Linear Analysis Lecture 10

Finite Dimensional Spectral Theory

Let *V* be a finite dimensional vector space over $\mathbb{F} = \mathbb{C}$, and $L \in \mathcal{L}(V)$. **Definition.** $\lambda \in \mathbb{C}$ is an **eigenvalue** of *L* if $\exists v \in V, v \neq 0, \exists Lv = \lambda v,$

and *v* is called an eigenvector associated with the eigenvalue *λ*.

If (λ, v) is an eigenvalue-eigenvector pair for L, then $\text{Span}\{v\}$ is a one-dimensional invariant subspace under *L*.

L acts on $\text{Span}\{v\}$ by scalar multiplication by λ .

$$
E_{\lambda} := \mathcal{N}(\lambda I - L) = \text{ the } \lambda\text{-eigenspace of } L
$$
\n
$$
\dim E_{\lambda} := m_{\mathcal{G}}(\lambda) = \text{geometric multiplicity of } \lambda
$$
\n
$$
= \max \text{ number of } \text{lin. } \text{ indep. } \text{ eigenvectors for } \lambda
$$
\n
$$
\Sigma(L) := \{ \lambda \in \mathbb{C} : \text{det}(\lambda I - L) = 0 \} = \text{ the spectrum of } L
$$
\n
$$
p_L(t) := \text{det}(tI - L) = \text{ the characteristic polynomial for } L
$$
\n
$$
m_{\mathcal{A}}(\lambda) := \text{algebraic multiplicity of } \lambda
$$
\n
$$
= \text{ the multiplicity of } \lambda \text{ as a root of } p_L.
$$

Facts: Let $L \in \mathcal{L}(V)$.

(1) $\forall \lambda \in \Sigma(L)$ m_A(λ) > m_G(λ)

(2) Eigenvectors corresponding to different eigenvalues are linearly independent.

Definition. $L \in \mathcal{L}(V)$ is **diagonalizable** if there is a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of *V* consisting of eigenvectors of *L*.

Fact *L* is diagonalizable if there is a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of *V* for which the matrix of L with respect to $\mathcal B$ is diagonal $(\in \mathbb C^{n \times n})$

Fact $L \in \mathcal{L}(V)$ is diagonalizable if and only if

 $\forall \lambda \in \Sigma(L)$ m_G(λ) = m_A(λ).

In particular, if *L* has *n* distinct eigenvalues, then *L* is diagonalizable.

Proof Since $(\forall \lambda \in \Sigma(L))$ m_{$G(\lambda)$} \leq m_A(λ) and

$$
\sum_{\lambda \in \Sigma(L)} \mathsf{m}_{\mathcal{A}}(\lambda) = n = \dim V,
$$

we have

$$
\sum_{\lambda \in \Sigma(L)} \mathsf{m}_{\mathcal{G}}(\lambda) \leq n
$$

with equality iff

$$
(\forall\, \lambda\in \Sigma(L))\ {\rm m}_{{\mathcal G}}(\lambda)={\rm m}_{{\mathcal A}}(\lambda).
$$

By Fact 2, $\sum_{\lambda \in \Sigma(L)}$ m $_{\cal G}(\lambda)$ is the maximum number of linearly independent eigenvectors of *L* which proves the result.

 $A \in \mathbb{C}^{n \times n}$ is diagonalizable iff A is similar to a diagonal matrix:

 \exists $S \in C^{n \times n}$ such that $S^{-1}AS = D$ is diagonal.

Let $L \in \mathcal{L}(V)$ with V finite dimensional.

If *A* is the matrix for *L* in some basis, then

L is diagonalizable iff *A* is diagonalizable.

Consider \mathbb{C}^n with the Euclidean inner product $\langle \cdot, \cdot \rangle$, and $\mathbb{C}^{n \times n}$ with the Frobenius inner product, $\langle A, B \rangle = \langle A, B \rangle_F = \text{tr } B^H A$ *.*

Here $\|\cdot\|$ will denote the norm induced by $\langle \cdot, \cdot \rangle$, and $\|A\|$ the associated operator norm induced on $\mathbb{C}^{n\times n}$. $\|A\|_F$ will denote the Frobenius norm. Many objects and operations in $\mathbb{C}^{n \times n}$ correspond to similar objects and operations in C.

