Linear Analysis Lecture 10

Finite Dimensional Spectral Theory

Let V be a finite dimensional vector space over $\mathbb{F} = \mathbb{C}$, and $L \in \mathcal{L}(V)$. **Definition.** $\lambda \in \mathbb{C}$ is an **eigenvalue** of L if $\exists v \in V, v \neq 0, \exists Lv = \lambda v,$ and v is called an eigenvector associated with the eigenvalue λ .

If (λ, v) is an eigenvalue-eigenvector pair for L, then $\text{Span}\{v\}$ is a one-dimensional invariant subspace under L.

L acts on $\text{Span}\{v\}$ by scalar multiplication by λ .

$$\begin{array}{rcl} E_{\lambda} &:= & \mathcal{N}(\lambda I - L) = & \text{the } \lambda \text{-eigenspace of } L \\ \dim E_{\lambda} &:= & \mathsf{m}_{\mathcal{G}}(\lambda) = & \text{geometric multiplicity of } \lambda \\ &= & \max \text{ number of lin. indep. eigenvectors for } \lambda \\ \Sigma(L) &:= & \{\lambda \in \mathbb{C} : & \det(\lambda I - L) = 0\} = & \text{the spectrum of } L \\ p_L(t) &:= & \det(tI - L) = & \text{the characteristic polynomial for } L \\ \mathsf{m}_{\mathcal{A}}(\lambda) &:= & \text{algebraic multiplicity of } \lambda \\ &= & \text{the multiplicity of } \lambda \text{ as a root of } p_L. \end{array}$$

Facts: Let $L \in \mathcal{L}(V)$.

(1) $\forall \lambda \in \Sigma(L) \quad \mathsf{m}_{\mathcal{A}}(\lambda) \ge \mathsf{m}_{\mathcal{G}}(\lambda)$

(2) Eigenvectors corresponding to different eigenvalues are linearly independent.

Definition. $L \in \mathcal{L}(V)$ is **diagonalizable** if there is a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of V consisting of eigenvectors of L.

Fact *L* is diagonalizable if there is a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of *V* for which the matrix of *L* with respect to \mathcal{B} is diagonal $(\in \mathbb{C}^{n \times n})$

Fact $L \in \mathcal{L}(V)$ is diagonalizable if and only if

 $\forall \, \lambda \in \Sigma(L) \quad \mathsf{m}_{\mathcal{G}}(\lambda) = \mathsf{m}_{\mathcal{A}}(\lambda) \; .$

In particular, if L has n distinct eigenvalues, then L is diagonalizable.

Proof Since $(\forall \lambda \in \Sigma(L)) \ m_{\mathcal{G}}(\lambda) \le m_{\mathcal{A}}(\lambda)$ and

$$\sum_{\lambda \in \Sigma(L)} \mathsf{m}_{\mathcal{A}}(\lambda) = n = \dim V,$$

we have

$$\sum_{\lambda \in \Sigma(L)} \mathsf{m}_{\mathcal{G}}(\lambda) \leq n$$

with equality iff

$$(\forall \, \lambda \in \Sigma(L)) \, \operatorname{\mathsf{m}}_{\mathcal{G}}(\lambda) = \operatorname{\mathsf{m}}_{\mathcal{A}}(\lambda).$$

By Fact 2, $\sum_{\lambda \in \Sigma(L)} m_{\mathcal{G}}(\lambda)$ is the maximum number of linearly independent eigenvectors of L which proves the result.

 $A \in \mathbb{C}^{n \times n}$ is diagonalizable iff A is similar to a diagonal matrix:

 $\exists S \in C^{n \times n}$ such that $S^{-1}AS = D$ is diagonal.

Let $L \in \mathcal{L}(V)$ with V finite dimensional.

If A is the matrix for L in some basis, then

L is diagonalizable iff A is diagonalizable.

Consider \mathbb{C}^n with the Euclidean inner product $\langle \cdot, \cdot \rangle$, and $\mathbb{C}^{n \times n}$ with the Frobenius inner product, $\langle A, B \rangle = \langle A, B \rangle_F = \operatorname{tr} B^H A$.

