
Linear Analysis
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Finite Dimensional Spectral Theory

Let V be a finite dimensional vector space over F = C, and L ∈ L(V ).
Definition. λ ∈ C is an eigenvalue of L if

∃ v ∈ V , v 6= 0, 3 Lv = λv,
and v is called an eigenvector associated with the eigenvalue λ.

If (λ, v) is an eigenvalue-eigenvector pair for L, then Span{v} is a
one-dimensional invariant subspace under L.

L acts on Span{v} by scalar multiplication by λ.

Eλ := N (λI − L) = the λ-eigenspace of L
dim Eλ := mG(λ) = geometric multiplicity of λ

= max number of lin. indep. eigenvectors for λ
Σ(L) := {λ ∈ C : det (λI − L) = 0} = the spectrum of L
pL(t) := det (tI − L) = the characteristic polynomial for L

mA(λ) := algebraic multiplicity of λ
= the multiplicity of λ as a root of pL.
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Diagonalizability

Facts: Let L ∈ L(V ).

(1) ∀ λ ∈ Σ(L) mA(λ) ≥ mG(λ)

(2) Eigenvectors corresponding to different eigenvalues are linearly
independent.

Definition. L ∈ L(V ) is diagonalizable if there is a basis
B = {v1, . . . , vn} of V consisting of eigenvectors of L.

Fact L is diagonalizable if there is a basis B = {v1, . . . , vn} of V for
which the matrix of L with respect to B is diagonal (∈ Cn×n)
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Diagonalizability

Fact L ∈ L(V ) is diagonalizable if and only if

∀λ ∈ Σ(L) mG(λ) = mA(λ) .

In particular, if L has n distinct eigenvalues, then L is diagonalizable.

Proof Since (∀λ ∈ Σ(L)) mG(λ) ≤ mA(λ) and∑
λ∈Σ(L)

mA(λ) = n = dim V ,

we have ∑
λ∈Σ(L)

mG(λ) ≤ n

with equality iff
(∀λ ∈ Σ(L)) mG(λ) = mA(λ).

By Fact 2,
∑

λ∈Σ(L) mG(λ) is the maximum number of linearly
independent eigenvectors of L which proves the result. �
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Diagonalizability

A ∈ Cn×n is diagonalizable iff A is similar to a diagonal matrix:

∃ S ∈ C n×n such that S−1AS = D is diagonal.

Let L ∈ L(V ) with V finite dimensional.

If A is the matrix for L in some basis, then

L is diagonalizable iff A is diagonalizable.
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Matrices and Complex Numbers
Consider Cn with the Euclidean inner product 〈·, ·〉, and Cn×n with the
Frobenius inner product, 〈A,B〉 = 〈A,B〉F = tr BH A.
Here ‖ · ‖ will denote the norm induced by 〈·, ·〉, and ‖A‖ the associated
operator norm induced on Cn×n. ‖A‖F will denote the Frobenius norm.
Many objects and operations in Cn×n correspond to similar objects and
operations in C.
To see this we begin by identifying the conjugation operation in C with
the Hermitian-transpose operation in Cn×n:

[ z 7→ z̄ in C ] ∼
[

A 7→ AH in Cn×n ] (*)
Given z ∈ C, z = z̄ ⇐⇒ z ∈ R.
Thus, by the identification (*), the Hermitain matrices (A = AH )
correspond to the real numbers. Correspondingly,

z̄ = −z ⇐⇒ z ∈ iR.
The matrices for which AH = −A are called the skew-Hermitian
matrices, and they correspond to the purely imaginary numbers.

Sn = n × n Hermitian matrices (real numbers)
S̄n = n × n skew-Hermitian matrices (purely imaginary numbers)
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Matrices and Complex Numbers

Facts
(1) A is Hermitian iff iA is skew-Hermitian.
(2) Every A ∈ Cn×n has a unique representation of the form
A = X + iY , where X ,Y ∈ Sn:

X = 1
2(A + AH ) and Y = 1

2i (A−AH ) .