To see this we begin by identifying the conjugation operation in $\mathbb C$ with the Hermitian-transpose operation in $\mathbb{C}^{n \times n}$:

$$
[z \mapsto \overline{z} \text{ in } \mathbb{C}] \sim [A \mapsto A^H \text{ in } \mathbb{C}^{n \times n}]
$$
 (*)

Given $z \in \mathbb{C}$.

$$
z = \overline{z} \quad \Longleftrightarrow \quad z \in \mathbb{R}.
$$

Thus, by the identification (*), the Hermitain matrices ($A = A^H$) correspond to the real numbers. Correspondingly,

$$
\overline{z} = -z \iff z \in i\mathbb{R}.
$$

The matrices for which $A^H = -A$ are called the skew-Hermitian matrices, and they correspond to the purely imaginary numbers.

 S_n = $n \times n$ Hermitian matrices (real numbers) $\bar{\mathcal{S}}_n$ = $n \times n$ skew-Hermitian matrices (purely imaginary numbers)

Facts

(1) *A* is Hermitian iff *iA* is skew-Hermitian.

(2) Every $A \in \mathbb{C}^{n \times n}$ has a unique representation of the form $A = X + iY$, where $X, Y \in S_n$:

$$
X = \frac{1}{2}(A + A^H) \quad \text{and} \quad Y = \frac{1}{2i}(A - A^H) \; .
$$

(3) $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $(\forall x \in \mathbb{C}^n)$ $\langle Ax, x \rangle \in \mathbb{R}$.

(4) $A \in \mathbb{C}^{n \times n}$ is skew-Hermitian iff $(\forall x \in \mathbb{C}^n)$ $\langle Ax, x \rangle \in i\mathbb{R}$.

Caution: If $A \in \mathbb{R}^{n \times n}$ and $(\forall x \in \mathbb{R}^n)$ $\langle Ax, x \rangle \in \mathbb{R}$, *A* need not be symmetric. For example, if

$$
A = \left[\begin{array}{rr} 1 & 1 \\ -1 & 1 \end{array} \right],
$$

then

$$
\langle Ax, x \rangle = \langle x, x \rangle \,\,\forall\, x \in \mathbb{R}^n
$$

.

Now consider $\mathbb{C}^{n \times n}$ as a vector space over \mathbb{R} .

This is also an inner product space with inner product

$$
\langle A, B \rangle = \mathcal{R}e \langle A, B \rangle_F.
$$

In this setting we have the following facts:

(1)
$$
\mathcal{S}_n
$$
 and $\bar{\mathcal{S}}_n$ are subspaces of $\mathbb{C}^{n \times n}$.

$$
(2) \quad \mathcal{S}_n^{\perp} = \bar{\mathcal{S}}_n \; .
$$

(3) Given $A\in \mathbb{C}^{n\times n}$, the orthogonal projections onto \mathcal{S}_n and $\bar{\mathcal{S}}_n$ are

$$
\frac{1}{2}(A+A^H) \quad \text{and} \quad \frac{1}{2}(A-A^H),
$$

respectively.

The analogue of the nonnegative reals are the positive semi-definite matrices.

Definition. $A \in \mathbb{C}^{n \times n}$ is called **positive semi-definite** (or nonnegative) if $(\forall x \in \mathbb{C}^n)$ $\langle Ax, x \rangle \ge 0$.

