Linear Analysis Lecture 1

$\mathbb{F} \sim$ The field of scalars, always \mathbb{R} or \mathbb{C}.
$V \sim$ A vector space, that is a nonempty set on which is defined the operations of
addition (for $v, w \in V, v+w \in V$) and
scalar multiplication (for $\alpha \in \mathbb{F}$ and $v \in V, \alpha v \in V$).

The operations on a vector space satisfy the following axioms: for every $x, y, z \in V$ and $\lambda, \mu \in \mathbb{F}$
$1(x+y)+z=x+(y+z)$,
2] $x+y=y+x$,
$3 \exists 0 \in V$ such that $x+0=x$,
$4 \forall x \in V$ there exists $z \in V$ such that $x+z=0$ (written $z=-x$),
5 $\lambda x=x \lambda$,
б $\lambda(x+y)=\lambda x+\lambda y$,
$7(\lambda+\mu) x=\lambda x+\mu x$,
$8 \lambda(\mu x)=(\lambda \mu) x$, and
[$1 x=x$.

Examples of Vector Spaces

(0) $\{0\}$
(1) $\mathbb{F}^{n}=\left\{\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]:\right.$ each $\left.x_{j} \in \mathbb{F}\right\}, n \geq 1$

Examples of Vector Spaces

(2) $\mathbb{F}^{\infty}=\left\{\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots\end{array}\right]:\right.$ each $\left.x_{j} \in \mathbb{F}\right\}$
$■ \ell^{1}(\mathbb{F}) \subset \mathbb{F}^{\infty}$, where $\ell^{1}(\mathbb{F})=\left\{\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots\end{array}\right]: \sum_{j=1}^{\infty}\left|x_{j}\right|<\infty\right\}$
$\square \ell^{\infty}(\mathbb{F}) \subset \mathbb{F}^{\infty}$, where $\ell^{\infty}(\mathbb{F})=\left\{\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots\end{array}\right]: \sup _{j}\left|x_{j}\right|<\infty\right\}$
■ $\ell^{1}(\mathbb{F})$ and $\ell^{\infty}(\mathbb{F})$ are clearly subspaces of \mathbb{F}^{∞}.
■ Let $0<p<\infty$, and define $\ell^{p}(\mathbb{F})=\left\{\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots\end{array}\right]: \sum_{j=1}^{\infty}\left|x_{j}\right|^{p}<\infty\right\}$.
Since

$$
\begin{aligned}
|x+y|^{p} & \leq(|x|+|y|)^{p} \leq(2 \max (|x|,|y|))^{p} \\
& =2^{p} \max \left(|x|^{p},|y|^{p}\right) \leq 2^{p}\left(|x|^{p}+|y|^{p}\right)
\end{aligned}
$$

we have $\ell^{p}(\mathbb{F}) \subsetneq \mathbb{F}^{\infty}$. Show that $\ell^{p}(\mathbb{F}) \subsetneq \ell^{q}(\mathbb{F})$ if $0<p<q \leq \infty$.

Examples of Vector Spaces

(3) $X \neq \emptyset, \mathcal{F}(X)=\{f: f: X \mapsto \mathbb{F}\}$ all functions from X to \mathbb{F} For $f_{1}, f_{2} \in \mathcal{F}$ and $\in \mathbb{F}$ define

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x) \quad \text { and } \quad(f)(x)=f(x)
$$

(4) X a metric space.

■ $C(X, \mathbb{F})$ the set of all continuous \mathbb{F}-valued functions on $X . \quad C(X, \mathbb{F})$ is a subspace of $\mathcal{F}(X)$.
■ $C_{b}(X, \mathbb{F}) \subset C(X, \mathbb{F})$ the subspace of all bounded continuous functions $f: X \rightarrow \mathbb{F}$.