Here $\|\cdot\|$ will denote the norm induced by $\langle\cdot,\cdot\rangle$, and $\|A\|$ the associated operator norm induced on $\mathbb{C}^{n\times n}$. $\|A\|_F$ will denote the Frobenius norm. Many objects and operations in $\mathbb{C}^{n\times n}$ correspond to similar objects and operations in \mathbb{C} .

To see this we begin by identifying the conjugation operation in \mathbb{C} with the Hermitian-transpose operation in $\mathbb{C}^{n \times n}$:

$$[z \mapsto \overline{z} \text{ in } \mathbb{C}] \sim [A \mapsto A^H \text{ in } \mathbb{C}^{n \times n}]$$
(*)

Given $z \in \mathbb{C}$,

$$z = \overline{z} \iff z \in \mathbb{R}.$$

Thus, by the identification (*), the Hermitain matrices $(A = A^H)$ correspond to the real numbers. Correspondingly,

$$\bar{z} = -z \iff z \in i\mathbb{R}.$$

The matrices for which $A^H = -A$ are called the skew-Hermitian matrices, and they correspond to the purely imaginary numbers.

Facts

(1) A is Hermitian iff iA is skew-Hermitian.

(2) Every $A \in \mathbb{C}^{n \times n}$ has a unique representation of the form A = X + iY, where $X, Y \in S_n$:

$$X = \frac{1}{2}(A + A^H) \quad \text{and} \quad Y = \frac{1}{2i}(A - A^H) \ .$$

(3) $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $(\forall x \in \mathbb{C}^n) \quad \langle Ax, x \rangle \in \mathbb{R}$.

(4) $A \in \mathbb{C}^{n \times n}$ is skew-Hermitian iff $(\forall x \in \mathbb{C}^n) \quad \langle Ax, x \rangle \in i\mathbb{R}$.

Caution: If $A \in \mathbb{R}^{n \times n}$ and $(\forall x \in \mathbb{R}^n) \quad \langle Ax, x \rangle \in \mathbb{R}$, A need not be symmetric. For example, if

$$A = \left[\begin{array}{rrr} 1 & 1 \\ -1 & 1 \end{array} \right],$$

then

$$\langle Ax, x \rangle = \langle x, x \rangle \ \forall \, x \in \mathbb{R}^n$$

Now consider $\mathbb{C}^{n \times n}$ as a vector space over \mathbb{R} .

This is also an inner product space with inner product

$$\langle A, B \rangle = \mathcal{R}e\langle A, B \rangle_F$$

In this setting we have the following facts:

(1) S_n and \bar{S}_n are subspaces of $\mathbb{C}^{n \times n}$.

(2)
$$\mathcal{S}_n^{\perp} = \bar{\mathcal{S}}_n$$
.

(3) Given $A \in \mathbb{C}^{n \times n}$, the orthogonal projections onto S_n and \overline{S}_n are

$$rac{1}{2}(A+A^H)$$
 and $rac{1}{2}(A-A^H),$

respectively.

The analogue of the nonnegative reals are the positive semi-definite matrices.

Definition. $A \in \mathbb{C}^{n \times n}$ is called **positive semi-definite** (or nonnegative) if $(\forall x \in \mathbb{C}^n) \quad \langle Ax, x \rangle \ge 0$.

Since $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $(\forall x \in \mathbb{C}^n) \langle Ax, x \rangle \in \mathbb{R}$, a positive semi-definite $A \in \mathbb{C}^{n \times n}$ is automatically Hermitian, but one often says Hermitian positive semi-definite anyway. Consider $A^{\mathrm{H}}A$ as the analogue of $|z|^2$ for $z \in \mathbb{C}$. Observe that $A^{\mathrm{H}}A$ is positive semi-definite:

$$\langle A^{\mathrm{H}}Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2 \ge 0.$$

In fact, $||A^{\scriptscriptstyle H}A|| = ||A||^2$ since

$$||A|| = ||A^H||, ||A^HA|| \le ||A^H|| \cdot ||A|| = ||A||^2$$

and $||A^{H}A|| = \sup_{||x||=1} ||A^{H}Ax|| = \sup_{||x||=1} \sup_{||y||=1} |\langle A^{H}Ax, y \rangle|$ $\geq \sup_{||x||=1} \langle A^{H}Ax, x \rangle = \sup_{||x||=1} ||Ax||^{2} = ||A||^{2}.$

The analogue of complex numbers of modulus 1 are the **unitary matrices**.

