(1) (a) Let \(f : \mathbb{R} \times \mathbb{C}^n \to \mathbb{C} \) be continuous. Suppose \(x : \mathbb{R} \to \mathbb{C} \) is a solution of the \(n \)-th order equation

\[
(*) \quad x^{(n)} = f(t, x, x', \ldots, x^{(n-1)}),
\]

i.e., for each \(t \in \mathbb{R} \), \(x^{(n)}(t) \) exists and \(x^{(n)}(t) = f(t, x(t), \ldots, x^{(n-1)}(t)) \). Show that \(x \in C^n(\mathbb{R}) \).

(b) Define \(F : \mathbb{R} \times \mathbb{C}^n \to \mathbb{C}^n \) by \(F(t, y) = [y_2, y_3, \ldots, y_n, f(t, y_1, \ldots, y_n)]^T \) (so \(F \) is continuous). Suppose \(y : \mathbb{R} \to \mathbb{C}^n \) is a solution of the first-order system

\[
(**) \quad y' = F(t, y),
\]

i.e., for each \(t \in \mathbb{R} \), \(y'(t) \) exists and \(y'(t) = F(t, y(t)) \). Show that \(y \in C^1(\mathbb{R}) \), and moreover for \(1 \leq j \leq n \), \(y_j \in C^{n-j+1}(\mathbb{R}) \).

(c) Show that if \(x \in C^n(\mathbb{R}) \) is a solution of \((*)\), then \(y = [x, x', \ldots, x^{(n-1)}]^T \) is a \(C^1 \) solution of \((**)\). Moreover, if \(x \) satisfies the initial conditions

\[
\begin{aligned}
x^{(k)}(t_0) &= x_k^0 \quad (0 \leq k \leq n - 1),
\end{aligned}
\]

then \(y \) satisfies the initial conditions \(y(t_0) = [x_0^0, \ldots, x_0^{n-1}]^T \).

(d) Show that if \(y \) is a \(C^1 \) solution of \((**)\), then \(x = y_1 \) is a \(C^n \) solution of \((*)\).

Moreover, if \(y \) satisfies the initial conditions \(y(t_0) = y_0 \), then \(x \) satisfies the initial conditions \(x^{(k)}(t_0) = (y_0)_k+1 \) \((0 \leq k \leq n - 1) \).

(e) Show that the first-order system corresponding to the linear \(n \)-th order equation

\[
x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x = b(t)
\]

is of the form \(y' = A(t)y + B(t) \) where \(A(t) \in \mathbb{C}^{n \times n} \) and \(B(t) \in \mathbb{C}^n \), and identify \(A(t) \) and \(B(t) \).

(2) Let \(A \in \mathbb{C}^{n \times n} \) have \(\rho(A) < 1 \).

(a) Show by example that \(A \) need not be a contraction with respect to the Euclidean metric.

(b) Show that there is an inner product on \(\mathbb{C}^n \) so that \(A \) is a contraction with respect to the norm induced by the inner product.

(c) Show that for any \(x \in \mathbb{C}^n \), \(A^k x \to 0 \) as \(k \to \infty \).

(3) For each of the following IVP’s, compute the Picard iterates and identify the solution to which they converge.

(a) \(x' = tx, \quad x(0) = 1 \) \((x \) scalar)\]

(b) \(x' = Ax, \quad x(0) = x_0 \) \(\text{where } A \in \mathbb{C}^{n \times n} \) is a constant matrix \((x \in \mathbb{C}^n) \).

(4) (Gronwall’s Inequality — integral forms) Let \(\varphi, \psi, \alpha \) be real-valued continuous functions on the interval \(I = [a, b] \). Suppose \(\alpha \geq 0 \) on \(I \), and that

\[
\varphi(t) \leq \psi(t) + \int_a^t \alpha(s)\varphi(s)ds \quad \forall t \in I.
\]

(a) Show that

\[
\varphi(t) \leq \psi(t) + \int_a^t \exp \left(\int_s^t \alpha(r)dr \right) \alpha(s)\psi(s)ds \quad \forall t \in I.
\]

Hint: Let \(u(t) = \int_a^t \alpha(s)\varphi(s)ds \) and show that \(u' - \alpha u \leq \alpha \psi \).
(b) Suppose that \(\psi(t) \equiv c \) (a constant). Show that
\[
\varphi(t) \leq c \exp \left(\int_{a}^{t} \alpha(s)ds \right) \quad \forall t \in I.
\]

(5) (Iterative Methods for Linear Systems)

(a) Fix \(M \in \mathbb{C}^{n \times n} \) and \(g \in \mathbb{C}^{n} \). Given any \(x_0 \in \mathbb{C}^{n} \), define the sequence \(\{x_k\} \) iteratively by \(x_{k+1} = M x_k + g \). Show that if \(\rho(M) < 1 \), then \(I - M \) is invertible, and for any choice of \(x_0 \in \mathbb{C}^{n} \), \(x_k \to x^* \), the unique solution of \((I - M)x = g\).