(3) A ∈ Cn×n is Hermitian iff (∀ x ∈ Cn) 〈Ax, x〉 ∈ R.
(4) A ∈ Cn×n is skew-Hermitian iff (∀ x ∈ Cn) 〈Ax, x〉 ∈ iR.
Caution: If A ∈ Rn×n and (∀ x ∈ Rn) 〈Ax, x〉 ∈ R, A need not be
symmetric. For example, if

A =
[

1 1
−1 1

]
,

then
〈Ax, x〉 = 〈x, x〉 ∀ x ∈ Rn .
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Matrices and Complex Numbers

Now consider Cn×n as a vector space over R.

This is also an inner product space with inner product

〈A,B〉 = Re〈A,B〉F .

In this setting we have the following facts:

(1) Sn and S̄n are subspaces of Cn×n.

(2) S⊥n = S̄n .

(3) Given A ∈ Cn×n, the orthogonal projections onto Sn and S̄n are

1
2(A + AH ) and 1

2(A−AH ),

respectively.
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Matrices and Complex Numbers
The analogue of the nonnegative reals are the positive semi-definite
matrices.
Definition. A ∈ Cn×n is called positive semi-definite (or nonnegative)
if (∀ x ∈ Cn) 〈Ax, x〉 ≥ 0 .

Since A ∈ Cn×n is Hermitian iff (∀ x ∈ Cn) 〈Ax, x〉 ∈ R, a positive
semi-definite A ∈ Cn×n is automatically Hermitian, but one often says
Hermitian positive semi-definite anyway.
Consider AHA as the analogue of |z|2 for z ∈ C. Observe that AHA is
positive semi-definite:

〈AHAx, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0.
In fact, ‖AHA‖ = ‖A‖2 since

‖A‖ = ‖AH‖, ‖AHA‖ ≤ ‖AH‖ · ‖A‖ = ‖A‖2

and ‖AHA‖ = sup
‖x‖=1

‖AHAx‖ = sup
‖x‖=1

sup
‖y‖=1

|〈AHAx, y〉|

≥ sup
‖x‖=1

〈AHAx, x〉 = sup
‖x‖=1

‖Ax‖2 = ‖A‖2 .
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Matrices and Complex Numbers
The analogue of complex numbers of modulus 1 are the unitary
matrices.
Definition. A ∈ Cn×n is unitary if AHA = I .
Since injectivity is equivalent to surjectivity for A ∈ Cn×n unitary, it
follows that AH = A−1 and AAH = I (or equivalently, AHA = I ).
Proposition. For A ∈ Cn×n, the following are equivalent:

(1) A is unitary.
(2) The columns of A form an orthonormal basis of Cn.
(3) The rows of A form an orthonormal basis of Cn.
(4) A preserves the Euclidean norm: (∀ x ∈ Cn) ‖Ax‖ = ‖x‖.
(5) A preserves the Euclidean inner product:

(∀ x, y ∈ Cn) 〈Ax,Ay〉 = 〈x, y〉.
(6) κ(A) = 1 (perfectly conditioned in operator 2-norm).

Proof Sketch. Let a1, . . . , an be the columns of A. Then
AHA = I ⇔ aH

i aj = δij .So (1) ⇔ (2). Similarly
(1) ⇔ AAH = I ⇔ (3).

Since ‖Ax‖2 = 〈Ax,Ax〉 = 〈AHAx, x〉 and AHA is Hermitian,
(4) ⇔ 〈(AHA− I )x, x〉 = 0∀ x ∈ Cn ⇔ AHA = I ⇔ (1).

Finally, clearly (5) ⇒ (4), and (4) ⇒ (5) by polarization. �
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Matrices and Complex Numbers
The correspondences between C and Cn×n, although rich, can only take
one so far. There are important objects in Cn×n for which it seems that
there is no suitable corresponding notion in C. For example, normal
matrices don’t really have an analogue in C.
Definition. A ∈ Cn×n is normal if AAH = AHA.