Definition. $A \in \mathbb{C}^{n \times n}$ is unitary if $A^{H}A = I$.

Since injectivity is equivalent to surjectivity for $A \in \mathbb{C}^{n \times n}$ unitary, it follows that $A^H = A^{-1}$ and $AA^H = I$ (or equivalently, $A^{H}A = I$).

Proposition. For $A \in \mathbb{C}^{n \times n}$, the following are equivalent:

(1) A is unitary.

(2) The columns of A form an orthonormal basis of \mathbb{C}^n .

(3) The rows of A form an orthonormal basis of \mathbb{C}^n .

- (4) A preserves the Euclidean norm: $(\forall x \in \mathbb{C}^n) ||Ax|| = ||x||$.
- (5) A preserves the Euclidean inner product:

$$(\forall x, y \in \mathbb{C}^n) \langle Ax, Ay \rangle = \langle x, y \rangle$$

(6) $\kappa(A) = 1$ (perfectly conditioned in operator 2-norm).

Proof Sketch. Let a_1, \ldots, a_n be the columns of A. Then $A^{\mathrm{H}}A = I \Leftrightarrow a_i^H a_j = \delta_{ij}.$ So (1) \Leftrightarrow (2). Similarly (1) $\Leftrightarrow AA^H = I \Leftrightarrow$ (3). Since $||Ax||^2 = \langle Ax, Ax \rangle = \langle A^{\mathrm{H}}Ax, x \rangle$ and $A^{\mathrm{H}}A$ is Hermitian, (4) $\Leftrightarrow \langle (A^{\mathrm{H}}A - I)x, x \rangle = 0 \forall x \in \mathbb{C}^n \Leftrightarrow A^{\mathrm{H}}A = I \Leftrightarrow$ (1). Finally, clearly (5) \Rightarrow (4), and (4) \Rightarrow (5) by polarization.

The correspondences between \mathbb{C} and $\mathbb{C}^{n \times n}$, although rich, can only take one so far. There are important objects in $\mathbb{C}^{n \times n}$ for which it seems that there is no suitable corresponding notion in \mathbb{C} . For example, *normal matrices* don't really have an analogue in \mathbb{C} .

Definition. $A \in \mathbb{C}^{n \times n}$ is normal if $AA^H = A^H A$.

Proposition. For $A \in \mathbb{C}^{n \times n}$, the following are equivalent:

(1) A is normal.
(2) The Hermitian and skew-Hermitian parts of A commute, i.e.,

if
$$A = B + iC \ B, C \in \mathcal{S}_n \Rightarrow BC = CB$$
.

(3) $(\forall x \in \mathbb{C}^n) ||Ax|| = ||A^H x||.$

 $\begin{array}{l} \textbf{Proof Sketch.} \ (1) \Leftrightarrow (2) \ (\text{exercise}). \\ \\ \text{Since} \qquad \|Ax\|^2 = \langle A^{\text{H}}Ax, x\rangle \quad \text{and} \quad \|A^{H}x\|^2 = \langle AA^{H}x, x\rangle, \\ \\ \text{and since} \ A^{\text{H}}A \ \text{and} \ AA^{H} \ \text{are Hermitian,} \end{array}$

(3)
$$\Leftrightarrow$$
 $(\forall x \in \mathbb{C}^n) \langle (A^{\mathsf{H}}A - AA^{H})x, x \rangle = 0 \quad \Leftrightarrow \quad (1).$

Observe that Hermitian, skew-Hermitian, and unitary matrices are all normal.

Real Matrices

The above definitions can all be specialized to the real case.

• Real Hermitian matrices are (real) symmetric matrices: $A^T = A$.