(b) Suppose \(A \in \mathbb{C}^{n \times n} \) is invertible, \(b \in \mathbb{C}^{n} \) is given, and we want to solve the linear system \(Ax = b \) for \(x \in \mathbb{C}^{n} \). A splitting method writes \(A \) as \(A = S - T \) where \(S \) is invertible (and linear systems \(Sx = y \) are easily solved), and given \(x_0 \in \mathbb{C}^{n} \), define \(\{x_k\} \) by \(S x_{k+1} = T x_k + b \). Show that if \(\rho(S^{-1}T) < 1 \), then for any choice of \(x_0 \in \mathbb{C}^{n} \), \(x_k \to x^* \), the unique solution of \(Ax = b \).

(c) Suppose \(A \in \mathbb{C}^{n \times n} \) with nonzero diagonal entries. Write \(A = L + D + U \), where \(L \) is strictly lower triangular, \(D \) is diagonal, and \(U \) is strictly upper triangular. The Jacobi iteration is the splitting method where \(S = D, T = -(L + U) \). The Gauss-Seidel iteration is the splitting method where \(S = D + L, T = -U \). Show that if \(A \) is strictly (row) diagonally dominant (i.e., for \(1 \leq i \leq n, |a_{ii}| > \sum_{j \neq i} |a_{ij}| \)), then \(A \) is invertible, and for any given \(x_0 \), the Jacobi iteration generates a sequence \(\{x_k\} \) which converges to the unique solution \(x^* \) of \(Ax = b \).

(Hint: Show \(\|D^{-1}(L + U)\|_\infty < 1 \) in the operator norm \(\|\cdot\|_\infty \) on \(\mathbb{C}^{n \times n} \) induced by the \(\ell^\infty \)-norm \(\|\cdot\|_\infty \) on \(\mathbb{C}^{n} \).)

[Remark: It can be shown that if \(A \) is strictly (row) diagonally dominant, then the Gauss-Seidel iteration converges. As one would expect from the proof of the Contraction Mapping Fixed Point Theorem, the rate of convergence depends on \(\rho(S^{-1}T) \). For some classes of matrices \(A \), it can be shown that \(\rho_G = \rho_J \), where \(\rho_G \) and \(\rho_J \) are \(\rho(S^{-1}T) \) for Gauss-Seidel and Jacobi, respectively, so Gauss-Seidel takes roughly half the number of iterations as Jacobi to achieve the same accuracy. With the goal of further decreasing \(\rho(S^{-1}T) \), Gauss-Seidel has been generalized to the successive over-relaxation method (SOR): the iteration takes the form
\[
(D + \omega L)x_{k+1} = D x_k + \omega [b - (D + U) x_k]
\]
where \(\omega \) (fixed) is called the relaxation parameter (\(\omega < 1 \) is called under-relaxation, \(\omega > 1 \) is called over-relaxation); the method was originally developed for matrices arising from discretizing elliptic PDE’s where values of \(\omega > 1 \) tend to give faster convergence, so the name SOR has stuck; Gauss-Seidel is SOR with \(\omega = 1 \). Dividing through by \(\omega \), SOR is seen to be a splitting method
\[
S_\omega x_{k+1} = T_\omega x_k + b,
\]
where
\[
S_\omega = \frac{1}{\omega}(D + \omega L) \quad \text{and} \quad T_\omega = \frac{1}{\omega}((1 - \omega)D - \omega U).
\]
The iteration matrix \(M \) (as in (a)) is
\[
M_\omega = S_\omega^{-1} T_\omega = (D + \omega L)^{-1}((1 - \omega)D - \omega U).
\]
It can be shown that if \(A \in \mathbb{R}^{n \times n} \) is symmetric positive-definite, then \(\rho(M_\omega) < 1 \) (and thus the SOR iteration converges) iff \(0 < \omega < 2 \) (the Ostrowski-Reich Theorem). One direction (that \(0 < \omega < 2 \) is necessary) is shown easily.]
(d) Suppose $A \in \mathbb{C}^{n \times n}$ with non-zero diagonal elements, $\omega \in \mathbb{R}$, and

$$M_\omega = (D + \omega L)^{-1}((1 - \omega)D - \omega U).$$

Show that $\rho(M_\omega) \geq |\omega - 1|$ (and thus $\rho(M_\omega) \geq 1$ for $\omega \leq 0$ and for $\omega \geq 2$).