- $C^{k}(X, F) \subset C(X, \mathbb{F})$ the subspace of all k times continuously differentiable functions $f: X \rightarrow \mathbb{F}$. When $X=\mathbb{F}$ we simply write

$$
C(\mathbb{F}), C_{b}(\mathbb{F}), \text { and } C^{k}(\mathbb{F}),
$$

respectively.
(5) Define $\mathcal{P}(\mathbb{F}) \subset C(\mathbb{R}, \mathbb{F})$ to be the space of all \mathbb{F}-valued polynomials on \mathbb{R} :

$$
\mathcal{P}(\mathbb{F})=\left\{a_{0}+a_{1} x+\cdots+a_{m} x^{m}: m \geq 0, \text { each } a_{j} \in \mathbb{F}\right\}
$$

Each $p \in \mathcal{P}(\mathbb{F})$ is viewed as a function $p: \mathbb{R} \rightarrow \mathbb{F}($ or $p: \mathbb{F} \rightarrow \mathbb{F}$) given by $p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$.

Examples of Vector Spaces

(6) Define $\mathcal{P}_{n}(\mathbb{F}) \subset \mathcal{P}(\mathbb{F})$ to be the subspace of all polynomials of degree $\leq n$.
(7) $V=\left\{u \in C^{2}(\mathbb{F}): u^{\prime \prime}+u=0\right\}$. Then V is a subspace of $C^{2}(\mathbb{F})$. For $\mathbb{F}=\mathbb{C}$,

$$
\begin{aligned}
V & =\left\{a_{1} \cos x+a_{2} \sin x: a_{1}, a_{2} \in \mathbb{C}\right\} \\
& =\left\{b_{1} e^{i x}+b_{2} e^{-i x}: b_{1}, b_{2} \in \mathbb{C}\right\} .
\end{aligned}
$$

More generally, if

$$
\begin{aligned}
L(u) & =\left[D^{(m)}+a_{m-1} D^{(m-1)}+\cdots+a_{1} D+a_{0} I\right](u) \\
& =u^{(m)}+a_{m-1} u^{(m-1)}+\cdots+a_{1} u^{\prime}+a_{0} u
\end{aligned}
$$

is an $m^{\text {th }}$ order linear constant-coefficient differential operator, then

$$
V=\left\{u \in C^{m}(\mathbb{F}): L(u)=0\right\}
$$

is a vector space.
V can be explicitly described as the set of all linear combinations of certain functions of the form $x^{j} e^{r x}$, where $j \geq 0$ and r is a root of the characteristic polynomial

$$
r^{m}+a_{m-1} r^{m-1}+\cdots+a_{1} r+a_{0}=0
$$

Span, Linear Independence, Basis

V a vector space with $S \subset V$. A Linear combination of elements of S is any element of V of the form

$$
\begin{equation*}
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+\cdots+\alpha_{k} v_{k}, \tag{1}
\end{equation*}
$$

where $k \in \mathbb{N},\left\{v_{1}, \ldots, v_{k}\right\} \subset S$, and $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subset \mathbb{F}$.
The linear span of $S, \operatorname{Span}(S)$, is the set of all linear combinations of finite subsets of $S . \operatorname{Span}(S)$ is a subspace of V.
$S:=\left\{v_{1}, \ldots, v_{k}\right\}$ is said to be linear independent if

$$
\alpha_{1}=0, \alpha_{2}=0, \ldots, a_{k}=0
$$

whenever

$$
0=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+\cdots+\alpha_{k} v_{k} .
$$

S is called a basis of $\operatorname{Span}(S)$ if S is linearly independent.

Span, Linear Independence, Basis

Facts:

(a) Every vector space has a basis.

In addition, if S is any linearly independent set in V, then there is a basis of V containing S.
The proof in infinite dimensions uses Zorn's lemma and is nonconstructive. Such a basis in infinite dimensions is called a Hamel basis. Typically it is impossible to identify a Hamel basis explicitly, and they are of extremely limited use. There are numerous other sorts of "bases" in infinite dimensions which are very useful.
(b) Any two bases of the same vector space V can be put into $1-1$ correspondence.

Define the dimension of V (denoted $\operatorname{dim} V) \in\{0,1,2, \ldots\} \cup\{\infty\}$ as the number of elements in a basis of V.