Proposition. For A ∈ Cn×n, the following are equivalent:
(1) A is normal.
(2) The Hermitian and skew-Hermitian parts of A commute, i.e.,

if A = B + iC B,C ∈ Sn ⇒ BC = CB .

(3) (∀ x ∈ Cn) ‖Ax‖ = ‖AH x‖.
Proof Sketch. (1) ⇔ (2) (exercise).
Since ‖Ax‖2 = 〈AHAx, x〉 and ‖AH x‖2 = 〈AAH x, x〉,
and since AHA and AAH are Hermitian,

(3) ⇔ (∀ x ∈ Cn) 〈(AHA−AAH )x, x〉 = 0 ⇔ (1).
�

Observe that Hermitian, skew-Hermitian, and unitary matrices are all
normal. 11 / 14



Real Matrices

The above definitions can all be specialized to the real case.

• Real Hermitian matrices are (real) symmetric matrices: AT = A.

Every A ∈ Rn×n can be written uniquely as A = B + C where
B = BT (symmetric) and C = −C T (skew-symmetric) :

B = 1
2(A + AT) and C = 1

2(A−AT).

• Real unitary matrices are called orthogonal matrices, and are
characterized by ATA = I or AT = A−1.

Since
(∀A ∈ Rn×n)(∀ x ∈ Rn) 〈Ax, x〉 ∈ R,

there is no characterization of symmetric matrices analogous to that
given above for Hermitian matrices.

Also, unlike the complex case, the values of the quadratic form 〈Ax, x〉
for x ∈ Rn only determine the symmetric part of A, not A itself.
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Matrices and Complex Numbers
The analogy with the complex numbers clarifies when considering
eigenvalues.
Let A ∈ Cn×n have characteristic polynomial pA(t) = det (tI −A) .
Since pA(t) = pAH (t̄), we have λ ∈ Σ(A)⇔ λ̄ ∈ Σ(AH ).
If A is Hermitian and λ ∈ Σ(A) with Ax = λx, then

λ〈x, x〉 = 〈Ax, x〉 = 〈x,Ax〉 = λ̄〈x, x〉 .
so λ = λ̄, that is, Σ(A) ⊂ R.
Also eigenvectors corresponding to different eigenvalues of Hermitian
matrix are orthogonal: if Ax = λx and Ay = µy, then

λ〈x, y〉 = 〈Ax, y〉 = 〈x,Ay〉 = µ〈x, y〉,
so 〈x, y〉 = 0 if λ 6= µ.
Any eigenvalue λ of a unitary matrix satisfies |λ| = 1 since

|λ| · ‖x‖ = ‖Ax‖ = ‖x‖.
Again, eigenvectors corresponding to different eigenvalues of a unitary
matrix are orthogonal: if Ax = λx and Ay = µy, then

λ〈x, y〉 = 〈Ax, y〉 = 〈x,A∗y〉
= 〈x,A−1y〉 = 〈x, µ−1y〉
= µ̄−1〈x, y〉 = µ〈x, y〉.
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Unitary Hermitian Matrices
Matrices that are both Hermitian and unitary, i.e., A = AH = A−1,
satisfy A2 = I and can be thought of as generalizations of reflections.
For example, the matrix A = −I has this property.
Reflections: Householder Transformations
These are the reflections across a hyperplane H ⊂ Cn×n passing through
the origin. If H has normal vector y ∈ Cn×n\{0} (i.e. H = {y}⊥), then
reflection across this hyperplane is given by the linear transformation

R = I − 2
〈y, y〉yyH .

Note that
〈x, y〉
〈y, y〉y and x − 〈x, y〉

〈y, y〉y

are the orthogonal projections of x onto Span{y} and {y}⊥, resp.’ly.
Therefore,

Rx = x − 2 〈x, y〉
〈y, y〉y

is the reflection of x across {y}⊥.
These transformations are called Householder transformations or
Householder reflections.
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