(Hint: Use

$$\det (D + \omega L)^{-1} = \det D^{-1} \quad \text{and} \quad \det ((1 - \omega)D - \omega U) = \det ((1 - \omega)D)$$

to show that $\det (M_\omega) = (1 - \omega)^n$.)

(e) Let $A \in \mathbb{C}^{n \times n}$. A matrix $C \in \mathbb{C}^{n \times n}$ is called an approximate inverse for A if $\rho(I - CA) < 1$. Show that if C is an approximate inverse for A, then A is invertible, C is invertible, and for any given $x_0 \in \mathbb{C}^n$, the iteration $x_{k+1} = x_k + C(b - Ax_k)$ generates a sequence $\{x_k\}$ which converges to the unique solution x_* of $Ax = b$.

[Remark: $r_k = b - Ax_k$ is called the residual at the kth iteration.]

(6) Use the Contraction Mapping Fixed Point Theorem to prove the following part of the Inverse Function Theorem:

If $\Phi : N \to \mathbb{R}^n$ is a C^1 mapping on a neighborhood $N \subset \mathbb{R}^n$ of $x_0 \in \mathbb{R}^n$ satisfying $\Phi(x_0) = y_0$ and $\Phi'(x_0) \in \mathbb{R}^{n \times n}$ is invertible, then Φ has a continuous right inverse Ψ on some neighborhood of y_0.

Fill in the details of the following outline. Let $| \cdot |$ denote the Euclidean norm on \mathbb{R}^n and $\| \cdot \|$ denote the induced operator norm on $\mathbb{R}^{n \times n}$. With $y \in \mathbb{R}^n$ as a parameter, define $G(x; y) = x + \Phi'(x_0)^{-1}(y - \Phi(x))$ for $x \in N$.

[Remark: Although G is a nonlinear function of x, notice the similarity with problem 5(e). In fact, for x near x_0, $\Phi'(x_0)^{-1}$ is an approximate inverse for $\Phi'(x)$.]

Let $G'(x; y)$ denote the Jacobian matrix of G with respect to x (for each fixed y).

(a) Show $\exists r > 0$ with $B_r(x_0) \subset N$ (where $B_r(x_0) = \{x \in \mathbb{R}^n : |x - x_0| \leq r\}$) for which

$$(\forall y \in \mathbb{R}^n) \ (\forall x \in B_r(x_0) \quad \|G'(x; y)\| \leq \frac{1}{2}).$$

(Hint: Show $G'(x; y)$ is independent of y, and $G'(x_0; y) = 0$.)

(b) Conclude that

$$(\forall y \in \mathbb{R}^n) \ (\forall x_1, x_2 \in B_r(x_0)) \quad |G(x_1; y) - G(x_2; y)| \leq \frac{1}{2}|x_1 - x_2|.$$

(c) Let

$$s = \frac{r}{2\|\Phi'(x_0)^{-1}\|}.$$

Show that for

$$y \in B_s(y_0) = \{y \in \mathbb{R}^n : |y - y_0| \leq s\},$$

$G(x; y)$ (as a function of x) maps $B_r(x_0)$ into itself.

(d) Show that for each $y \in B_s(y_0)$, $G(x; y)$ (as a function of x) has a unique fixed point x_* (which we will call $\Psi(y)$) in $B_r(x_0)$. Show that the map $\Psi : B_s(y_0) \to B_r(x_0)$ satisfies

$$\Phi(\Psi(y)) = y \quad \forall \ y \in B_s(y_0).$$
(e) Show that Ψ is continuous on $\overline{B_s(y_0)}$.

Hint: For each fixed $y \in B_s(y_0)$, let $G_k(x_0; y)$ denote the k^{th} functional iterate of $G(x; y)$ (as a function of x) starting at x_0:

$$G_1(x_0; y) = G(x_0; y),$$

and for $k \geq 1$,

$$G_{k+1}(x_0; y) = G(G_k(x_0; y); y).$$

Show that as functions of $y \in B_s(y_0)$, each $G_k(x_0; y)$ is continuous, and $G_k(x_0; y)$ converges uniformly to $\Psi(y)$ on $\overline{B_s(y_0)}$.