Standard Bases

The standard basis of \mathbb{F}^{n} is the vectors e_{1}, \ldots, e_{n}, where

$$
e_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right] \leftarrow j^{\text {th }} \text { entry, }
$$

so $\operatorname{dim} \mathbb{F}^{n}=n$. The vectors $e_{1}, e_{2}, \ldots \in \mathbb{F}^{\infty}$ are linearly independent. However, $\operatorname{Span}\left\{e_{1}, e_{2}, \ldots\right\}$ is the proper subset of \mathbb{F}^{∞} consisting of all vectors with only finitely many nonzero components. We denote this subspace by \mathbb{F}_{0}^{∞}. In particular, $\left\{e_{1}, e_{2}, \ldots\right\}$ is not a basis of \mathbb{F}^{∞}, but is a basis for \mathbb{F}_{0}^{∞}.
The monomials $\left\{x^{m}: m \in\{0,1,2, \ldots\}\right\}$ form a basis of \mathcal{P}.
Remark. Any \mathbb{C}-vector-space V may be regarded as an \mathbb{R}-vector-space by restriction of the scalar multiplication.
If V is finite-dimensional with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ over \mathbb{C}, then

$$
\left\{v_{1}, \ldots, v_{n}, i v_{1}, \ldots, i v_{n}\right\}
$$

is a basis for V over \mathbb{R}. In particular, $\operatorname{dim}_{\mathbb{R}} V=2 \operatorname{dim}_{\mathbb{C}} V$.

Coordinates

$$
\begin{array}{ll}
V & - \text { A finite dim. vector space over } \mathbb{F} \\
\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\} & - \text { A basis for } V
\end{array}
$$

$v \in V$ can be written uniquely as $v=\sum_{i=1}^{n} x_{i} v_{i}$ for some $x_{i} \in \mathbb{F}$.

Define a map from V into \mathbb{F}^{n} by $v \mapsto\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$.

This is the coordinate map w.r.t. the basis \mathcal{B}.

The coefficients x_{i} are called the coordinates of v w.r.t. this basis.

Linear Transformations

Let V and W be vector spaces.

A map $L: V \rightarrow W$ is a linear transformation if $\left(\forall v_{1}, v_{2} \in V\right)\left(\forall \alpha_{1}, \alpha_{2} \in \mathbb{F}\right)$

$$
L\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} L\left(v_{1}\right)+\alpha_{2} L\left(v_{2}\right)
$$

If, in addition, L is bijective (1-1 and onto), then L is called a (vector space) isomorphism.

A coordinate mapping on a vector space is an example of a vector space isomorphism.

Every vector space over \mathbb{F} of $\operatorname{dim} . n$ is isomorphic to \mathbb{F}^{n}.

Change of Basis

$\mathcal{B}_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{B}_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$ two bases of V.
Let $v \in V$, and suppose $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ are the coordinates of v w.r.t \mathcal{B}_{1} and \mathcal{B}_{2}, respectively:

$$
v=\sum_{i=1}^{n} x_{i} v_{i}=\sum_{j=1}^{n} y_{j} w_{j} .
$$

Express each w_{j} in terms of $\left\{v_{1}, \ldots, v_{n}\right\}$:

$$
w_{j}=\sum_{i=1}^{n} a_{i j} v_{i} \quad\left(a_{i j} \in \mathbb{F}\right) .
$$

Set $A=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \\ a_{n 1} & \cdots & a_{n n}\end{array}\right) \in \mathbb{F}^{n \times n}$.
Then

$$
\sum_{i=1}^{n} x_{i} v_{i}=v=\sum_{j=1}^{n} y_{j} w_{j}=\sum_{j=1}^{n} y_{j}\left(\sum_{i=1}^{n} a_{i j} v_{i}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} y_{j}\right) v_{i},
$$

so $x_{i}=\sum_{j=1}^{n} a_{i j} y_{j}$, i.e. $x=A y$.
The matrix A is called the change of basis matrix.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \in \mathbb{F}^{m \times n} \quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{F}^{n} \\
& A_{i \cdot}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)=i^{\text {th }} \text { row of } A \\
& A_{\cdot j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right)=j^{\text {th }} \text { column of } A \\
& A x=\sum_{j=1}^{n} x_{j} A_{\cdot j} \\
&=\left(\begin{array}{c}
A_{1 \cdot} \bullet x \\
A_{2} \bullet x \\
\vdots \\
A_{m \cdot} \bullet x
\end{array}\right) \quad=\text { lin. combo. of columns of } A
\end{aligned}
$$