Every $A \in \mathbb{R}^{n \times n}$ can be written uniquely as A = B + C where $B = B^T$ (symmetric) and $C = -C^T$ (skew-symmetric) :

$$B = \frac{1}{2}(A + A^T)$$
 and $C = \frac{1}{2}(A - A^T)$.

• Real unitary matrices are called **orthogonal matrices**, and are characterized by $A^T A = I$ or $A^T = A^{-1}$.

Since

$$(\forall A \in \mathbb{R}^{n \times n}) (\forall x \in \mathbb{R}^n) \ \langle Ax, x \rangle \in \mathbb{R},$$

there is no characterization of symmetric matrices analogous to that given above for Hermitian matrices.

Also, unlike the complex case, the values of the quadratic form $\langle Ax, x \rangle$ for $x \in \mathbb{R}^n$ only determine the symmetric part of A, not A itself.

The analogy with the complex numbers clarifies when considering eigenvalues.

Let $A \in \mathbb{C}^{n \times n}$ have characteristic polynomial $p_A(t) = \det(tI - A)$. Since $\overline{p_A(t)} = p_{A^H}(\overline{t})$, we have $\lambda \in \Sigma(A) \Leftrightarrow \overline{\lambda} \in \Sigma(A^H)$. If A is Hermitian and $\lambda \in \Sigma(A)$ with $Ax = \lambda x$, then

$$\lambda \langle x, x \rangle = \langle Ax, x \rangle = \langle x, Ax \rangle = \bar{\lambda} \langle x, x \rangle .$$

so $\lambda = \overline{\lambda}$, that is, $\Sigma(A) \subset \mathbb{R}$.

Also eigenvectors corresponding to different eigenvalues of Hermitian matrix are orthogonal: if $Ax = \lambda x$ and $Ay = \mu y$, then

$$\begin{split} \lambda \langle x, y \rangle &= \langle Ax, y \rangle = \langle x, Ay \rangle = \mu \langle x, y \rangle,\\ \text{so } \langle x, y \rangle &= 0 \text{ if } \lambda \neq \mu.\\ \text{Any eigenvalue } \lambda \text{ of a unitary matrix satisfies } |\lambda| = 1 \text{ since}\\ |\lambda| \cdot ||x|| &= ||Ax|| = ||x||. \end{split}$$

Again, eigenvectors corresponding to different eigenvalues of a unitary matrix are orthogonal: if $Ax = \lambda x$ and $Ay = \mu y$, then

$$\begin{aligned} \lambda \langle x, y \rangle &= \langle Ax, y \rangle = \langle x, A^*y \rangle \\ &= \langle x, A^{-1}y \rangle = \langle x, \mu^{-1}y \\ &= \bar{\mu}^{-1} \langle x, y \rangle = \mu \langle x, y \rangle. \end{aligned}$$

Unitary Hermitian Matrices

Matrices that are both Hermitian and unitary, i.e., $A = A^H = A^{-1}$, satisfy $A^2 = I$ and can be thought of as generalizations of reflections. For example, the matrix A = -I has this property.

Reflections: Householder Transformations

These are the reflections across a hyperplane $\mathcal{H} \subset \mathbb{C}^{n \times n}$ passing through the origin. If \mathcal{H} has normal vector $y \in \mathbb{C}^{n \times n} \setminus \{0\}$ (i.e. $\mathcal{H} = \{y\}^{\perp}$), then reflection across this hyperplane is given by the linear transformation

$$R = I - \frac{2}{\langle y, y \rangle} y y^H \; .$$

Note that

$$rac{\langle x,y
angle}{\langle y,y
angle}y \hspace{0.5cm} ext{and} \hspace{0.5cm} x-rac{\langle x,y
angle}{\langle y,y
angle}y$$

are the orthogonal projections of x onto $\mathrm{Span}\{y\}$ and $\{y\}^{\perp},$ resp.'ly. Therefore,

$$Rx = x - 2\frac{\langle x, y \rangle}{\langle y, y \rangle}y$$

is the reflection of x across $\{y\}^{\perp}$.

These transformations are called **Householder transformations** or **Householder reflections**.