{det}\left(t I-\left[\begin{array}{cc}
\lambda_{1} & y_{1}^{H} \\
0 & B
\end{array}\right]\right)=\left(t-\lambda_{1}\right) \operatorname{det}(t I-B)=\left(t-\lambda_{1}\right) p_{B}(t)
$$

so the eigenvalues of B are $\lambda_{2}, \ldots, \lambda_{n}$.

Schur Unitary Triangularization Theorem

By the induction hypothesis, there is a unitary $\widetilde{U} \in \mathbb{C}^{(n-1) \times(n-1)}$ and upper triangular $\widetilde{T} \in \mathbb{C}^{(n-1) \times(n-1)}$ such that $\widetilde{U}^{H} B \widetilde{U}=\widetilde{T}$ and the diagonal entries on \widetilde{T} are $\lambda_{2}, \ldots, \lambda_{n}$ in that order.

Let

$$
U_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & \widetilde{U}
\end{array}\right] \in \mathbb{C}^{n \times n}
$$

Then U_{2} is unitary, and

$$
U_{2}^{H} U_{1}^{H} A U_{1} U_{2}=\left[\begin{array}{cc}
\lambda_{1} & y_{1}^{H} \widetilde{U} \\
0 & \widetilde{U}^{H} B \widetilde{U}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & y_{1}^{H} \widetilde{U} \\
0 & \widetilde{T}
\end{array}\right] \equiv T .
$$

Since $U \equiv U_{1} U_{2}$ is unitary and $U^{H} A U=T$, the statement is true for n as well.

Note: The basic iterative step that reduces the dimension by 1 is called a deflation. Deflation is used to derive many of important matrix factorizations.

Spectral Theorem for Normal Operators

Unitary equivalence preserves the classes of Hermitian, skew-Hermitian, and normal matrices.
Spectral Theorem: Let $A \in \mathbb{C}^{n \times n}$ be normal. Then A is unitarily diagonalizable. That is, A is unitarily similar to a diagonal matrix; so there is an orthonormal basis of eigenvectors.
Proof Sketch: By Schur Triangularization Theorem, there is a unitary $U \in \mathbb{C}^{n \times n}$ such that $U^{H} A U=T$ is upper triangular. Since A is normal, T is normal: $T^{H} T=U^{H} A^{H} A U=U^{H} A A^{H} U=T T^{H}$.
By equating diagonal entries of $T^{H} T$ and $T T^{H}$, we show T is diagonal. The $(1,1)$ entries of $T^{H} T$ and $T T_{n}^{H}$ are

$$
\left|t_{11}\right|^{2} \quad \text { and } \quad \sum_{j=1}^{n}\left|t_{1 j}\right|^{2}, \quad \text { resp.ly. }
$$

Hence $t_{1 j}=0$ for $j \geq 2$. Now the $(2,2)$ entries of $T^{H} T$ and $T T^{H}$ are

$$
\left|t_{22}\right|^{2} \quad \text { and } \quad \sum_{j=2}^{n}\left|t_{2 j}\right|^{2}, \quad \text { resp.ly. }
$$

Hence, again,

$$
t_{2 j}=0 \quad \text { for } \quad j \geq 3
$$

Continuing with the remaining rows yields the result.

A useful tool in the analysis of operators is the spectral radius.
Given $L \in \mathcal{L}(V)$ with $\operatorname{dim}(V)<\infty$, the spectral radius of L is

$$
\rho(L)=\max _{\lambda \in \sigma(L)}|\lambda|
$$

The spectral radius and the operator norm in a Euclidean space have an important relationship. This relationship is studied more deeply later, but for now, we have the following.
Fact: For any $A \in\left(\mathbb{C}^{n \times n},\|\cdot\|\right)$ and any operator norm $\|\|\cdot\|$

$$
\rho(A) \leq\|A\|,
$$

with equality if A is normal and $\|\|\cdot\|\|=\|\cdot\| \|_{2}$.
Proof: Let $\lambda \in \Sigma(A)$ be such that $|\lambda|=\rho(A)$, and let v be an associated eigenvector with $\|v\|=1$. Then

$$
\|A\|\left\|=\sup _{\|x\|=1}\right\| A x\|\geq\| A v \|=|\lambda|=\rho(A)
$$

Next suppose A is normal with eigenvalues $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. The Spectral Theorem $\Rightarrow \exists$ unitary $U \in \mathbb{C}^{n \times n}$ such that $U^{H} A U=D$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
Given $x \in \mathbb{C}^{n}$ with $\|x\|_{2}=1$, set $v=U^{H} x \quad$ so $\quad\|v\|_{2}=\|x\|_{2}=1$. Then

$$
\begin{aligned}
\|A x\|_{2}^{2} & =\left\|U^{H} A U U^{H} x\right\|_{2}^{2}=\|D v\|_{2}^{2} \\
& =\sum_{k=1}^{n}\left|\lambda_{k} v_{i}\right|^{2}=\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2}\left|v_{i}\right|^{2} \\
& \leq\left(\max _{k=1, \ldots, n}\left|\lambda_{k}\right|^{2}\right) \sum_{k=1}^{n}\left|v_{i}\right|^{2} \\
& =\rho^{2}(A) .
\end{aligned}
$$

Therefore, $\|A\|_{2}=\sup _{\|x\|_{2}=1}\|A x\|_{2} \leq \rho(A)$, so $\|A\|_{2}=\rho(A)$.

Theorem: (Cayley-Hamilton) Every matrix $A \in \mathbb{C}^{n \times n}$ satisfies its characteristic polynomial, i.e. $p_{A}(A)=0$.
Proof: By Schur, \exists unitary $U \in \mathbb{C}^{n \times n}$ and upper triangular $T \in \mathbb{C}^{n \times n}$ such that $U^{H} A U=T$, where the diagonal entries of T are the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A (in some order). Since

$$
A=U T U^{H} \quad \text { and } \quad A^{k}=U T^{k} U^{H},
$$

we have $p_{A}(A)=U p_{A}(T) U^{H}$.
Writing $p_{A}(t)=\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)$ gives

$$
p_{A}(T)=\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right) \cdots\left(T-\lambda_{n} I\right) .
$$

Since $T-\lambda_{j} I$ is upper triangular with its $j j$ entry being zero, it follows that $p_{A}(T)=0$. To see this, accumulate the product from the left, in which case one shows by induction on k that the first k columns of

$$
\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{k} I\right)
$$

are zero.

