Linear Analysis
Lecture 11




Unitary Equivalence

Recall that similar matrices represent the same linear transformation in
different bases. We now focus on a very important class of similarity
transformations.

Definition. We say that A, B € C"*™ are unitarily equivalent (or
unitarily similar) if there is a unitary matrix U € C"*",

U =U"!, suchthat B= UYAU.

Unitary equivalence is important for several reasons. Consider the
following computational reasons.

(1) The inverse of a unitary matrix is easy to compute!

(2) Unitary matrices are perfectly conditioned in inner product spaces
under the inner product operator norm.

(Vo eC") | Uzl = ||zl = |U" =] = Ul = U I=(U""=1.
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Unitary Equivalence

(3) Unitary similarity transformations preserve the condition number
(again in the inner product operator norm).

K(UTAU) = |UTAU| | UTATTU < (A [[A7H] = 5(4) 5
similarly k(A) < k(UZAU) .

In general, a similarity transformation may degrade the condition of a
matrix.

R(STTAS) = [|STTAS||-|STTATLS|
ISTHEIAL - ATH - 1S11* = s(S5)*(A)

IN

and, similarly,

k(A) < K(S)*k(STTAS).
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Preservation of Norms: Isometry

Proposition: Let U € C"*" be unitary, and A € C"™*", B € C"*F,

(1) In the operator norms induced by the Euclidean norms,
[AU] = [[A]l and |[UB|| = [|B]|
(2) In the Frobenius norms,

|AU|[r = [[Allr and  [[UB||r = ||BlF-

So multiplication by a unitary matrix preserves || - || and || - || 7.
Proof Sketch.
(1) (Vz € C*) ||UBz|| = ||Ball, so [UB|l=|B.

Likewise, since U™ is also unitary,
AU = [[(AD)H || = | U7 AT = | A7 = || All.
(2) Let by, ..., by be the columns of B. Then
|UB|% = Z | Ub;15 = Z 10113 = | B
j=1 j=1

Likewise, since UH is also unitary,
JAU||p = [|UT AT || p = [|A7 || p = [|All . O
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Schur Unitary Triangularization Theorem

Every A € C™*™ is unitarily equivalent to an upper triangular T'.

If Aq,..., A, are the eigenvalues of A in any prescribed order, then one
can choose a unitary similarity transformation so that the diagonal entries
of T are A{,..., A, in that order.

Proof Sketch: Induction on n: Obvious for n = 1. Assume true for
n—1. Given A € C"*"™ and an ordering A1,..., A, of its eigenvalues,
choose an eigenvector z for A\; with Euclidean norm ||z|| = 1.

Extend {z} to a basis of C™ and apply the Gram-Schmidt procedure to
obtain an orthonormal basis {z, ug, ..., u,} of C". Then

Uy =z, ug, -+, u,] € C*" is unitary.
Since Az = \z,
Aoyl
0 B

Since similar matrices have the same characteristic polynomial,

UTAU, = { ] for some y; € C"~!, B e Ccr-Dx(n=1)

palt) = det <t[ { o yg ]) — (= X)det (= B) = (t=\1)ps(t),

so the eigenvalues of B are \a, ..., \,.
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Schur Unitary Triangularization Theorem

By the induction hypothesis, there is a unitary;(j € (Q(”_llx(”_l) and
upper triangular T € C("~V* (=1 gych that U¥BU = T and the
diagonal entries on T are Az, ..., A, in that order.

Let

1 0 nXxXn
Uy = |: 0 [7 :| eC .
Then Us is unitary, and

A yHﬁ A1 yHﬁ
vlvRav v, =| 70 L | = LY | =T
2 PL AR 0 UHBU 0o T
Since U = U; Us is unitary and UF AU = T, the statement is true for n
as well. O

Note: The basic iterative step that reduces the dimension by 1 is called a
deflation. Deflation is used to derive many of important matrix
factorizations.
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Spectral Theorem for Normal Operators

Unitary equivalence preserves the classes of Hermitian, skew-Hermitian,
and normal matrices.
Spectral Theorem: Let A € C"*™ be normal. Then A is unitarily
diagonalizable. That is, A is unitarily similar to a diagonal matrix; so
there is an orthonormal basis of eigenvectors.
Proof Sketch: By Schur Triangularization Theorem, there is a unitary
U € C"" such that UY AU = T is upper triangular. Since A is normal,
Tisnormal: THT = UFAFAU = URAARU = TTH.
By equating diagonal entries of T T and TTH, we show T is diagonal.
The (1,1) entries of TH T and TTH are

|t11]* and Z [t1j]%,  resp.ly.

=1
Hence t1; =0 for j>2. Now the (2,2) entries of T T and TTH are

|t2o]*  and Z |taj]?,  resp.ly.
J=2
Hence, again,
t2j:0 for _]23

Continuing with the remaining rows yields the result. O
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The Spectral Radius and Normal Operators

A useful tool in the analysis of operators is the spectral radius.
Given L € L£(V) with dim( V') < oo, the spectral radius of L is

L) = A
p(L) {éﬁf‘ﬁi)”

The spectral radius and the operator norm in a Euclidean space have an
important relationship. This relationship is studied more deeply later, but
for now, we have the following.

Fact: For any A € (C™*™, ||-||) and any operator norm || - ||
p(A) <IAll,

with equality if A is normal and || - || = || - |-

Proof: Let A € X(A) be such that |A| = p(4), and let v be an
associated eigenvector with ||v|| = 1. Then

Al = sup [|Az]| > [|Av]] = |A] = p(A) .

llzll=1
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The Spectral Radius and Normal Operators

Next suppose A is normal with eigenvalues [A1| > |A2| > -+ > |A,]. The
Spectral Theorem = 3 unitary U € C™*" such that U AU = D,
where D = diag(A1, A2, ..., Ap).

Given x € C™ with ||z|]2 = 1, set v= Uz so |v||a = ||z]l2 = 1. Then

14z]3 = 1UTAUU"z]3 = || Doll3

n n
Dol =) ol
k=1 k=1

< 2 12
< (L, ) o
k=1
= p’(4).
Therefore, [|All, = supyyy,— [ Azll, < p(4) . so [|All, = p(4). O
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The Cayley-Hamilton Theorem

Theorem: (Cayley-Hamilton) Every matrix A € C™*" satisfies its
characteristic polynomial, i.e. ps(A) =0 .

Proof: By Schur, 3 unitary U € C™*"™ and upper triangular T' € C"*"
such that UF AU = T , where the diagonal entries of T are the
eigenvalues A1, ..., A, of A (in some order). Since

A=UTU" and A*F=UTFUH,

we have p4(A) = Upa(T)UH.
Writing pa(t) = (t — A1) (t — A2) - (t — \p) gives

pa(T) = (T = MI)(T = A1) -+ - (T = Ad).

Since T' — X;I is upper triangular with its jj entry being zero, it follows
that p4(T) = 0. To see this, accumulate the product from the left, in
which case one shows by induction on k that the first k& columns of

(T = MI)-(T = \J)

are zero. O

10/10