Since $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $(\forall x \in \mathbb{C}^n) \ \langle Ax, x \rangle \in \mathbb{R}$, a positive semi-definite $A \in \mathbb{C}^{n \times n}$ is automatically Hermitian, but one often says Hermitian positive semi-definite anyway. Consider $A^{\text{H}}A$ as the analogue of $|z|^2$ for $z \in \mathbb{C}$. Observe that $A^{\text{H}}A$ is positive semi-definite:

$$
\langle A^{\text{H}}Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2 \ge 0.
$$

In fact, $||A^{\text{H}}A|| = ||A||^2$ since

$$
||A|| = ||AH||, ||AHA|| \le ||AH|| \cdot ||A|| = ||A||2
$$

and $||A^{\text{H}}A|| = \text{sup}$ $||x||=1$ $||A^{\text{H}}Ax|| = \text{sup}$ $||x||=1$ sup $||y||=1$ $|\langle A^{\text{H}}Ax, y\rangle|$ \geq sup $\langle A^{\text{H}}Ax, x \rangle$ = sup $||Ax||^2 = ||A||^2$. $\|x\|=1$ $\|x\|=1$

The analogue of complex numbers of modulus 1 are the **unitary matrices**.

Definition. $A \in \mathbb{C}^{n \times n}$ is unitary if $A^{\text{H}}A = I$.

Since injectivity is equivalent to surjectivity for $A \in \mathbb{C}^{n \times n}$ unitary, it f ollows that $A^H = A^{-1}$ and $A A^H = I$ (or equivalently, $A^{\scriptscriptstyle\mathrm{H}} A = I) .$

Proposition. For $A \in \mathbb{C}^{n \times n}$, the following are equivalent:

(1) *A* is unitary.

(2) The columns of A form an orthonormal basis of \mathbb{C}^n .

(3) The rows of A form an orthonormal basis of \mathbb{C}^n .

- (4) *A* preserves the Euclidean norm: $(\forall x \in \mathbb{C}^n)$ $||Ax|| = ||x||$.
- **(5)** *A* preserves the Euclidean inner product:

 $(\forall x, y \in \mathbb{C}^n) \langle Ax, Ay \rangle = \langle x, y \rangle.$

(6) $\kappa(A) = 1$ (perfectly conditioned in operator 2-norm).

Proof Sketch. Let a_1, \ldots, a_n be the columns of A . Then $A^{\text{H}} A^{\text{H}} = I \Leftrightarrow a_i^H$ $\mathsf{a} \circ \mathsf{a} \circ \mathsf{$ Since $||Ax||^2 = \langle Ax, Ax \rangle = \langle A^{\text{H}}Ax, x \rangle$ and $A^{\text{H}}A$ is Hermitian, $(A) \Leftrightarrow \langle (A^{\text{H}}A - I)x, x \rangle = 0 \forall x \in \mathbb{C}^n \Leftrightarrow A^{\text{H}}A = I \Leftrightarrow (1).$ Finally, clearly $(5) \Rightarrow (4)$, and $(4) \Rightarrow (5)$ by polarization.

10 / 14

The correspondences between $\mathbb C$ and $\mathbb C^{n\times n}$, although rich, can only take one so far. There are important objects in $\mathbb{C}^{n\times n}$ for which it seems that there is no suitable corresponding notion in $\mathbb C$. For example, *normal* matrices don't really have an analogue in $\mathbb C$.

Definition. $A \in \mathbb{C}^{n \times n}$ is **normal** if $AA^H = A^H A$.

Proposition. For $A \in \mathbb{C}^{n \times n}$, the following are equivalent:

(1) *A* is normal. **(2)** The Hermitian and skew-Hermitian parts of *A* commute, i.e., if $A = B + iC$ B , $C \in S_n \Rightarrow BC = CB$. **(3)** $(\forall x \in \mathbb{C}^n)$ $||Ax|| = ||A^Hx||.$ **Proof Sketch.** $(1) \Leftrightarrow (2)$ (exercise). $\textsf{Since} \quad \|Ax\|^2 = \langle A^\text{H}Ax, x\rangle \quad \textsf{and} \quad \|A^H x\|^2 = \langle AA^H x, x\rangle,$ and since $A^H A$ and $A A^H$ are Hermitian.

(3) \Leftrightarrow $(\forall x \in \mathbb{C}^n) \langle (A^H A - AA^H)x, x \rangle = 0 \Leftrightarrow$ (1).

Observe that Hermitian, skew-Hermitian, and unitary matrices are all $normal.$

П

Real Matrices

The above definitions can all be specialized to the real case.