Formal Matrix Notation

Write the basis vectors

$$
V=\left(v_{1} \cdots v_{n}\right) \quad \text { and } \quad W=\left(w_{1} \cdots w_{n}\right)
$$

formally as a row of vectors.
Formally, we have

$$
\begin{aligned}
v_{j} & =\text { the } j \text { th "column" of } V \\
w_{j} & =\text { the } j \text { th "column" of } W
\end{aligned}
$$

Then

$$
w_{j}=\sum_{i=1}^{n} a_{i j} v_{i}=\left(v_{1} \cdots v_{n}\right) A_{\cdot j}
$$

and so

$$
\left(w_{1} \cdots w_{n}\right)=\left(v_{1} \cdots v_{n}\right) A
$$

using the usual matrix multiplication rules.
We also have

$$
v=\left(v_{1} \cdots v_{n}\right) x \quad \text { and } \quad v=\left(w_{1} \cdots w_{n}\right) y
$$

so

$$
\left(v_{1} \cdots v_{n}\right) x=\left(w_{1} \cdots w_{n}\right) y=\left(v_{1} \cdots v_{n}\right) A y
$$

giving $x=A y$ as before.

Intersections

$$
\begin{aligned}
G & -- \text { any index set } \\
\left\{W_{\gamma}: \gamma \in G\right\} & -- \text { a family of subspaces of } V \\
W_{G} & =\bigcap_{\gamma \in G} W_{\gamma} \text { is a subspace of } V .
\end{aligned}
$$

$$
\begin{aligned}
W_{1}, W_{2} & -- \text { two subspaces of } V \\
W_{1}+W_{2} & =\left\{w_{1}+w_{2}: w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
\end{aligned}
$$

is a subspace of V, and

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}
$$

The sum $W_{1}+W_{2}$ is direct if

$$
W_{1} \cap W_{2}=\{0\}
$$

or, equivalently,

$$
\begin{gathered}
\forall v \in W_{1}+W_{2} \exists!w_{1} \in W_{1}, w_{2} \in W_{2} \\
\text { such that } \\
v=w_{1}+w_{2}
\end{gathered}
$$

and we write

$$
W_{1}+W_{2}=W_{1} \oplus W_{2}
$$

$$
\begin{aligned}
W_{1}, \ldots, W_{n} & -- \text { subspaces of } V \\
W_{1}+\cdots+W_{n} & =\left\{w_{1}+\cdots+w_{n}: w_{j} \in W_{j}, 1 \leq j \leq n\right\}
\end{aligned}
$$

is a subspace of V.
We say the sum is direct, written

$$
W_{1} \oplus \cdots \oplus W_{n}
$$

if

$$
\begin{gathered}
{\left[w_{j} \in W_{j}(1 \leq j \leq n) \quad \text { and } \sum_{j=1}^{n} w_{j}=0\right]} \\
\Longrightarrow \\
{\left[w_{j}=0(1 \leq j \leq n)\right]}
\end{gathered}
$$

Even More general sums

$$
\begin{array}{rll}
G & -- & \text { an index set } \\
\left\{W_{\gamma}: \gamma \in G\right\} & -- & \text { a family of subspaces of } V \\
\sum_{\gamma \in G} W_{\gamma} & =\operatorname{Span}\left(\bigcup_{\gamma \in G} W_{\gamma}\right)
\end{array}
$$

is a subspace of V.
The sum is direct, written $\bigoplus_{\gamma \in G} W_{\gamma}$, if for every finite subset G^{\prime} of G

$$
\begin{gathered}
{\left[w_{\gamma} \in W_{\gamma}\left(\gamma \in G^{\prime}\right) \text { and } \sum_{\gamma \in G^{\prime}} w_{\gamma}=0\right]} \\
\Longrightarrow \\
{\left[w_{\gamma}=0\left(\gamma \in G^{\prime}\right)\right]}
\end{gathered}
$$

or, equivalently,

$$
\forall \beta \in G, W_{\beta} \cap\left(\sum_{\gamma \in G, \gamma \neq \beta} W_{\gamma}\right)=\{0\} .
$$