• Real Hermitian matrices are (real) **symmetric** matrices: $A^T = A$.

Every $A \in \mathbb{R}^{n \times n}$ can be written uniquely as $A = B + C$ where $B=B^{T}$ (symmetric) and $C=-C^{T}$ (skew-symmetric) :

$$
B = \frac{1}{2}(A + A^{T}) \text{ and } C = \frac{1}{2}(A - A^{T}).
$$

• Real unitary matrices are called **orthogonal matrices**, and are characterized by $A^T A = I$ or $A^T = A^{-1}$.

Since

$$
(\forall A \in \mathbb{R}^{n \times n})(\forall x \in \mathbb{R}^n) \langle Ax, x \rangle \in \mathbb{R},
$$

there is no characterization of symmetric matrices analogous to that given above for Hermitian matrices.

Also, unlike the complex case, the values of the quadratic form $\langle Ax, x \rangle$ for $x \in \mathbb{R}^n$ only determine the symmetric part of A , not A itself.

The analogy with the complex numbers clarifies when considering eigenvalues.

Let $A \in \mathbb{C}^{n \times n}$ have characteristic polynomial $p_A(t) = \det(tI - A)$. Since $p_A(t) = p_{A^H}(t)$, we have $\lambda \in \Sigma(A) \Leftrightarrow \bar{\lambda} \in \Sigma(A^H)$. If *A* is Hermitian and $\lambda \in \Sigma(A)$ with $Ax = \lambda x$, then

$$
\lambda \langle x, x \rangle = \langle Ax, x \rangle = \langle x, Ax \rangle = \overline{\lambda} \langle x, x \rangle.
$$

so $\lambda = \overline{\lambda}$, that is, $\Sigma(A) \subset \mathbb{R}$.

Also eigenvectors corresponding to different eigenvalues of Hermitian matrix are orthogonal: if $Ax = \lambda x$ and $Ay = \mu y$, then

$$
\lambda \langle x, y \rangle = \langle Ax, y \rangle = \langle x, Ay \rangle = \mu \langle x, y \rangle,
$$

so $\langle x, y \rangle = 0$ if $\lambda \neq \mu$.
Any eigenvalue λ of a unitary matrix satisfies $|\lambda| = 1$ since
 $|\lambda| \cdot \|x\| = \|Ax\| = \|x\|$.

Again, eigenvectors corresponding to different eigenvalues of a unitary matrix are orthogonal: if $Ax = \lambda x$ and $Ay = \mu y$, then

$$
\lambda \langle x, y \rangle = \langle Ax, y \rangle = \langle x, A^* y \rangle
$$

= $\langle x, A^{-1} y \rangle = \langle x, \mu^{-1} y \rangle$
= $\overline{\mu}^{-1} \langle x, y \rangle = \mu \langle x, y \rangle$.

Unitary Hermitian Matrices

 M atrices that are both Hermitian and unitary, i.e., $A = A^H = A^{-1}$, satisfy $A^2 = I$ and can be thought of as generalizations of reflections. For example, the matrix $A = -I$ has this property.

Reflections: Householder Transformations

These are the reflections across a hyperplane $\mathcal{H} \subset \mathbb{C}^{n \times n}$ passing through the origin. If ${\mathcal H}$ has normal vector $y\in \mathbb C^{n\times n}\backslash\{0\}$ (i.e. ${\mathcal H}=\{y\}^\perp$), then reflection across this hyperplane is given by the linear transformation

$$
R = I - \frac{2}{\langle y, y \rangle} y y^H.
$$

Note that

$$
\frac{\langle x,y\rangle}{\langle y,y\rangle}y\qquad\text{and}\qquad x-\frac{\langle x,y\rangle}{\langle y,y\rangle}y
$$

are the orthogonal projections of x onto $\mathrm{Span}\{y\}$ and $\{y\}^\perp$, resp.'ly. Therefore,

$$
Rx = x - 2\frac{\langle x, y \rangle}{\langle y, y \rangle}y
$$

is the reflection of x across $\{y\}^\perp.$

These transformations are called **Householder transformations** or **Householder reflections**.