Direct Products

$$
\begin{aligned}
\left\{V_{\gamma}: \gamma \in G\right\} & -- \text { a family of vector spaces over } \mathbb{F} \\
V & =\underset{\gamma \in G}{X} V_{\gamma} \\
& =\left[\begin{array}{c}
\text { All functions } v: G \rightarrow \bigcup_{\gamma \in G} V_{\gamma} \text { for which } \\
v(\gamma) \in V_{\gamma}, \\
\forall \gamma \in G .
\end{array}\right]
\end{aligned}
$$

Write

$$
v_{\gamma} \quad \text { for } \quad v(\gamma),
$$

and

$$
v=\left(v_{\gamma}\right)_{\gamma \in G}, \quad \text { or just } \quad v=\left(v_{\gamma}\right) .
$$

Define

$$
v+w=\left(v_{\gamma}+w_{\gamma}\right) \quad \text { and } \quad \alpha v=\left(\alpha v_{\gamma}\right) .
$$

Then V is a vector space over \mathbb{F}.
Example:

$$
G=\mathbb{N}=\{1,2, \ldots\}, \text { each } V_{n}=\mathbb{F} .
$$

Then

$$
\underset{n \geq 1}{X} V_{n}=\mathbb{F}^{\infty}
$$

$$
\begin{aligned}
\left\{V_{\gamma}: \gamma \in G\right\} & --\quad \text { a family of vector spaces over } \mathbb{F} . \\
\bigoplus_{\gamma \in G} V_{\gamma} & =\left[\begin{array}{c}
\text { The subspace of } \underset{\gamma \in G}{ } \quad V_{\gamma} \\
\text { consisting of those } v \text { for which } \\
v_{\gamma}=0 \text { except for finitely many } \gamma \in G .
\end{array}\right]
\end{aligned}
$$

Example:

For $n=0,1,2, \ldots$ let $V_{n}=\operatorname{Span}\left(e_{n}\right)$ in \mathbb{F}_{0}^{∞}. Then

$$
\mathbb{F}_{0}^{\infty}=\bigoplus_{n \geq 0} V_{n}
$$

Example:

For $n=0,1,2, \ldots$ let $V_{n}=\operatorname{Span}\left(x^{n}\right)$ in \mathcal{P}. Then

$$
\mathcal{P}=\bigoplus_{n \geq 0} V_{n} .
$$

(External) Direct Sums

Facts:

(a) If G is a finite index set,

$$
\underset{\gamma \in G}{X} V_{\gamma} \quad \text { and } \bigoplus_{\gamma \in G} V_{\gamma}
$$

are isomorphic.
(b) If each W_{γ} is a subspace of V and the sum

$$
\sum_{\gamma \in G} W_{\gamma}
$$

is direct, then it is naturally isomorphic to the external direct sum

$$
\bigoplus_{\gamma \in G} W_{\gamma} .
$$

Quotients

Let W be a subspace of V.
Define on V the equivalence relation

$$
\left[v_{1} \sim v_{2}\right] \quad \Longleftrightarrow \quad\left[v_{1}-v_{2} \in W\right]
$$

Define the quotient, denoted V / W, to be the set of equivalence classes given by this equivalence relation.

Let $v+W$ denote the equivalence class of v.
Define a vector space structure on V / W by defining

$$
\alpha_{1}\left(v_{1}+W\right)+\alpha_{2}\left(v_{2}+W\right)=\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)+W .
$$

The codimension of W in V is

$$
\operatorname{codim}(W)=\operatorname{dim}(V / W)
$$

